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ABSTRACT

A group of new conservative remapping schemes based on nonpolynomial approximations is proposed.
The remapping schemes rely on the conservative cascade scheme (CCS), which employs an efficient se-
quence of 1D remapping operations to solve a multidimensional problem. The present study adapts three
new nonpolynomial-based reconstructions of subgrid variation to the CCS: the Piecewise Hyperbolic
Method (PHM), the Piecewise Double Hyperbolic Method (PDHM), and the Piecewise Rational Method
(PRM) for comparison with the baseline method: the Piecewise Parabolic Method (PPM). Additionally, an
adaptive hybrid approximation scheme, PPM-Hybrid (PPM-H), is constructed using monotonic PPM for
smooth data and local extrema and using PHM for steep jumps where PPM typically suffers large accuracy
degradation because of its original monotonic filter. Smooth and nonsmooth data profiles are transported
in 1D, 2D Cartesian, and 2D spherical frameworks under uniform advection, solid-body rotation, and
deformational flow. Accuracy is compared via the L, global error norm. In general, PPM outperformed
PHM, but when the majority of the error came from PPM degradation at sharp derivative changes (e.g., the
vicinity near sine wave extrema), PHM was more accurate. PRM performed very similarly to PPM for
nonsmooth functions, but the order of convergence was worse than PPM for smoother data. PDHM
performed the worst of all of the nonpolynomial methods for nearly every test case. PPM-H outperformed
PPM and all of the nonpolynomial methods for all test cases in all geometries, offering a robust advantage
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in the CCS scheme with a negligible increase in computational time.

1. Introduction

Conservative remapping is essentially the process of
transferring data from one grid to another while con-
serving the global and local integrals and it has several
very promising applications in atmospheric sciences.
Perhaps the most immediate application would be con-
servative interpolation for pre- or postprocessing of nu-
merical model data (see Lauritzen and Nair 2008, and
the references therein). Another potential application
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is in developing conservative baroclinic three-dimen-
sional (3D) models, which exploit Lagrangian coordi-
nates in the vertical based on an “evolve and remap”
approach. Since the Lagrangian surfaces are subject to
deformation, the data must be remapped onto a refer-
ence Eulerian grid at a regular interval of time (Lin
2004; Nair and Tufo 2007; Machenhaur et al. 2008). At
the top and bottom boundary line, the remapping
scheme needs to be as local as possible requiring only
minimal neighboring cell information. Finally, one
could apply conservative remapping to semi-Lagran-
gian (SL) transport since it essentially involves the
transferring of mass from one grid to another at each
time step. In a backward trajectory mode, data on an
upstream departure grid is remapped onto a static ar-
rival grid (Rancic 1995; Nair and Machenhauer 2002;
Nair et al. 2002, hereinafter NSS02; Zerroukat et al.
2004). This is the application focused upon in the
present study.
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The SL transport methods have proved to be an ef-
fective means of overcoming the well-known Courant—
Friedrichs-Lewy (CFL) limitation and stably increasing
the temporal truncation error to the same order of
magnitude as the spatial truncation error (Staniforth
and Cote 1991). The problem with SL transport
schemes in the past is that they typically did not con-
serve the global and local integrals of the transported
quantity. Inherent conservation is important because
without it, the global integral drifts requiring a fairly
arbitrary postprocessing redistribution of mass globally
leading to the artificial global transport of local mass
losses and the slight artificial diffusion of gradients
(Gates et al. 1971; Priestley 1993; Gravel and Staniforth
1994).

Near the mid-1990s, mass-conserving interpolation
schemes began to surface via differentiation of a mass
interpolator in order to gain a conservative density es-
timate (Leslie and Purser 1995; Rancic 1995). In recent
years, SL transport schemes have been developed for
spherical application using a finite-volume paradigm,
integrating over control volumes (or cells) in order to
not only conserve mass but also preserve monotonicity
(Nair and Machenhauer 2002; NSS02; Zerroukat et al.
2002). The method adopted in this study is called the
spherical Conservative Cascade Scheme (CCS) from
NSS02, which is based on a finite-volume cascade split-
ting in which the Cell-Integrated Semi-Lagrangian
(CISL; Nair and Machenhauer 2002) scheme is em-
ployed in each 1D sweep. This cascade splitting is more
efficient than prior Cartesian splittings in that it is dic-
tated by the flow and requires only two sets of sweeps
(Nair et al. 1999). In Lauritzen (2007), this CCS method
has been shown to be unconditionally stable for trans-
port problems.

The CISL (and thus the CCS) is currently based on
the Piecewise Parabolic Method (PPM) of Colella and
Woodward (1984, hereinafter CW84) and Carpenter et
al. (1990) in which parabolas are fit to the cells based on
each cell mean and a fourth-order conservative recon-
struction of the left and right interface values. Because
the integration of parabolas renders a cubic represen-
tation of mass and the cell boundaries are calculated to
fourth-order accuracy, PPM is formally fourth-order
accurate for a regular mesh and smooth data when no
limiting is applied. However, to ensure a monotonic
solution, the preprocessing monotonic limiter of CW84
is used in this study. This limiter constructs a piecewise
constant representation of the data in the presence of
local extrema (only a first-order accurate solution) and
suffers arbitrary accuracy degradation at steep jumps as
the previously fourth-order accurate interface bound-
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aries are altered to keep the parabola monotonic within
the cell.

This study introduces three nonpolynomial approxi-
mations to the CCS framework for comparison against
the monotonic PPM in Cartesian space and on the
sphere. The first of the schemes is the Piecewise Hy-
perbolic Method (PHM) of Marquina (1994), which
was further modified in Serna (2006, hereinafter S06).
This scheme is especially promising because of its
three-cell stencil (as compared with the four-cell stencil
of PPM) and the flexibility in directly controlling the
inner-cell variation via the exponent of the power
limiter introduced in S06. Additionally, S06 showed
mathematically that hyperbolas are by nature less os-
cillatory than parabolas. The other two methods tested
are the Piecewise Double Hyperbolic Method (PDHM)
of Artebrant and Schroll (2006, hereinafter AS06) and
the Piecewise Rational Method (PRM) of Xiao et al.
(2002, hereinafter X02). All three methods are adapted
to the semi-Lagrangian context from Godunov-type
Eulerian frameworks. Thus, each method has some
measure of implicit or explicit limiting such that in the
Godunov framework, they are Local Total Variation
Bounded (LTVB) within a given cell. The LTVB
constraint in the Godunov context turns out to pro-
vide bounded monotonicity violation in the semi-
Lagrangian context. Additionally, this study constructs
an adaptive hybrid approximation scheme called PPM-
Hybrid (PPM-H) in which the generally most accu-
rate method, PPM, is used for smooth data and for
extrema and PHM is used for steep jumps. This is be-
cause PHM suffers no formal accuracy degradation
in the presence of steep jumps as PPM does. Only
local (or narrow stencil) methods are of interest in
the present study. Therefore, such methods as
spline approximations (Zerroukat et al. 2006), which
require a global cell reconstruction, are not considered
here.

