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ABSTRACT

An energy and potential enstrophy conserving finite-difference scheme for the shallow-water equations is
derived in generalized curvilinear coordinates. This is an extension of a scheme formulated by Arakawa and
Lamb for orthogonal coordinate systems. The starting point for the present scheme is the shallow-water
equations cast in generalized curvilinear coordinates, and tensor analysis is used to derive the invariant
conservation properties. Preliminary tests on a flat plane with doubly periodic boundary conditions are
presented. The scheme is shown to possess similar order-of-convergence error characteristics using a non-
orthogonal coordinate compared to Cartesian coordinates for a nonlinear test of flow over an isolated
mountain.A linear normalmode analysis shows that the discrete form of the Coriolis term provides stationary
geostrophically balanced modes for the nonorthogonal coordinate and no unphysical computational modes
are introduced. The scheme uses centered differences and averages, which are formally second-order accu-
rate. An empirical test with a steady geostrophically balanced flow shows that the convergence rate of the
truncation errors of the discrete operators is second order. The next step will be to adapt the scheme for use on
the cubed sphere, which will involve modification at the lateral boundaries of the cube faces.

1. Introduction

Arakawa and Lamb (1981, hereafter AL81) de-
veloped a finite-difference scheme for the shallow-water
equations that simultaneously conserves energy and
potential enstrophy. As pointed out in subsequent work
(e.g., Salmon 2004), this was a significant achievement
because neither kinetic energy nor potential enstrophy
are simple quadratic quantities due to the divergent
nature of shallow-water motion. Conserving analogs of
these two global invariants in numerical models is
known to prevent a spurious cascade of energy toward
small scales. Direct application ofAL81’s scheme, which
was derived in rectangular Cartesian coordinates, is
limited to orthogonal, quadrilateral grids; however, it
has inspired an active field of research in the develop-
ment of schemes that conserve higher-order invariants
on generalized grids.
AL81’s scheme can be applied directly to global

models that use latitude–longitude grids; however, such

grids suffer from excessive clustering of grid points near
the poles, which can severely limit the size of the time
step that can be taken. Alternative grid structures with a
quasi-uniform distribution of points have been de-
veloped to overcome this problem; these include the
cubed sphere (Sadourny 1972; Ronchi et al. 1996), the
icosahedral geodesic grid (Sadourny et al. 1968;
Williamson 1968; Heikes and Randall 1995a,b; Satoh
et al. 2008; Lee andMacDonald 2009; Bleck et al. 2015),
triangular grids (Bonaventura and Ringler 2005;
Gassmann 2011), and arbitrarily structured grids based
on Voronoi tessellations (Stuhne and Peltier 2006;
Thuburn et al. 2009).
The numerical techniques of AL81, developed for

finite-difference equations on orthogonal, quadrilateral
grids, do not easily carry over to these alternative grid
structures, so new techniques have been developed to
conserve the various invariant quantities. For example,
Ringler and Randall (2002) designed discrete analogs of
the divergence and curl operators based on their fun-
damental, coordinate-invariant definitions that achieve
energy and potential-enstrophy conservation for the
shallow-water equations on a geodesic grid. In Thuburn
et al. (2009) and Ringler et al. (2010), a conservative
scheme, known as TRiSK, was formulated for arbitrarily
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structured locally orthogonal grids. In a follow-up paper,
Thuburn and Cotter (2012) extended TRiSK to non-
orthogonal grids and formalized the method as a type of
discrete exterior calculus (DEC) method (Hirani 2003);
however the discretization does not conserve potential
enstrophy. Weller (2014) also developed a scheme for
nonorthogonal, arbitrary polygonal grids that nearly
conserves energy and potential enstrophy. In that
paper, a quasi-orthogonal diamond grid for the cubed
sphere was also developed that minimizes errors in-
herent with grid nonorthogonality. An issue that arises
with these schemes is a lack of consistency (i.e., zeroth-
order accuracy) of some of the discrete operators. This
issue has been analyzed on various grids, including
cubed-sphere grids, in Weller (2014) and Thuburn
et al. (2014).
In a different approach, Salmon (2004, 2007) de-

veloped energy and potential enstrophy conserving
schemes for the shallow-water equations on regular
square grids and unstructured triangular grids using
Hamiltonian fluid dynamics. For square grids, Salmon
showed that AL81’s scheme can be derived using this
generalized method. Eldred (2015) extended AL81’s
scheme to arbitrary nonorthogonal polygonal grids by
combining Hamiltonian and DEC methods, embodying
the energy and potential-enstrophy conserving proper-
ties of AL81.
In this paper, we revisit the approach of AL81 for

quadrilateral grids, but instead of starting with the
vector-invariant system of equations in rectangular
Cartesian coordinates, we start with the system ex-
pressed in generalized curvilinear coordinates. The re-
sult is a finite-difference scheme that exactly conserves
mass, energy, and potential enstrophy on generalized
(including nonorthogonal) quadrilateral grids with a
form almost identical to AL81. In fact, the weightings of
potential vorticity in the momentum equations, which
are responsible for potential enstrophy conservation,
are identical in both schemes. Going to generalized
nonorthogonal coordinates is complicated by the ex-
pression for kinetic energy involving products of two
sets of velocity components: the covariant and contra-
variant components, the former being prognostic vari-
ables and the latter being diagnostic (e.g., Tort et al.
2015). Proper diagnosis of the contravariant compo-
nents leads to kinetic energy conservation. Despite this
complication, the scheme still possesses the conceptual
simplicity of the AL81 discretization. Also, it is still
based on centered differences and averages, which are
formally second-order accurate. At this point, the scheme
has been formulated and tested on a plane surface with
doubly periodic boundary conditions; however, we pro-
pose that it could bemodified for application on the cubed