In section 2, the conservative cascade scheme will be
reviewed in detail including the formulation of the in-
tegral continuity equation (section 2a), the 1D CISL
remapping procedure (section 2b), the 2D conservative
cascade splitting (section 2c), and the extension of the
CCS to spherical coordinates (section 2d). Section 3
will present the new subgrid reconstructions in detail
including the hybrid scheme, PPM-H, and the respec-
tive methods of limiting local total variation. Section 4
presents the numerical experiments in 1D-2D Carte-
sian and spherical geometries and examine the com-
parative accuracy of each simulation in terms of global
error norms. A summary of the study and conclusions
will be given in section 5.
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FIG. 1. Schematic illustration of the 1D CISL scheme. Solid vertical lines represent cell
boundaries, dotted horizontal lines represent cell means, dashed curves represent the approxi-
mations, dashed vertical lines represent the upstream locations of the boundaries of cell i, and

shading denotes integration.

2. Conservative cascade scheme

a. Finite-volume semi-Lagrangian formulation

Consider the 1D continuity equation or mass conser-
vation law where p and u represents density and fluid
velocity, respectively:
dpu

ox *

ap

ar )

As shown in Laprise and Plante (1995), integrating
both sides of (1) over a time-dependent control volume
and applying the Leibniz rule to the left-hand side ren-
ders strict conservation of the volumetric integral of p
following fluid motion. This integral conservation is
also known as the integral form of the continuity equa-
tion, where x;_,,, and x;, 1, are the left and right bound-
aries respectively of cell i:

d

Xi+172(0)
pi(x, 1) dx = 0.

Xi—172(t)

@

b. 1D CISL scheme

The CISL scheme follows directly from (2) as mass is
the quantity transported from departure cells to arrival
cells. This process is schematically illustrated in Fig. 1.
Note that throughout this sections x} always denotes
the departure location of x;, and x,.,,, will always refer
to the right and left boundary locations of arrival cell i.
First, approximations are fit to the cell means in order
to describe the variation within each cell. To insure

inherent mass conservation, the foremost constraint on
all approximations is that the integral across the cell
match the cell’s mean density. To formulate this con-
straint mathematically, the following must hold true:

Xi+1/2
M; = pAx; = pi(x) dx,

Xi—1/2

©)

where M, is the mass, Ax; is the grid spacing, p; is the
average density, and p; is the density approximation
function for an arbitrary cell, i.

Next, the cell boundaries are traced upstream from
their static locations to find their departure locations.
Each arrival cell boundary must have a correspond-
ing departure cell boundary, and the departure cells
are bounded by the departure boundaries. In Fig. 1, this
is illustrated for cell i where boundaries, x;.,, are
traced upstream to x}.;,. In this study, to isolate the
errors due to the CISL scheme and subgrid approxi-
mations only, these trajectories are calculated analyti-
cally.

After the departure cells are defined, the mass within
each departure cell is calculated by integrating between
each departure cell’s boundaries over the approxima-
tions formed earlier. Generally, the departure cells
span more than one arrival cell. Thus, in order to com-
pute the mass within each departure cell efficiently,
mass is first accumulated up to each arrival boundary
(Nair and Machenhauer 2002). Then, the integrated
mass from the leftmost arrival boundary up to the right
departure boundary is added to the accumulation up to
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the leftmost arrival boundary (mathematically ex-
pressed in NSS02). Finally, the departure cell mass sim-
ply replaces the arrival cell value, and the arrival cell
grid spacing is divided out to obtain the new arrival cell
density in a conservative manner. Mathematically, the
process could be expressed as follows, where n repre-
sents the current time index:

X2

—n+1 1 ~1n
pitl = p'(x) dx. 4)

! P
Axi X1

c. 2D CCS scheme

The CISL can be extended into two dimensions by
use of a finite-volume cascade-splitting technique (i.e.,
the CCS). In the CCS, only two sweeps of remapping
are performed: one from the arrival grid cells to the
intermediate grid cells and another from the interme-
diate grid cells to the departure grid cells. Refer to Fig.
1 of NSS02 for a schematic of this process using a rect-
angular Cartesian grid in (A, p) coordinates.

The departure grid is strictly rectangular being
bounded by arrival longitudes (straight lines bounding
a column of arrival cells to the east and west) and by
arrival latitudes (straight lines bounding a row of arrival
cells to the north and south). The intermediate grid
remains bounded to the east and west by the arrival
longitudes, but the north and south intermediate
boundaries move with the fluid for each column of ar-
rival cells. Therefore, for the first CCS sweep, mass is
remapped northward and southward parallel to arrival
longitudes for each column of cells via the CISL
method. Before the CISL remapping is performed,
however, each column (i) of scalars is multiplied by the
zonal grid spacing, A\, so that when CISL integration
in the p direction is performed, total mass is calculated
for the intermediate cells. Mass in each intermediate
cell is then divided by the intermediate cell area, A;; =
ANAp¥, to obtain the intermediate cell densities.

Each straight row of cells on the arrival grid corre-
sponds to a curved row of cells on the intermediate grid,
which are bounded by intermediate latitudes (curved
lines that bound intermediate rows to the north and
south). The departure grid cells are bounded to the
north and south by intermediate latitudes and to the
east and west by tracing the arrival east-west bound-
aries along intermediate rows following fluid motion
upstream. Therefore, the second CCS sweep oriented
parallel to intermediate latitudes remaps the interme-
diate grid cell masses to the departure grid cells to ob-
tain the mass within each departure cell, again using the
CISL method. As in the first sweep, before the CISL
remapping is performed, each row of scalars is multi-
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plied by the intermediate meridional grid spacing, A},
so that when CISL integration along intermediate rows
is performed, total mass is calculated for the departure
cells. Mass in each departure cell then replaces arrival
cell mass to perform transport, and the mass is divided
by the arrival cell area, A;; = AN, Ap;, to conservatively
obtain the new density. See NSS02 for additional de-
tails on the CCS.

A positive definite filter is employed in 2D simula-
tions in which one sweep is made across the grid to add
mass to cells with negative values. Then, the amount of
mass added is taken away from the rest of the grid
weighted linearly by the mass already in the grid cell.

d. Extension to spherical geometry

To extend the CCS into spherical geometry, an area-
preserving transformation is first applied in which the
spherical coordinates (A, 0) are changed into (A, w),
where p = sinf (Nair and Machenhauer 2002). Where
6 was previously in the domain 6 € [—m/2, 7/2], w is
now in the domain p € [—1, 1], and (A, p) represents a
rectangular coordinate set with a meridional stretch
which can be manipulated in an ordinary Cartesian
manner as before.

Also, because of the deformed mesh of the (A, w)
rectangular grid, a linear intersection calculation to ob-
tain the intermediate grid is not accurate enough. In-
tersections of intermediate latitudes and arrival longi-
tudes must be calculated with a cubic intersection cal-
culate, and in this implementation, a standard cubic
Lagrange interpolant is used. Additionally, because of
the excessive grid deformation near the Poles, the con-
stant approximation of the east-west boundaries of de-
parture cells causes undesirable accuracy loss in the
rows just outside the polar caps. For this reason, the
cells are refined such that the departure grid east—west
boundaries may be multiple constant values within a
computational cell to allow for a more accurate descrip-
tion of the zonal remapping near the Poles from the
intermediate grid to the departure grid. In this study,
the intermediate row adjacent to each Pole is refined to
give three constant zonal boundaries within the cell,
and the intermediate row two cells equatorward is re-
fined to give two constant zonal boundaries.

The Poles of a spherical coordinate set are a well-
known problem because the meridians converge to a
singular point. For this reason, any row of intermediate
cells that contains the arrival Pole point cannot be in-
tegrated as the other cells are integrated because the
rectangular Cartesian integration procedure breaks
down at this singularity. In the present implementation
of spherical transport, the meridional Courant number
is restricted to less than unity such that the departure
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polar cap always includes the arrival polar singularity;
that is, the departure mesh’s polar point never advects
out of the arrival grid’s polar cap. This is not a formal
restriction of the CCS method, however (see Nair
2004). The extension to large Courant numbers does
not provide additional insight into the comparative per-
formance of these subgrid reconstructions and is there-
fore not implemented in the present study.

Therefore, in the polar cap region for the second
(zonal) CCS sweep, a traditional pointwise cubic SL
method is employed since it does not suffer the singular
restriction and the polar cap mass is redistributed based
on weights formed by the traditionally interpolated SL
values. The mass is known in the polar caps from the
first sweep, which calculates mass in the meridional di-
rection. Integration is not necessary over the singularity
in the first sweep because it can be calculated via sub-
traction using the accumulated mass in the arrival cells.
Suppose each point in a polar cap is given an interpo-
lated SL departure value of . The weights w; are
formed by

w; = L %)

>l
J

and the mass is redistributed zonally across the polar
cap such that a cell in the polar cap has a mass m, of

m; = w;Mpc, (6)
where Mp denotes the total mass in the polar cap cal-
culated in the first sweep.

3. Subgrid approximations

a. PPM

Because of the extensive descriptions of PPM in the
literature and its common use in modern applications,
this method will only be described briefly here. PPM
was originally introduced in CW84 for gas-dynamical
simulations in an Eulerian context based on fluxes
through cell interfaces. It was later applied to meteo-
rological modeling by Carpenter et al. (1990). PPM fits
parabolas to each cell to describe the inner-cell varia-
tion using a cell’s mean density (p;) and the left and
right interface values (p;_,, and p;, ., respectively).
Interface values are reconstructed before parabolas are
fit using a conservative, monotonic, cubic interpolation
for fourth-order accurate values, which requires four
cells of information rendering a PPM requirement of a
four-cell stencil. The parabolas are constructed on a
normalized domain, ¢ € [—1/2, 1/2] with the following
form:

1
68 = pi + (pir12 — Pim1)E T Ps(ﬁ - §2>» (7
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where pg is defined as

ps = [6p; = 3(pi—12 + Pir12)] ®)

To limit PPM such that all parabolas are monotonic
within the local cell domain, Carpenter et al. (1990)
gives a detailed explanation of how the interface values
are altered. It should be noted that much of the cause of
PPM error comes from the damping effects of this filter.
For smooth functions with extrema (e.g., the sine
wave), nearly all error can be attributed to the effects of
this filter. Less-damping filters exist at the cost of wider
stencils (Zerroukat et al. 2005), but the focus of this
study is on local stencil methods.

b. PHM

PHM was originally introduced in a Godunov finite-
volume context in Marquina (1994) where hyperbolas
are fit to the cells to describe the subgrid variation. The
hyperbola is constructed based on second-order ap-
proximation to the interface derivatives rather than us-
ing interface values. The hyperbola takes on the follow-
ing form:

h.

1

o h; 2- o
pi(x) =p; + dia_iz [111(2 + ai> a (x — x) — (hi/ai)]’
©)

where h; is the grid spacing and x, is the cell center
location for cell i, and «; and d; are the derived param-
eters used to define a unique hyperbola within a cell.
The value d, is the approximation to the derivative at
the cell center, and «; is tweaked in order to interpolate
one of the lateral derivatives. The limiting of PHM is
performed in the evaluation of d;, and a recent advance
in PHM limiting has been given in S06, in which a
power limiter is used to calculate d; rather than the
Marquina (1994) harmonic limiter. The S06 definition
of d; is

d; = minsign(d;., , d;.1,) powers(|d; 1 ol |d; 1 100),  (10)

where d;_,,, and d,,,, are centered second-order ap-
proximations to the interface derivatives given by

Pi — Pi1

di1p= P and (11)
Piv1 — Pi
divip = m ; (12)
the power limiter is expressed as
a+b a—>b|?
power,(a, b) = - 1- P s (13)
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and the minsign function is given by

sign(a) if
sign(b) if

lal = | b

. (4
lal > |b| (4

minsign(a, b) = {

There exist two situations in which the constructed
hyperbola would become ill-defined across the interval.
First, if lo;l = 2, the natural logarithm term would no
longer be defined. Therefore, the definition of «; must
restrict it to the interval, o; € (=2, 2) which, according
to Marquina (1994) and S06, also serves as a sufficient
condition for PHM to be Local Total Variation
Bounded (LTVB) within a given cell. Second, if «; = 0,
a divide-by-zero singularity occurs. In the Godunov
context in which only the interface hyperbola deriva-
tives are of interest, this is a removable singularity,
which can be computed. However, in the CISL context,
a continuously integrable function is necessary. It turns
out that o; = 0 simply signifies that d;_,, and d,, ,,, are
equal, which in turn means that the function may be
approximated accurately by a line. Therefore, if lo,l is
close to zero, the hyperbola is replaced by a line of the

following form:
pi(x) = p; + d;(x — x,). (15)