sphere, the challenge being to correctly handle the edges
and corners connecting the cube faces. The scheme could
then make use of cubic grids based on curvilinear co-
ordinate systems for each of the faces, such as those
based on gnomonic (central) projections (Sadourny
1972; Ronchi et al. 1996), which include the equian-
gular projections used by Nair et al. (2005a,b), or con-
formal (angle preserving) mappings (Ran!cić et al. 1996;
McGregor 1996; Adcroft et al. 2004).
In section 2 of the paper, we describe the continuous

shallow-water equations in generalized curvilinear co-
ordinates and, using tensor analysis, we derive the ten-
dency equations for energy, potential vorticity, and
potential enstrophy. In section 3, we derive a finite-
difference scheme that conserves both energy and po-
tential enstrophy on the staggered Arakawa C grid. Our
starting point for potential enstrophy conservation is
AL81’s scheme itself, and we demonstrate that a par-
ticular form of diagnosing the contravariant velocity
components leads to kinetic energy conservation. In
section 4, as a first step toward applying the new scheme
to the sphere, we test the discrete equations in a
shallow-water model on a plane surface with doubly
periodic lateral boundary conditions using a simple,
nonorthogonal coordinate transformation. First, we ana-
lyze the linear characteristics of the scheme to show that
there are no unphysical computational modes introduced
by the transformation to generalized coordinates, that the
normal modes are all stable, and that stationary geo-
strophic modes remain stationary in the discrete system.
We then present results of a nonlinear test of flow over an
isolated mountain in order to demonstrate the conserva-
tion properties of the numerical scheme. The results with
the nonorthogonal coordinate compare well with those of
a run with Cartesian coordinates (i.e., the original scheme
in AL81). We also compare the resolution-dependent er-
ror convergence between the two coordinate systems and
show that the order of convergence is basically maintained
by the extended scheme in AL81, although the error is
larger with the nonorthogonal coordinate system. The
model is then tested under steady-state nonlinear geo-
strophic flow in which the exact solution is known, and the
overall discretization error as well as the local truncation
errors of each of the terms in the model equations are
shown to possess second-order convergence. Finally, we
provide a summary and discussion in section 5.

2. Continuous equations

To introduce the basic notations for our derivations,
we first consider a general 2D coordinate transformation
using classical tensor analysis (e.g., Dutton 1986; Warsi
2006; Wesseling 2009).
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a. Nonorthogonal curvilinear geometry

Consider the coordinate transformation (x, y) /
(x1, x2), where x and y are the rectangular Cartesian
coordinates and x15 f1(x, y) and x25 f2(x, y). In gen-
eral, the coordinate transformation gives rise to two
sets of basis vectors: the ‘‘covariant’’ basis vectors,

a
i
5

›x

›xi
, (1)

and the ‘‘contravariant’’ basis vectors,

ai 5=xi , (2)

where x is the position vector, = is the horizontal gra-
dient operator, and i 5 1, 2 is the dimensional index.
The covariant metric tensor associated with the trans-
formation is defined as Gij 5 ai ! aj, and its inverse is the
contravariant metric tensor Gij, which can be formally
defined as (Warsi 2006)

Gij [
›xi

›x

›xj

›x
1

›xi

›y

›xj

›y
; i, j 2 f1, 2g. (3)

Figure 1 schematically shows a nonorthogonal co-
ordinate system (x1, x2) and the covariant and contra-
variant basis vectors. Note that in Cartesian coordinates,
the basis vectors are the unit vectors i and j. In the case
of nonorthogonal coordinate systems, the two sets of
basis vectors point in different directions. The covariant
basis vector (ai) corresponding to the ith dimension is
tangent to coordinate lines of the other dimension, while

the contravariant basis vector (ai) corresponding to the
ith dimension is normal to coordinate lines of that di-
mension (see Fig. 1).
In the transformed coordinate system, vectors can be

expressed as linear combinations of either basis vector
set. This gives rise to the covariant velocity components
(u1, u2) and the contravariant velocity components
(u1, u2), either set being sufficient to specify the velocity
in physical space. By convention, the dimensional in-
dices of covariant vector components are denoted by
subscripts, while those of contravariant components are
denoted by superscripts. The covariant velocity com-
ponents are projections of the velocity onto the co-
variant basis vectors, as given by

u
i
5u ! a

i
, (4)

and the contravariant velocity components are pro-
jections of the velocity onto the contravariant basis
vectors, as given by

ui 5u ! ai , (5)

where u is the velocity. Each set of velocity components
can be converted to the other using themetric tensorsGij

and Gij through the following relations:

"
u1

u2

#
5

"
G11 G12

G21 G22

#"
u
1

u2

#
and

"
u
1

u
2

#

5

"
G

11
G

12

G
21

G
22

#"
u1

u2

#

. (6)

The Cartesian x-component and y-component veloci-
ties, u and y, respectively, can be diagnosed from the
following equations:

u5

!
›x1

›x

"
u
1
1

!
›x2

›x

"
u
2

y5

!
›x1

›y

"
u
1
1

!
›x2

›y

"
u
2

9
>>>>=

>>>>;

. (7)

Finally, the Jacobian of the coordinate transformation
(the metric term), which relates the area elements in
each system, is given by

ffiffiffiffiffi
G

p
5 jG

ij
j1/2 5 ›x

›x1
›y

›x2
2

›x

›x2
›y

›x1
. (8)

b. Shallow-water equations

The continuity and momentum equations for the
shallow-water system (e.g., Sadourny 1972; Nair et al.