The parameter «; is defined based on the value d,
such that

Z[W - 1] if Idi—1/2| = |di+1/2|
a; = _ , (16)
A1 = \/n] it |diyol > iyl
where the ratio ), is defined as
Uy dror ) = dite (7)
Witz Qi) = min(|d;_ |, ld; 1) + &’

where ¢ is a small value to avoid a floating-point divide-
by-zero error and may be set to a value as small as
machine precision (see X02). S06 formulates the ratio
m; such that no division is necessary based on a fixed
power limiter exponent value of p = 3, but this study
adopts (17) such that the exponent may be varied with-
in the set of real numbers rather than be restricted to
the set of integers. The S06 improvement was attributed
to allowing more variation within the cells by increasing
the o, range from o; € [-2(\/2 — 1), =2(\/2 — 1)]
formed by harmonic limiting to a; € [-2(\/3 — 1),
2(\/3 — 1)] formed by power, limiting with p = 3. It
was stated in S06 that max, ,n;(a, b) = 3 when p = 3.
Because m); increases as the difference in magnitude of
a and b increases, Fig. 2a shows numerically that for any
real power limiter exponent p,

g};}gm(a, b) =p. (18)
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Since the LTVB constraint restricting « to the inter-
val, a € (—2,2), implies that n; € (—4, 4), it is clear that
a LTVB hyperbola may be obtained with a power lim-
iter exponent in the range p € (0, 4), and thus, this
range would also render the CCS solution essentially
monotonic with a bounded magnitude of monotonicity
violation. Therefore, p = 3.999 is used in this study for
PHM-based simulations.

c¢. PDHM

AS06 developed a logarithmic approximation to
computational cell variation in the Godunov context
called the Piecewise Logarithmic Method (PLM), but
this method is not trivially transferred to the CCS con-
text because the logarithm functions are not naturally
integrable across the cell. Later, AS06 came out with
the third-order Piecewise Double Logarithmic Method
(PDLM) with the stated advantage of constructing ex-
trema at full accuracy. This method was implemented
in the CCS context because it could be limited and was
naturally integrable across a given cell domain. AS06
also developed a Piecewise Double Hyperbolic Method
(PDHM) with very similar parameters as the PDLM.
Cancellation errors caused accuracy degradation for
PDLM on fine meshes; and for this reason, PDHM is
the method shown in this paper.

It should be stated that PDHM has very little in com-
mon with PHM except that they are both in rectangular
hyperbolic form. AS06 defines a double rectangular hy-
perbola within an arbitrary cell i:

d,n? h; (2 -1
- — x—xi—E 3—1 , (19

where 4 is the cell grid spacing; x; is the center location
of cell i; and a, b, ¢, and d are parameters defined by the
cell interface derivatives as follows:

2|d;_1,,1%d; 9+ g
g =1 8)(1 L, A 21/2| [ : > 20
|d;— 1, T+ d; 1,0 T+ e
a;
bi = a —1 ’ (21)
(a; — 1)2[di+]/2(bi - 1)2 —d;_1p]
= (a; =2+ Db)(b; — a;) , and 22)
dAi =d; 1p—c, (23)

where & = 0.1h7 and & is the average grid spacing. The
parameter d, should not be confused with the interface
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(d) Irregular signal, 100 cells, 1 revolution.

Fi1G. 2. (a) A plot of the m ratio value over differing orders of magnitude of difference between d, and dj with
power limiter exponent values of p = 3, 3.5, 3.9, and 4. Plots of analytical and numerical solutions for three different
profiles—(b) sine wave, (c) rectangular wave, and (d) irregular single—transported cyclically by a uniform wind in
1D using various subgrid reconstructions specified in the plot legends. Domains are truncated for clarity.

derivatives d;. ;. The limiting of PDHM is performed
via the parameter g, which as suggested by AS06 is set
to unity. There exists a possibility of singularity if a is
not confined to the interval a € (0, 1). Since the ¢
limiting of (20) confines the parameter a to the interval
ae [e(1 —g), 1 — &) (shown in AS06), this case of
singularity never occurs as € > 0. Thus, the function is
integrable across an arbitrary cell domain.

The double hyperbolic function in (19) does not in-
herently conserve mass. Therefore, to obtain a unique
conservative double hyperbola, the mean integrated
value of (19) is subtracted off to render an integrated
mean of zero, and the cell mean density is added on as
follows:

pix) = (bi(x) - 51‘ + p; (24)
where

- 1 [*xi+12

4= f 4 )

d. PRM

This method is developed in X02 wherein unique ra-
tional functions (ratio of two parabolas) are fit to cells
based on the cell mean and the interface values. Unlike
with PPM, and unlike the typical Godunov schemes,
the PRM was developed in a context in which the in-
terface values are advected in a SL manner, and the cell
means are transported via flux form transport. The ra-
tional functions are defined as

a; + 2bx — x;_1) + Bbix — xi—l/z)z

pilx) = ,  (26)
[1+ Bix — xifl/z)]z
where a,, b,, and B;, respectively, are given by

a; = Pi-12 27)
b; = Bip; + P _Aiiil/z , and (28)

1 (lpi1p—plte )
= —1. 29
B Ax; <|Pi ~ Piv1ol T € @)
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As seen before with PHM, ¢ is a small number used
to avoid a floating-point divide by zero and may be set
as small as machine precision. No singularities exist in
the actual function itself as shown in X02 because the
definition of B; does not allow the expression 1 + f3;
(x = x;_1,,) to reach the value zero within a given cell.
One notable feature of this method is that in the CISL
context, the integration from the closest arrival bound-
ary, X;_i, to a given departure boundary, x} ,,, up to
that departure boundary reduces to a relatively simple
expression:

xi1n dx(a; + b;6x)
px) dx = ———F7—7F—, (30)

rn B:ox + 1

where 8x = x} ,, — x;_15,. Therefore, construction and
integration using PRM is very efficient. However, be-
cause this method requires values at the cell interfaces,
the conservative cubic approximations of PPM are
used, which requires additional computation.

e. PPM-H

In light of the degradation of PPM accuracy in the
presence of steep jumps and local extrema in the trans-
ported data, a hybrid method was devised in which
PPM is used for smooth data and local extrema and
PHM is used for steep jumps. It was experimentally
found that no replacement scheme yielded consistent
gain in accuracy for local extrema, and PHM provided
the best solution when used at steep jumps. The rea-
soning for this adaptive replacement is that PHM re-
tains full order of convergence at steep jumps while
remaining essentially monotonic where PPM suffers ar-
bitrary degradation of accuracy at steep jumps due to
altered interface values. The hybrid scheme is auto-
matically adaptive because PPM already tests for cases
in which parabolas are nonmonotonic within the cell
domain due to steep jumps in the preprocessing limiter
in CW84.