FIG. 1. Schematic diagram illustrating a nonorthogonal curvi-
linear (x1, x2) grid system and the basis vectors in physical space.
The covariant basis vector ai (where i 5 1, 2) is a tangential vector
(red), which points along a coordinate line, while the contravariant
basis vector ai (blue) points normally to a coordinate line.
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2005a; Bao et al. 2014) can be written in generalized
curvilinear coordinates as

›

›t
(

ffiffiffiffiffi
G

p
h)1

›

›x1
(

ffiffiffiffiffi
G

p
hu1)1

›

›x2
(

ffiffiffiffiffi
G

p
hu2)5 0, (9)

›u
1

›t
1

›

›x1
(K1F)5

ffiffiffiffiffi
G

p
hu2q , (10)

and

›u2

›t
1

›

›x2
(K1F)52

ffiffiffiffiffi
G

p
hu1q , (11)

where h is the fluid depth, K is the kinetic energy,
given by

K5
1

2
(u1u1 1 u2u2) , (12)

and F is the geopotential of the free surface, defined as

F[ g(h1 h
s
) , (13)

where hs is the bottom surface height and g is the grav-
itational acceleration. The potential vorticity q is de-
fined as

q[
f 1 z

h
, (14)

where f is the Coriolis parameter, and z is the relative
vorticity, given by

z5
1ffiffiffiffiffi
G

p
!
›u2

›x1
2
›u1

›x2

"
. (15)

Equations (10) and (11), which are based on the
vector invariant form of the momentum equations,
have basically the same form as the Cartesian-
coordinate equations in AL81. Note that the vorticity
in (15) is naturally defined in terms of the covariant
velocity components since they are tangent to co-
ordinate surfaces, while the mass-flux terms of the
continuity equation in (9) are written in terms of the
contravariant components, which are directed nor-
mal to coordinate surfaces. Finally, the product

ffiffiffiffiffi
G

p
h

represents a ‘‘pseudo-density’’ that is related to the
amount of mass per unit area in the transformed
coordinate system.
We basically follow the same steps as in AL81 to

formulate the conservation of integral invariants such as
total energy, potential vorticity, and potential enstrophy
in the generalized coordinate framework. This will serve
as a guide for the discrete derivations in the next section.
Multiplying (10) by

ffiffiffiffiffi
G

p
hu1 and adding (11) multiplied

by
ffiffiffiffiffi
G

p
hu2, we get

ffiffiffiffiffi
G

p
h

!
u1›u1

›t
1 u2›u2

›t

"
1

ffiffiffiffiffi
G

p
hu1›K

›x1
1

ffiffiffiffiffi
G

p
hu2›K

›x2

1
ffiffiffiffiffi
G

p
hu1›F

›x1
1

ffiffiffiffiffi
G

p
hu2›F

›x2
5 0. (16)

Using (6) and the fact that themetric tensor is symmetric
(i.e., G12 5 G21), the quantity in parentheses on the lhs
of (16) can be rearranged as

u1›u1

›t
1 u2›u2

›t
5u1

›u1

›t
1 u2

›u2

›t
. (17)

Using (12), we see that this is equivalent to the time
tendency of kinetic energy:

u1›u1

›t
1u2›u2

›t
5

1

2

!
u1›u1

›t
1 u2›u2

›t

"
1

1

2

!
u1

›u1

›t
1 u2

›u2

›t

"

5
›

›t

$
1

2
(u1u

1
1u2u

2
)

%

5
›K

›t
.

(18)

Combining (9), (16), and (18) gives the time tendency of
kinetic energy:

›

›t
(

ffiffiffiffiffi
G

p
hK)1

›

›x1
(

ffiffiffiffiffi
G

p
hu1K)1

›

›x2
(

ffiffiffiffiffi
G

p
hu2K)

1
ffiffiffiffiffi
G

p
hu1›F

›x1
1

ffiffiffiffiffi
G

p
hu2›F

›x2
5 0. (19)

The time tendency of potential energy is obtained by
multiplying (9) by F and rearranging terms to get

›

›t

$ ffiffiffiffiffi
G

p
hg

!
1

2
h1 h

s

"%
1

›

›x1
(

ffiffiffiffiffi
G

p
hu1F)1

›

›x2
(

ffiffiffiffiffi
G

p
hu2F)

2
ffiffiffiffiffi
G

p
hu1›F

›x1
2

ffiffiffiffiffi
G

p
hu2›F

›x2
5 0.

(20)

Adding (19) and (20) results in the cancellation of the
energy conversion terms to give the following expres-
sion for the time rate of change of total energy:

›

›t

& ffiffiffiffiffi
G

p
h

$
K1 g

!
1

2
h1 h

s

"%'
1

›

›x1
[

ffiffiffiffiffi
G

p
hu1(K1F)]

1
›

›x2
[

ffiffiffiffiffi
G

p
hu2(K1F)]5 0.

(21)

Integrating (21) over the domain results in the following
statement of the conservation of total energy:

›

›t

& ffiffiffiffiffi
G

p
h

$
K1 g

!
1

2
h1 h

s

"%'
5 0, (22)
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where the overbar represents the area integral in x1 and
x2 over an infinite domain or over a finite domain with
no-flow or periodic boundary conditions.
The potential vorticity equation is obtained by com-

bining (10), (11), (14), and (15) to get

›

›t
(

ffiffiffiffiffi
G

p
hq)1

›

›x1
(

ffiffiffiffiffi
G

p
hu1q)1

›

›x2
(

ffiffiffiffiffi
G

p
hu2q)5 0. (23)

This result shows that potential vorticity is globally
conserved. Subtracting (9) times q from (23) and di-
viding by

ffiffiffiffiffi
G

p
h gives

›q

›t
1 u1 ›q

›x1
1u2 ›q

›x2
5 0. (24)

Multiplying (24) by
ffiffiffiffiffi
G

p
hq and adding the potential

enstrophy [(1/2)q2] times (9) gives the equation for the
time tendency of potential enstrophy:

›

›t

! ffiffiffiffiffi
G

p
h
1

2
q2

"
1

›

›x1

! ffiffiffiffiffi
G

p
hu11

2
q2

"

1
›

›x2

! ffiffiffiffiffi
G

p
hu21

2
q2

"
5 0, (25)

which, when integrated over the domain, gives an ex-
pression for the conservation of potential enstrophy:

›

›t

! ffiffiffiffiffi
G

p
h
1

2
q2

"
5 0. (26)

In AL81, a finite-difference scheme was derived for
the momentum equations which satisfies the following
requirements for both divergent and nondivergent
flow: that it be consistent with an advection scheme for
potential vorticity such that for a spatially constant q,
there is no time change of q, as prescribed by (24);
and that it satisfy conservation of total energy and po-
tential enstrophy, as given by (22) and (26), respec-
tively. In the following section, we show that, due to
the similarity of the governing equations between the
Cartesian and generalized curvilinear coordinate sys-
tems, it is straightforward to carry over the AL81
scheme to the generalized coordinate framework, es-
pecially for potential enstrophy conservation. How-
ever, to satisfy total energy conservation requires a
new derivation for nonorthogonal coordinate systems
due to the form of the kinetic energy given by (12),
which involves products of the covariant and contra-
variant velocity components. The contravariant ve-
locity components must be diagnosed from (6) in such
a way that the relation in (17) is satisfied in the spa-
tially discrete system. The difficulty arises due to the

grid staggering and the fact that for nonorthogonal
coordinates, the off-diagonal terms of themetric tensor
(i.e., Gij for i 6¼ j) are nonzero.

3. Finite-difference equations

In the discrete system we use the Arakawa C grid
staggering (Arakawa and Lamb 1977) shown in Fig. 2.
Note that the staggering and indexing are the same as in
AL81, and that each component of the (predicted) co-
variant velocity and (diagnosed) contravariant velocity
are collocated. For simplicity, the time derivatives will
remain in continuous form.
The finite-difference form of the continuity equation

in (9) is written as

›

›t
(

ffiffiffiffiffi
G

p
h)

i11/2,j11/2 1 (= ! v*)
i11/2,j11/2 5 0, (27)

where the mass-flux divergence is given by

(= ! v*)
i11/2,j11/2 [

1

d
[(

ffiffiffiffiffi
G

p
hu1)

i11,j11/22 (
ffiffiffiffiffi
G

p
hu1)

i,j11/2

1 (
ffiffiffiffiffi
G

p
hu2)

i11/2,j112 (
ffiffiffiffiffi
G

p
hu2)

i11/2,j],

(28)

where d is the grid spacing, assumed to be the same in
both dimensions, and the mass fluxes are defined as

FIG. 2. The Arakawa C grid variable staggering used in the
discretization.
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(
ffiffiffiffiffi
G

p
hu1)

i,j11/2 [ [(
ffiffiffiffiffi
G

p
h)(u

1)u1]
i,j11/2, (29)

and

(
ffiffiffiffiffi
G

p
hu2)

i11/2,j [ [(
ffiffiffiffiffi
G

p
h)(u

2)u2]
i11/2,j, (30)

where (
ffiffiffiffiffi
G

p
h)

(u1)

i,j11/2 and (
ffiffiffiffiffi
G

p
h)

(u2)

i11/2,j are the
ffiffiffiffiffi
G

p
-weighted

fluid depths interpolated to u1 and u2 points, respectively.
Using the flux-form continuity equation in (27) guarantees
mass conservation in the discrete system of equations.
Following AL81, we write the discrete form of the

momentum equations in (10) and (11) as

›

›t
(u

1
)
i,j11/22a

i,j11/2(
ffiffiffiffiffi
G

p
hu2)

i11/2,j11
2b

i,j11/2(
ffiffiffiffiffi
G

p
hu2)

i21/2,j11
2 g

i,j11/2(
ffiffiffiffiffi
G

p
hu2)

i21/2,j2 d
i,j11/2(

ffiffiffiffiffi
G

p
hu2)

i11/2,j

1 !
i11/2,j11/2(

ffiffiffiffiffi
G

p
hu1)

i11,j11/22 !
i21/2,j11/2(

ffiffiffiffiffi
G

p
hu1)

i21,j11/2 1
1

d
[(K1F)

i11/2,j11/22 (K1F)
i21/2,j11/2]5 0, (31)

and

›

›t
(u2)i11/2,j1g

i11,j11/2(
ffiffiffiffiffi
G

p
hu1)

i11,j11/2 1 d
i,j11/2(

ffiffiffiffiffi
G

p
hu1)

i,j11/2 1a
i,j21/2(

ffiffiffiffiffi
G

p
hu1)

i,j21/2 1b
i11,j21/2(

ffiffiffiffiffi
G

p
hu1)

i11,j21/2

1f
i11/2,j11/2(

ffiffiffiffiffi
G

p
hu2)

i11/2,j112f
i11/2,j21/2(

ffiffiffiffiffi
G

p
hu2)

i11/2,j21 1
1

d
[(K1F)

i11/2,j11/22 (K1F)
i11/2,j21/2]5 0,

(32)

where a, b, g, d, !, and f are linear combinations of the potential vorticity q and K is defined at h points.

a. Conservation of total energy

We now determine the forms of the diagnosed contravariant velocity and kinetic energy required for total energy
conservation. Multiplying (31) by (

ffiffiffiffiffi
G

p
hu1)i,j11/2 and (32) by (

ffiffiffiffiffi
G

p
hu2)i11/2,j, using (28)–(30), and summing the re-

sulting equations over the domain results in

!
u1pts

›

›t

$
(

ffiffiffiffiffi
G

p
h)(u

1)1

2
u1u1

%

i,j11/2

1 !
u2pts

›

›t

$
(

ffiffiffiffiffi
G

p
h)(u

2)1

2
u2u2

%

i11/2,j

2 !
u1pts

$
1

2
u1u1

›

›t
(

ffiffiffiffiffi
G

p
h)(u

1)
%

i,j11/2

2 !
u2pts

$
1

2
u2u2

›

›t
(

ffiffiffiffiffi
G

p
h)(u

2)