It was observed experimentally that PPM-H viola-
tions of monotonicity were unacceptably large: O(10~2)
for a C° discontinuous jump of magnitude unity. There-
fore, two methods were employed to reduce the viola-
tion. First, the larger the value for the PHM power
limiter exponent, p, the more the variation allowed
within a cell. Therefore, a measure of jump severity is
employed based up on the relative change in magnitude
of the left and right interface derivatives. The larger the
difference in interface derivatives, the greater the over-
shoot or undershoot generally. Therefore, the severity,
S, can be calculated as a normalized quantity such that
Se [0,1]:
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_ |di71/2| B |di+1/2|

S =
|di—1/2| + |di+1/2|

. (31)

Therefore, if S is greater than some cutoff value, $*, a
PHM power limiter exponent of p = 3 is used and
below this cutoff value, p = 3.999 is used. This was
observed to successfully reduce overshoots and under-
shoots by restricting the PHM variation for severe
jumps and retain optimal accuracy with a cutoff value
of §* = 0.8.

Second, a natural overshoot damping mechanism was
observed and verified in PHM. Therefore, PHM is
adaptively used for local extrema only when those ex-
trema are caused by overshoots. Overshoot-induced ex-
trema are detected utilizing the same parameter, S, be-
cause these particular extrema naturally have one de-
rivative much larger in magnitude than the other. A
cutoff value of $* = 0.95 is found to effectively reduce
monotonicity violation without altering accuracy to a
large extent. Therefore, only when S > 0.95, is PHM
used at local extrema.

4. Numerical experiments

In each of these experiments, a certain initial spatial
distribution of a scalar quantity (it will be referred to as
density) will be transported by a time constant flow
(though not generally uniform in space) and compared
to the known analytical result for evaluation. It should
be noted that performance of the nonpolynomial meth-
ods in this CCS context does not necessarily imply simi-
lar comparative performance in another transport con-
text such as the Godunov-type transport.

a. 1D uniform advection

1) SINE WAVE

This test case involves transporting a sine wave uni-
formly and cyclically through a domain of 100 cells () €
[0, 1] for 10 revolutions (2000 time steps) with a wind of
u =1ms ' time step of At = 0.005 yielding a Courant
number of C = 0.5. The initial data are given by

po(x;) = %[Sin(zﬂx,-) + 1], (32)

such that the profile remains above zero. Figure 2b
shows a plot of the new methods versus PPM for the
sine wave test with the displayed domain constrained to
the sine wave maximum to better visualize the damping
errors that cause the bulk of global error. Table 1 gives
the errors norms of the methods for quantitative com-
parison. These L,, L,, L., L and L., error mea-

min> max
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TABLE 1. Error norms for 1D sine wave and rectangle wave experiments.

Sine wave Rectangle wave
Method L, L, L. Loin Lo L, L, L., Loin Loax
PPM 0.00146  0.00232  0.00486  0.004 86 —0.00486  0.03883  0.10558  0.35455 0.00000  0.000 00
PPM-H 0.00049  0.00084  0.00237  0.00237 —0.00136  0.03554 010173  0.346 63 0.00000  0.000 00
PHM 0.00055  0.00059  0.00117  0.00112 —0.00112  0.05429 0.12815  0.396 54 —0.000 01  0.000 01
PDHM 0.00251  0.00347  0.00703  0.007 03 —0.00703  0.06007  0.13250  0.401 08 —0.00023  0.00023
PRM 0.00236  0.00352  0.00695  0.006 94 —0.00694  0.04407 011178  0.36599 0.00000  0.000 00

sures are suggested and defined by Williamson et al. and PDHM. PRM shares the PPM extrema clipping
(1992) and are used throughout the present study for a problem that is attributable to the fact that in this
comparison of methods. Following the findings of Will- implementation, PRM shares the monotonic cell inter-
mott and Matsuura (2005), the L, error is given pref- face values calculated for PPM. Clearly, PDHM does
erence over the L, error as most of the comments about not exhibit such a clipping phenomenon, but rather
root-mean-squared error also apply to the L, norm. simply diffuses out the sine wave excessively leading to
Basically, to square the errors themselves as in L, gives  a poor preservation of the original data profile. Table 1
greater weight to the larger errors, which is not as reveals numerically what is easy to realize graphically,
straightforward as the L;, which exhibits a linear rela- and PDHM suffers the worst accuracy of all the meth-
tionship with the true mean error. ods. Impressively, PPM-H performs about 3 times bet-
Visually analyzing Fig. 2b, it can be immediately seen ter than PPM, and PHM has about 38% of PPM L,
that two methods perform the best in this test case: error showing a substantial improvement in accuracy
PHM and PPM-H. There is a well-known phenomenon  for this smooth function. PRM and PDHM have 150%—
with PPM strictly due to its original filter in which it 170% the L, error of PPM. It should be noted that
clips the extrema of a sine wave causing an artificial PHM, as made manifest by the L., norm, gives the best
flattening that extends typically a couple of grid points approximation to the sine wave peak amplitude.
out from the extremum center. Note that without fil- Table 2 gives L, error norms and convergence infor-
tering, PPM performs much better than both PHM and mation for the sine wave problem. It is clear that the
PPM-H for the sine wave, but oscillates wildly for PHM advantage over PPM due to the PPM monotonic
highly discontinuous profiles. The same phenomenon is filter increases with increasing resolution. On the
seen with PPM-H, but the steepness is more accurately whole, PPM-H shows the highest numerical conver-
described outside the flattening. Likewise, two methods gence. PRM shows the lowest convergence rate giving
clearly perform much worse than PPM: namely PRM rise to relatively poor accuracy at high resolutions.

TABLE 2. L, error norms and convergence orders for 1D sine wave and rectangle wave experiments with 8, 16, 32, 64, 128, and 256

grid cells.
8 16 32 64 128 256
Sine wave
No. of cells L, Order L, Order L, Order L, Order L, Order L, Order
PPM 0.499 16 — 0.0887 575 0.02220 391 000455 48 777x107* 586 143X 107* 544
PHM 0.575 31 — 012060 477 001322 912 000178 742 310x107* 576 621x107° 499
PDHM 0.615 55 — 022990 268 0.04279 537 0.00779 550 130x107* 597 195X107* 6.68
PRM 0.500 64 — 0.08990 557 0.03019 298 0.00648 466 134x107> 485 277x107* 483
PPM-H 0.349 90 — 004367 801 0.00807 541 0.00129 626 3.65x10°* 353 4.06Xx107° 9.00

Rectangle wave

L, Order L, Order L, Order L, Order L, Order L, Order
PPM 030030 — 016898 178 0.09732 174 0.05570 1.75 0.03181 1.75 0.01828 1.74
PHM 035942 — 021110 170 012637 167 007579 1.67 0.04526  1.67 0.02694  1.68
PDHM 042682 — 02369 180 0.14256 1.66 0.08439 1.69 0.04976  1.70 0.02930  1.70
PRM 031161 — 018056 173 010605 1.70 0.06214 1.71 0.03641  1.71 0.02135 171

PPM-H 0.277 04 — 0.158 57 175 008907 178 005112 1.74 0.028 87 1.77 0.016 72 1.73
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TABLE 3. Error norms for the 1D irregular signal experiment.

Method L, L, L, Loin Loax

PPM 0.02886 0.05347 0.13536 0.00000 —0.061 61
PPM-H 0.02566 0.04864 0.13472 0.00000 —0.060 33
PHM 0.04238 0.07169 0.15678 0.00000 —0.064 76
PDHM  0.04650 0.07574 0.16116 —0.00008 —0.068 24
PRM 0.03139 0.05783 0.13887 0.00000 —0.063 34

2) RECTANGLE WAVE

In this test case, the data profile consists of a rectan-
gular profile with two C° discontinuous jumps between
zero and unity. All transport parameters are the same
as the 1D sine wave experiment, but the data is trans-
ported for only one cyclic rotation (200 time steps).
Figure 2c shows a plot of the different solutions to this
experiment on a truncated domain. Table 1 also gives
the error norms for this experiment. This test case rep-
resents the worst case scenario for any oscillatory
scheme and would immediately reveal if a scheme is
nonmonotonic in implementation. Clearly, PPM-H
gives the best steepness, and all of the strictly nonpoly-
nomial methods render a worse steepness than PPM. A
pattern is shown here that tends to hold throughout the
study, and that is that PRM tends to have similar accu-
racy to PPM in discontinuous profiles but is almost al-
ways slightly worse. Again, PDHM diffuses the discon-
tinuity the most and renders the worst accuracy of this
study’s methods. The PPM-H improvement in the L,
error norm is about 8% relative to PPM error. Also,
PHM is about 40% less accurate than PPM.

It may seem contradictory that PHM replaces PPM
for steep jumps in the hybrid method yet PHM per-
forms worse than PPM in the rectangle wave test case.
In any total variation bounded scheme, steep slopes will
inevitably relax to a shallower slope. When this hap-
pens with PHM, the center segment of the slope is steep
but the derivatives are not changing sharply. Thus,
PHM is only advantageous at the edges of the slope
where the derivatives are varying more, and PPM per-
forms better along the center segment of the slope. This
notion is confirmed in the convergence analysis, which
shows that PHM performance degrades relative to
PPM with increasing resolution (meaning more cells in
the center segment of the relaxing discontinuity).
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Error norms for the rectangle wave test case and
convergence information is given in Table 2. The rela-
tive ratios of error tend not to change much for this
particular test case. One exception would be that PHM
converges relatively poorly with refinement in compari-
son with PPM, which shows poorer PHM accuracy at
higher resolutions. The low convergences in general are
expected because the data themselves are not even C°
continuous (i.e., not differentiable).

3) IRREGULAR SIGNAL

This test case involves the transport of an irregular
signal (Zerroukat et al. 2006) with the exact same trans-
port parameters as given in the 1D rectangle wave ex-
periment. Figure 2d shows the numerical solutions to
this experiment and Table 3 also gives the various error
norms. This test case was designed to be difficult to
transport because of the multiple changing inflections
and steep jump near x = 0.1. What is most impressive in
this figure visually is how much more PPM-H reacts to
the sharply changing inflections than the other meth-
ods. It is clear that, again, PRM performs similarly but
less accurately than PPM and that PDHM diffuses the
data the most once again. The PPM-H accuracy im-
provement in preserving the alternating inflections in
the data do not show up much in the overall error norm,
which is dominated by the steep discontinuities near
x =0.1,x = 0.3, and x = 0.55. In the L, norm, PPM-H
constitutes an 11% gain in accuracy over PPM for this
experiment.

Because computational optimization is fairly trivial
in 1D and the only difference in run time is the con-
struction and integration of the subgrid approxima-
tions, Table 4 gives a summary of the average and stan-
dard deviation of run times for the different methods
on an Intel Core2 Duo 6400 2.12-GHz processor with
simulation parameters provided in the caption. Gener-
ally, it is found that the there is little separation in run
time for a realistic computing environment between
the methods. One thing to note is that for a regular
mesh, methods that use interface values for reconstruc-
tion of cell variation may calculate those values with
fourth-order accuracy much more efficiently (see
CW84). In a realistic spherical context, this occurs only

TABLE 4. The 1D 10-run average CPU time and standard deviations for a 1000-cell sine wave problem over 4000 time steps (for two
revolutions). Units are seconds. The suffix “Reg” means the scheme was run by with a regular mesh boundary value reconstruction,

which is much more efficient (CW84).

Scheme PPM PHM PDHM PRM PPM-H PPM Reg PRM Reg PPM-H Reg
Avg time 22834 2.1543 2.1597 2.1458 2.2803 1.5172 1.3693 1.5177
Std dev 0.0176 0.0138 0.0187 0.0184 0.0153 0.0112 0.0123 0.0220
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FiG. 3. Surface plots of results from the Cartesian solid-body rotation of a cosine hill. The experiment is

5 Sfl

with 71 time steps of 8849.56 s. The domain is truncated along x and y axes for plot clarity. Units of x and y axes

are in 10° meters.

in the zonal sweep accounting for roughly half of a
given time step.

b. 2D Cartesian tests

In the 2D experiments (Cartesian and spherical), fo-
cus is given to the best candidate schemes only which
determined by the error norms would be PHM and
PPM-H. Clearly, in 1D, PPM-H gave robust improve-
ments in all cases over the PPM standard. Also, PHM
though it can be as much as 2 times less accurate than
PPM can also be as much as 3 times more accurate for
very smooth functions. Therefore, PPM, PHM, and
PPM-H are the only methods shown and analyzed in
the following sections of this paper.