%

i11/2,j

2 !
hpts

[(K1F)= ! v*]
i11/2,j11/2 1

1

2
!
u1pts

(
ffiffiffiffiffi
G

p
h)

(u1)

i,j11/2

!
u1›u1

›t

"

i,j11/2

1
1

2
!
u2pts

(
ffiffiffiffiffi
G

p
h)

(u2)

i11/2,j

!
u2›u2

›t

"

i11/2,j

2
1

2
!
u1pts

(
ffiffiffiffiffi
G

p
h)

(u1)

i,j11/2

!
u1

›u1

›t

"

i,j11/2

2
1

2
!
u2pts

(
ffiffiffiffiffi
G

p
h)

(u2)

i11/2,j

!
u2

›u2

›t

"

i11/2,j

5 0,

(33)

where we used the identity,

!
apts

a
i,j(bi11/2,j 2b

i21/2,j)52!
bpts

b
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for two variables a and b defined at staggered i points on
the grid, and a similar identity corresponding to the j
index. Note that, as in the continuous equations, the
terms involving q have cancelled out.
In the continuous limit, the last four terms on the lhs

of (33) cancel out due to (17). We can achieve cancel-
lation of these terms in the discrete system by properly
diagnosing the contravariant velocity components, which
we write as the discrete form of (6):
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where (G12u2)
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i,j11/2 and (G21u1)

(u2)
i11/2,j are interpola-

tions of four neighboring grid points (see Fig. 2). Using
(35) and (36), the requirement for cancellation of the
last four terms on the lhs of (33), which is a require-
ment for energy conservation in the discrete system,
becomes
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where A thru H are constant coefficients and the
overbars denote averages of neighboring metric
terms. There is freedom to use any form of averaging.
In the model, whose results are shown in the next
section, we use the arithmetic mean. The inclusion of
the fluid depth in the weightings of the covariant ve-
locities is a necessary condition for kinetic energy
conservation. Note that in orthogonal coordinates, for
which G12 5 G21 5 0, the rhs of (38) and (39) vanish.
Using (38) and (39) in (37), differentiating w.r.t.
time, adjusting grid indices, and arranging like terms
leads to

A5H; B5G; C5F; D5E . (40)

For consistency, we require

A1B1C1D5 1; E1F1G1H5 1. (41)

We then choose

A5B5C5D5E5F5G5H5 1/4. (42)

With the contravariant velocity components given by (35),
(36), (38), (39), and (42), we can finally rewrite (33), the
time tendency of total kinetic energy, as
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in the definition of the mass fluxes given by (29) and
(30), where the overbars ( )

i
and ( )

j
denote the

arithmetic average of two neighboring points in the x1

and x2 directions, respectively, we can use the fol-
lowing identity for any variables a and b on a stag-
gered grid,
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and the corresponding identity for the j index, to rewrite
(43) as
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As a result, the discrete form of the kinetic energy is
determined by kinetic energy conservation as
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Using (48) and (27) in (47), the statement of kinetic
energy conservation becomes
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The time tendency of total potential energy is ob-
tained by multiplying (27) by Fi11/2,j11/2 and summing
over the domain, which results in
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Adding (49) and (50) shows that total energy is con-
served by the discretization:
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b. Conservation of potential enstrophy

The derivation of the discrete form of potential
enstrophy conservation follows directly from AL81
when we define the discrete form of q, defined at (i, j)
points, as

q
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Combining (31), (32), and (52)–(54) gives the finite-
difference vorticity equation:
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Potential vorticity is shown to be globally conserved, as in AL81, by summing (56) over all vorticity points, re-
arranging indices, and canceling like terms to obtain
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Combining (27), (28), and (55) gives the continuity equation at q points:
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we can subtract (58) multiplied by qi,j from (56) to get
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Multiplying (60) by qi,j and adding (1/2)q2
i,j times (58) gives the potential enstrophy equation:
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When the linear combinations of potential vorticity are
specified as in AL81,
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and they are used in (61) and summed over the domain,
the result is the following statement of the conservation
of potential enstrophy:

!
qpts

›

›t

$
(

ffiffiffiffiffi
G

p
h)(q)

1

2
q2

%

i,j

5 0. (63)

In summary, (27)–(32), (35), (36), (38), (39), (42),
(44), (45), (48), (52)–(55), and (62) describe the en-
ergy and potential enstrophy conserving scheme for the
shallow-water equations in generalized curvilinear co-
ordinates. In Cartesian coordinates, the scheme reduces
exactly to AL81. We should also note that the scheme
satisfies the requirement that there be no time change
of potential vorticity for a spatially constant q, which
follows from the continuous potential vorticity equation
in (24), since the rhs of (60) vanishes for a constant q
applied in (62).