1) SOLID-BODY ROTATION OF A COSINE HILL

Solid-body rotation in Cartesian geometry consists of
rotating the domain with uniform angular velocity
about the domain center point. This experiment uses a
domain of 33 X 33 cells Q € [0, 32 X 10° m]* for one
revolution (71 time steps) with an angular velocity of
o =10"s7", and a time step of At = 8849.56 s yielding
a maximum Courant number of C = 2 within the do-
main. The definition of the cosine function is given in
Zerroukat et al. (2002). Figure 3 shows surface plots of
the analytical and numerical solutions and the error
norms are given in Table 5. For external compari-
son, the error measures of the Semi-Lagrangian In-
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TABLE 5. Error norms for Cartesian solid-body rotation experiments.

Cosine hill Slotted cylinder
Method L, L, L., Lo Lo L, L, L, Lioin Loy
PPM 0.2160 0.2107 0.3283 0.0000 —0.3283 0.1869 0.2311 0.6194 0.0000 0.0000
PHM 0.4333 0.3526 0.4360 0.0000 —0.4360 0.2516 0.2762 0.6398 0.0000 —0.0073
PPM-H 0.1484 0.1503 0.2468 0.0000 —0.2468 0.1700 0.2224 0.5910 0.0000 0.0003
SLICE 0.2252 0.1217 0.1034 —0.0307 —0.1061 0.2223 0.2391 0.5843 —0.1509 0.1354
SLICE-M 0.1531 0.1041 0.0910 0.0000 —0.0933 0.2133 0.2457 0.6369 0.0000 —0.0089

herently Conserving and Efficient (SLICE) scheme of
Zerroukat et al. (2002) and the monotonic SLICE
(SLICE-M) scheme of Zerroukat et al. (2005) are in-
cluded.

This test case could only be thought of as a smooth
test case on a finer mesh; however in this context, it
resembles a cone more than a cosine hill making it
fairly nonsmooth. Clearly, the contact discontinuity at
the top is diffused by all of the methods, but PPM-H
keeps the profile the most accurately. PHM also clearly
diffuses more than PPM leading to the expected result
that the methods tested in 1D perform similarly on a
2D regular mesh with a cascade splitting. The error
norms, of course, reflect this in which PPM-H gives a
31% increase in L, accuracy. The L, error shows that
PPM-H performs better than SLICE and SLICE-M in
an average sense, but the larger errors that dominate L,
and L., (occurring at the cosine hill center) are much
better for SLICE and SLICE-M. Clearly, the piecewise
constant limiting for the maximum is what causes the
excessive diffusion in PPM-H and PPM, which is why
SLICE is performing better. SLICE-M on the other
hand uses a six-cell stencil postprocessing monotonic
filter to enforce monotonicity while keeping extrema
well resolved. The performance of this filter keeps it
from experiencing the accuracy degradation of PPM-
based methods. However, even with the deficiency at
the local maximum relative to SLICE-M, PPM-H still
gives overall better accuracy with only a four-cell sten-
cil.

2) SOLID-BODY ROTATION OF A SLOTTED
CYLINDER

Here, a Cartesian solid-body rotation is used to
transport a slotted cylinder (Zalesak 1979). This experi-
ment uses a domain of 101 X 101 cells € [0, 100 m]*
for one revolution (96 time steps) with an angular ve-
locity of @ = 3.635 X 107°s™!, and a time step of At =
1800 s yielding a maximum Courant number C = 3.27
within the domain. The specific parameters for the ini-
tial distribution are given in (Zerroukat et al. 2002).

Surface plots of the results are shown in Fig. 4, and the
errors are given in Table 5. Clearly, the steepness of the
slot and sides are best preserved by PPM-H and most
poorly preserved by PHM. The thin strip along the
back of the slotted cylinder is especially sensitive to this
diffusion and is clearly preserved well by PPM-H. The
error norms show a more modest increase in PPM-H L,
accuracy, about a 9% improvement relative to PPM.
PHM, on the other hand, is about 35% worse than PPM
in L, error. Comparing against SLICE and SLICE-M, it
is clear that the cubics must have some difficulty when
steep jumps are present in the data. It is clear that
PPM-H gives a better representation of the slopes of
the steep jumps (manifested in the L., error) than all
methods except SLICE, which is not monotonically fil-
tered.

c. 2D spherical tests

1) POLAR SOLID-BODY ROTATION OF A COSINE
HILL

Solid-body rotation over the sphere induces a degree
of freedom regarding the axis about which the flow
rotates. In this test case, the flow is poleward such that
it rotates about an equatorial axis. Given the « param-
eter described in (Nair and Machenhauer 2002), this
experiment is run with a = 7/2. The initial distribution
is a cosine hill formation in which the radius is formed
using arc length from the cosine hill center. (Nair and
Machenhauer 2002; Nair et al. (2002, hereafter NSS02)
also describe this initial distribution mathematically
along with the wind components induced from constant
angular rotation about an equatorial axis. As before,
the trajectories are calculated analytically before the
simulation is run to obtain errors due to the spatial
scheme and CCS only. The grid is composed of 128
zonal and 65 meridional grid points with a grid spacing
of about 2.8° in both directions. One rotation is per-
formed over 12 days with 256 time steps and a maxi-
mum meridional Courant number of 0.5.

Figure 5 displays the orthographic projection of the
analytical and numerical solutions, and Table 6 gives



5056

10 20 30 40
X-axis

(a) Analytical

Ausueq

MONTHLY WEATHER REVIEW

VOLUME 136

10 20 30 40
X—axis

(b) PPM

10 20 30 40
X—axis

(d) PPM-H

FIG. 4. Surface plots of results from the Cartesian solid-body rotation of a slotted cylinder. The experiment is
performed on a domain, € [0, 100 m]?, split up into 101 X 101 cells with an angular velocity of w = 3.635 X 10>
s~! with 96 time steps of 1800 s. The domain is truncated along x and y axes for plot clarity. Units of x and y axes
are in meters: (a) analytical, (b) PPM, (c) PHM, and (d) PPM-H.

the error norms for this experiment. Clearly, PHM per-
forms more poorly than the other schemes in preserv-
ing the shape and magnitude of the original hill. This
flow is not deformational and thus should preserve the
shape perfectly. PPM-H did not elongate the cosine hill
as severely as PPM, and the L. norm shows that
PPM-H kept the center magnitude 24% better than
PPM. The overall PPM-H solution was 34% better than

PPM, and the PHM solution was 140% worse than
PPM in the L; norm. The PHM degradation may be
due to the irregular grid spacing in the meridional di-
rection on the (A, w) grid. The left and right interface
derivatives are approximated with centered measures,
but the interface location is not geometrically centered
between the cell means.