4. Results on a plane surface

The shallow-water equations described in the pre-
vious sections are based on the vector invariant form of
the momentum equations, which can be used on curved
surfaces, such as the sphere. In this section, for sim-
plicity, we test the finite-difference scheme on a plane
surface with doubly periodic lateral boundary condi-
tions and prescribe a simple nonorthogonal coordinate
transformation that is also doubly periodic. We examine
the linear aspects of the discretized system and evaluate
the conservation properties in a nonlinear simulation.
Results are compared between the nonorthogonal cur-
vilinear coordinate and Cartesian coordinates, in which
the scheme is equivalent to AL81.

a. Description of the domain and coordinate
transformation

The 2D model domain is a flat plane that extends a
distance of 2pa in each Cartesian (x, y) dimension,
where a5 6.373 106m is Earth’s radius, and the lateral
boundaries are doubly periodic. The coordinate trans-
formation used in the experiments is given by

x1 5 x1
1

2
a sin

y

a

x2 5 y1 a sin
x

a

9
>>=

>>;
, (64)

which is plotted in Fig. 3. This is a simple, nonorthogonal
transformation for testing the finite-difference scheme,
and is periodic at the lateral boundaries to facilitate
evaluation of globally conserved quantities. Note that
the transformed coordinate has the units of meters.
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Coordinate lines are highly nonorthogonal in some areas
of the domain, much more so than in typical cubed-
sphere grids, so the transformation provides a strong test
for the generalized scheme.
Figure 4a shows the Cartesian space, calculated nu-

merically from (64), as a function of the transformed
coordinate. The extent of the domain in (x1, x2) co-
ordinates is (2pa 3 2pa), so the four corners of the

Cartesian domain (Fig. 3) and the transformed domain
(Fig. 4a) are coincident. Since the transformed co-
ordinate is periodic, the physical boundary conditions of
the transformed domain are also periodic, even though
the Cartesian and transformed domains are spatially
distinct. The Jacobian of the transformation is found by
using (64) in (8), which gives

ffiffiffiffiffi
G

p
5

1

12
1

2
cos

x

a
cos

y

a

, (65)

and is plotted in Fig. 4b. The Jacobian represents the
ratio of the elemental areas between the two coordinate
systems, which can be seen as the variation of the ap-
parent size of the quadrilateral elements in Fig. 4a and
comparing it to

ffiffiffiffiffi
G

p
plotted in Fig. 4b. The off-diagonal

components of the contravariant metric tensor are cal-
culated from (3) and (64) as

G12 5 cos
x

a
1

1

2
cos

y

a
, (66)

and is plotted in Fig. 4c. Nonzero values of the metric
tensor indicate where the transformed coordinate
is nonorthogonal, which can be seen by examining
Figs. 4a and 4c.

b. Linear aspects of the scheme

One of the desirable properties of a numerical scheme
is a robust representation of the Coriolis force. In the
continuous system, since the force is normal to fluid
motion, it contributes no energy to the flow, and there

FIG. 4. Coordinate metrics plotted in the transformed coordinate (x1, x2). (a) Cartesian coordinate isolines with contour interval of
2 3 106m, (b) Jacobian of the transformation OG, and (c) contravariant metric tensor element G12.

FIG. 3. Isolines of the transformed coordinate plotted in Cartesian
coordinates (x, y). The contour interval is 2 3 106m.
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exist stationary geostrophically balanced modes. How-
ever, in discrete systems there is the possibility of non-
stationary geostrophic modes (Thuburn 2008; Thuburn
et al. 2009; Eldred 2015). The AL81 scheme avoids such
artificial nonstationary modes, which is one of its desir-
able features. Here we determine whether the geo-
strophically balanced modes are stationary in the scheme
extended to generalized, nonorthogonal curvilinear co-
ordinates. Another concern with the generalized scheme
that we will investigate is the possible introduction of
computational modes due to the four-point averaging of
the covariant velocities [Eqs. (38) and (39)] used to di-
agnose the contravariant velocities.
Whenwe assume a constant Coriolis parameter f, then

the continuous dispersion relation for the f-plane
shallow-water equations linearized about a resting basic
state and no bottom topography can be derived analyt-
ically (e.g., Randall 1994) as

v[v2 2 gh0(k
2 1m2)2 f 2]5 0, (67)

where v is the frequency, h0 is the basic-state fluid depth,
and k and m are the wavenumbers in the x and y di-
rections, respectively. The v 5 0 solutions are the sta-
tionary geostrophic modes, while the nonzero-frequency
modes correspond to mixed inertio-gravity waves.
The discrete linear system of equations is shown in

appendix A. Inspection of the linearized Coriolis terms
on the rhs of (A6) and (A7) reveals that the discrete
form of the terms are consistent, that is, as the grid
spacing vanishes, the metric terms converge to the same
value such that (A8) and (A9) converge to the contin-
uous form in (6), causing the Coriolis terms in (A6) and
(A7) to converge to the continuous forms

ffiffiffiffiffi
G

p
fu2 and

2
ffiffiffiffiffi
G

p
fu1, respectively. For the normal-mode analysis,

we assume that the time-dependent part of the solution
has the form eivt, so we can write

›

›t
(h)

i11/2,j11/2 5 iv(h)
i11/2,j11/2

›

›t
(u

1
)
i,j11/25 iv(u

1
)
i,j11/2

›

›t
(u2)i11/2,j5 iv(u2)i11/2,j

9
>>>>>>>=

>>>>>>>;

. (68)

The system in (A5)–(A9) for i 5 1, 2, 3, . . . , N and
j5 1, 2, 3, . . . ,N, whereN is the number of grid points in
each dimension, then forms an eigenvalue problem in
which the eigenvalues v are the normal mode frequen-
cies. The existence of nonzero imaginary components of
v imply exponential growth of unstable modes.
We computed the eigenmodes numerically for the

domain described in section 4a with 16 3 16 evenly

spaced grid points, giving a spacing of d 5 (1/8)pa in
each coordinate direction. The Coriolis parameter was
set to f 5 0.0001 s21, a value of g 5 9.81m s21 was used
for gravity, and the basic-state fluid depth was h0 5
5960m. We computed the normal modes for Cartesian
coordinates by setting

ffiffiffiffiffi
G

p
5G11 5G22 5 1 andG12 5 0;

for the nonorthogonal coordinate transformation, we
used (64). For both coordinate systems, all the imaginary
components of frequency were found to be zero within
round-off error, and the geostrophic modes were sta-
tionary (i.e., v 5 0) also to within round-off error. In
appendix B, we show analytically that the nondivergent
geostrophic modes are indeed stationary. Therefore, the
AL81 scheme extended to nonorthogonal, curvilinear
coordinates does not introduce unstable computational
modes or nonstationary geostrophic modes.
The dispersion relations for the discrete system in each

coordinate as well as for the continuous system [cf. (67)]
are shown in Fig. 5. In each of the two discrete systems,
there are a total of 3N2 5 768 modes, with 2N2 5 512
mixed inertio-gravity wave modes with nonzero fre-
quency, and N2 5 256 stationary, geostrophically bal-
anced modes. The possible wavenumbers are fk, mg 5
fnx, nyg/a, where nx and ny are the integers 0, 1, 2, . . . ,N/2.
The discrete wavenumbers were determined by Fourier
analysis of the eigenvectors. The continuousmodes shown
in Fig. 5 are ordered by the wavenumbers corresponding
to the Cartesian coordinate eigenmodes. They appear to
be discontinuous only because the frequencies of the
discrete modes are not directly proportional to wave-
number due to the anisotropy introduced by the discrete
2D grid, particularly at high wavenumbers. The frequency
error becomes larger for higher wavenumbers. The fre-
quency for nonorthogonal coordinates generally appears
to be more accurate, the reason for which is not clear;
a possibilitymay be due to the enhanced grid resolution in
some areas of the nonorthogonal coordinate domain (see
Fig. 3). While this may enhance the accuracy of the ei-
genmode frequencies, this is not to say that the accuracy of
the eigenvectors is higher. Meanwhile, with decreasing
wavenumber (larger wavelength) the discrete and con-
tinuous frequencies all converge to theCoriolis frequency.

c. Nonlinear flow over an isolated mountain

To test the nonlinear aspects of the model, we simu-
lated the flow over an isolated mountain following test
case 5 ofWilliamson et al. (1992). Although this test was
designed for use on the sphere, here we apply it to the
flat plane described earlier, but with a varying Coriolis
parameter given by

f (y)5 2V sin
y

a
, (69)
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whereV5 7.2923 1025 s21 is the rotation rate of Earth.
Note that the Coriolis parameter is periodic in the y
domain, which spans f2pa# y# pag. Physically, this is
twice the great-circle distance between Earth’s poles,
therefore, the domain is topologically and geometrically
equivalent to a rotating cylinder with the same radius as
Earth. In the zonal (x) direction, the domain has the
same extent as Earth’s circumference.
The initial flow is purely zonal with the following

profile in y:

u(y)5 u
0
cos

y

a
, (70)

where u0 5 20ms21. The initial free surface geo-
potential is in geostrophic balance with the flow field and
is expressed analytically as

F5 gh0 2 aVu0 sin
2y

a
, (71)

where h0 5 5960m. The surface height of the mountain
is given by

h
s
5 h

s,0

(
12

r

R

)
, (72)

where hs,05 2000m,R5pa/9, and r25min[R2, (x2 xc)
21

(y 2 yc)
2]. The center of the mountain is located at

xc 5 2pa/2 and yc 5 pa/6.

We ran the experiment with both the Cartesian co-
ordinate and the nonorthogonal coordinate with 400 3
400 grid points (with equal coordinate increments) for a
grid spacing of ’100km in each coordinate system. In
the Cartesian coordinate model the grid points are
evenly distributed in physical space, while in the non-
orthogonal coordinate, the resolution varies in physical
space across the domain (cf. Figs. 3 and 4). The third-
order Adams–Bashforth time discretization (Durran
1991) is used with a time step of 30 s. There is no diffu-
sion included in the models. The relative vorticity (z)
fields at day 7 of the simulation are shown in Fig. 6. A
wave train has developed downstream of the mountain
due to the impingement of the flow on the mountain.
The field in Fig. 6b is from the nonorthogonal coordinate
model and is plotted in the native coordinate. The fea-
tures of the field in the center of the domain appear
stretched due to the coarser resolution and non-
orthogonality of the grid in this region (see Fig. 3).When
the field is interpolated onto the Cartesian grid (Fig. 6c),
the results look similar to the Cartesian coordinate
model field shown in Fig. 6a. The results of these simu-
lations on a flat plane look remarkably similar to those
of the actual Williamson et al. (1992) test case 5 on the
sphere (e.g., Nair 2009).
To compare the model error between the two co-

ordinate systems, we performed a simulation in Carte-
sian coordinates at a very high resolution (’25km grid

FIG. 5. Normal mode frequencies on the f plane. The discrete modes (blue and red dots) are
ordered by frequency; while the continuous modes (green dots) are arranged to correspond
with the eigenmode wavenumbers of the discrete Cartesian eigenmodes (blue dots). The red
dots are for the nonorthogonal mode.Modes 1–512 are mixed inertio-gravity waves andmodes
513–768 are geostrophically balanced modes. The numbers 10, 8, 6, . . . , 1 denote wavenumber,
given by (n2

x 1 n2
y)