Additionally, to trace the errors as the flow proceeds
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P

(c) PHM (d) PPM-H

FiG. 5. Contour plots of the results the solid-body rotation of a cosine hill over the sphere experiment. The
domain consists of 128 X 65 cells, and the experiment is carried out over 12 days with 256 time steps. Contours are
from zero to unity with an interval of 0.1: (a) analytical, (b) PPM, (c) PHM, and (d) PPM-H.

over the Pole of the sphere, Fig. 6 gives the L, and L., some irregularity at the Poles as manifested by the L.,
error norm over time for PPM, PHM, and PPM-H. norm at days 3 and 9 (corresponding to the days when
There L. oscillation at the polar crossing is due to the the cosine hill center crosses the North and South Poles,
grid singularity. It is evident that there is definitely respectively). However, this is expected given the han-

TABLE 6. Error norms for spherical geometry experiments.

Cosine hill Smooth deformational flow
MethOd Ll LZ Loc Lmin Lmax Ll LZ LOC Lmin Lmax

PPM 0.0808 0.0867 0.1486 0.0000 —0.1486 1.169 X 107> 3.719 X 107> 4.223 X 1072 —1.438 X 1075 1.591 X 1073
PHM 0.1936  0.1723 0.2025 0.0000 —0.2000 1.201 X 10> 3.899 X 107% 4.553 X 1072 —1.048 X 10™* 1.049 x 10~*
PPM-H 0.0534 0.0625 0.1130 0.0000 —0.1129 1.083 X 1072 3.407 X 107> 4219 X 1072 —1.438 X 107° 1.591 X 1073
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dling of the Poles, and the error does not seem to jump
too steeply for any of the given methods.

2) SMOOTH DEFORMATIONAL FLOW

This experiment introduces a flow that deforms the
original data into two opposing vortices centered at the
Poles of a rotated sphere. In this experiment, the Pole
of the rotated sphere is located at A, = 7 + 0.025 and
0, = m /2.2 such that the vortices are formed about
81°N-S. (Nair and Machenhauer 2002; NSS02) give the
initial data and flow specifications for this experiment.
The grid is the same as with experiment 3-A, and the
maximum Courant numbers in the meridional and
zonal directions are C, = 0.82 and C, = 19.1, respec-
tively.

Figure 7 shows the orthographic projection of the
analytical solution and absolute errors of this experi-
ment, and Table 6 gives the error norms. It is interest-
ing that the spatial pattern of PHM error differs sub-
stantially from the other two methods with a more uni-
form distribution. Also, it is clear that PPM-H has a
very similar error distribution as PPM, but the error
magnitude is smaller. PPM-H gives about a 7% in-
crease in L; accuracy relative to PPM, and PHM per-
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F1G. 6. The L, and L., error norm plots over time of
(a) PPM, (b) PHM, and (c) PPM-H solutions for polar
solid-body rotation of a cosine hill on the sphere.

forms about 3% worse in the same error norm. Not
much changes for the infinity norm, and the minimum
and maximum norms reveal that there is a slight viola-
tion of monotonicity for this flow for all methods. Part
of this (namely, that revealed in the PPM norms) is
attributed to numerical errors the cascading approach
associated with the deformational character of the flow,
and is known to occur (see NSS02). Additionally, since
PHM is not strictly monotonic, it undershoots by about
7 times more than PPM yet still only about 0.01 % of the
interval in the data. PPM-H shows the same overshoot
character as does PPM with identical L, ;, and L .
norms demonstrating no addition to the errors intro-
duced in the cascading.

5. Summary and conclusions

Four nonpolynomial methods and one hybrid
method based on adaptive use of PPM and PHM have
been tested in the Cell-Integrated Semi-Lagrangian
context to perform conservative semi-Lagrangian trans-
port. For extension into two dimensions, the Conserva-
tive Cascade Scheme of NSS02 was employed. Further
extension into spherical geometry was achieved by con-
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(a) Plot of analytical solution. Shaded region
denotes values less than unity.
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F1G. 7. Contour plots of the analytical solution and absolute numerical errors for a smooth quasi-polar defor-
mational flow experiment. The experiment is carried out on a 128 X 65 cell domain over 64 time steps iterating
from time unit zero to time unit three: (a) analytical solution, (b) PPM absolute error, (c) PHM absolute error, and

(d) PPM-H absolute error.

verting the spherical coordinate system (A, 6) into a
stretched rectangular coordinate system (A, w) such
that w = sinf. Also, special treatment was used for the
polar caps such that a typical pointwise semi-Lagran-
gian interpolating method was used to generate weights
for redistributing the mass.

The new nonpolynomial methods did not give any
robust or substantial improvement to the existing base-

line of comparison, PPM, in terms of accuracy alone in
the general case. It is important to note, however, that
PHM involves only a three-cell stencil as compared to
the four-cell stencil of PPM, which would render PHM
more efficient in a parallel architecture. Additionally,
near a rigid boundary, a local stencil is advantageous
because a higher-order approximation can be used
closer to the boundary. PHM only improved upon PPM
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accuracy when the majority of PPM error was caused
by degradation near sharp derivative changes due to
the PPM monotonic filter. PPM-H was found to ro-
bustly improve upon PPM’s performance in the 1D, 2D
Cartesian, and 2D spherical geometries for both
smooth and nonsmooth data. Particularly, the nonde-
formational transport of smooth data proved to show
the best PPM-H improvement over PPM. The PPM-H
improvement comes at no measurable increase in com-
putational cost rendering superior PPM-H efficiency.

This conservative remapping process has other appli-
cations such as conservative interpolation and remap-
ping of vertical coordinates to a reference grid in which
the relative performance of these new methods may
differ. For this reason, in the future it would be impor-
tant to investigate how these subgrid approximations
perform in the context of grid-to-grid remapping. PHM
stands to improve upon PPM especially in this applica-
tion since its three-cell stencil would allow full-order
interpolation one cell closer to a rigid boundary as in
the remapping of Lagrangian vertical coordinates to a
reference grid near the land surface. Also, it would be
important to perform a comparative study of PPM and
the new nonpolynomial and hybrid methods in an Eu-
lerian Godunov framework including simple transport
and the shallow-water equations since the SL is not
appropriate for all applications, especially considering
the growing need for massively parallel model architec-
tures.
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