1/2.
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spacing) to serve as the ‘‘true’’ solution. The models
were run at resolutions 400, 200, and 100 km and the L1,
L2 and L‘ error norms, as defined in Williamson et al.
(1992), were calculated with respect to the true solution
after interpolating the results on to the high-resolution
Cartesian grid. Note that the resolution in non-
orthogonal coordinates [expressed in km, cf. (64)] cor-
responds to that in Cartesian coordinates in terms of
number of grid points. In physical space, the non-
orthogonal grid spacing varies, while in computational
space it is constant. All model runs were performed at a
small time step (1 s) to minimize the effect of time dis-
cretization errors. Figure 7 shows the surface height
(hs 1 h) error convergence for Cartesian coordinates
(i.e., AL81’s scheme) versus the generalized scheme in
nonorthogonal coordinates. The scheme in Cartesian
coordinates converges at a rate between first and second
order. The error of the scheme in nonorthogonal co-
ordinates is roughly doubled relative to Cartesian co-
ordinates and the error convergence rate is slightly lower
(closer to first order). A possible contributor to the de-
graded error convergence is the coarser resolution of the
nonorthogonal coordinate grid in certain areas, which
may not be compensated by areas where the resolution is
higher. As noted earlier, the transformed coordinate used
in these runs is a strong test of the generalized scheme
because of the highly distorted (nonorthogonal) nature of
the grid. Cubed-sphere grids, such as those based on
equiangular projections (e.g., Nair et al. 2005a), are not as
inhomogeneous, and we expect the error characteristics
to be more favorable than those shown here.
Finally, we analyzed the total energy and potential

enstrophy budgets as realized in the simulations for both
coordinate systems. A time series of the global energy
budget for the 100-km-resolution simulations is shown
in Fig. 8. The changes in geopotential, kinetic, and total
(geopotential1 kinetic) energy from their initial values
are plotted; the conversion of geopotential energy to
kinetic energy is apparent. Note that the change in total
energy is on the order of 1026 times smaller than the
change in kinetic and geopotential energy at a time step
of 30 s. When the time step is reduced to 6 s, the change
in total energy is much smaller, empirically verifying
that total energy is conserved in both Cartesian and
nonorthogonal coordinates to within time truncation
error. Figure 9 shows a similar plot for the globally av-
eraged potential enstrophy, which is a benchmark for
the error in enstrophy conservation. Comparing the
change of potential enstrophy with a time step of 30 and
6 s, it appears to be conserved to within time truncation
error. The conservation of these integral invariants was
expected for Cartesian coordinates (i.e., for the original
scheme in AL81). The results with the generalized

FIG. 6. Relative vorticity z (s21) at day 7 for the flow over an
isolated mountain: (a) nonorthogonal coordinate simulation,
(b) nonorthogonal coordinate simulation interpolated to Cartesian
coordinates, and (c) Cartesian coordinate simulation.
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curvilinear coordinate verify that the invariants are
conserved under the new extended scheme.

d. Steady-state nonlinear zonal geostrophic flow:
Analysis of discretization and local truncation
errors

Removing the mountain in the previous experiment
gives a steady-state analytical solution equal to the ini-
tial geostrophically balanced flow field, given by (70)
and (71). This results in a planar version of test case 2 of
Williamson et al. (1992) and is useful for determining
discretization errors since any deviation from the initial
condition is due to truncation errors of the discrete
equations. In this subsection, we analyze the dis-
cretization errors of a 7-day simulation, as well as the
local truncation errors and convergence properties of
the various discrete operators following Weller (2014),
Thuburn et al. (2014), and Peixoto (2016).
We ran the experiment for seven simulated days with

both the Cartesian coordinate and the nonorthogonal
coordinate from the previous experiments at the fol-
lowing horizontal resolutions: 400, 200, 100, 50, and
25 km. Figure 10 shows the resulting L2 and L‘ error
norms for the surface height field. Note that theL1 error
norms are very similar to these norms and have been
omitted from the figure. The error convergence is sec-
ond order for both coordinate systems. For the AL81
scheme in Cartesian coordinates, this order of conver-
gence is expected as the discretization consists of cen-
tered spatial differencing and averaging, known to be of
second-order accuracy. Of note is the fact that the gen-
eralized scheme, despite its more complicated form and
the inclusion of metric terms, still consists of only cen-
tered differences and averages, so second-order accu-
racy should be expected.
To verify the second-order error convergence of the

generalized AL81 scheme, we evaluated the local trun-
cation errors of the nonlinear terms of the discrete
equations by comparing the numerical value of each
discrete term to its analytical counterpart, given the
prescribed field in (70) and (71). The coordinate trans-
formation is given by (64). Equation (71) was evaluated
at grid points to give the height field, and the covariant
velocities (u1, u2) were calculated using (70) in (4). The
analytical height and covariant velocities at grid points
were used to evaluate the discrete terms, starting with
the contravariant velocity components (u1, u2) evalu-
ated using (35) and (36) with (38)–(42). Figure 11a
shows that the error convergence for the contravariant
velocity diagnosis is second order. Similarly, as shown in
Figs. 11b–e, the following terms are also second-order
accurate: the mass-flux divergence given by (28); the
energy gradient terms [i.e., the last terms on the lhs of

FIG. 7. Convergence of (a) L1, (b) L2, and (c) L‘ error norms for
the free surface height (hs 1 h) at day 7 with increasing grid res-
olution for flow over an isolated mountain. The Cartesian co-
ordinate results are shown by the blue curves and the
nonorthogonal coordinate results are shown by the red curves.
First- and second-order convergence are shown for reference as
black curves.
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(31) and (32)]; the discrete analog of the ‘‘vorticity
terms’’ (2

ffiffiffiffiffi
G

p
u1z,

ffiffiffiffiffi
G

p
u2z) given by (31), (32), and (62)

with z substituted for the absolute velocity in the nu-
merator on the rhs of (52); and the Coriolis terms
(2

ffiffiffiffiffi
G

p
u1f ,

ffiffiffiffiffi
G

p
u2f ) given by (31), (32), and (62) with f

substituted for the absolute velocity in the numerator on
the rhs of (52). This supports our earlier finding in sec-
tion 4b that the linearized discrete Coriolis term is
consistent. Note that the errors shown in Fig. 11 are
normalized except for that of the mass-flux divergence,

FIG. 8. Time series of the global mean energy budget for flow over an isolated mountain with both coordinate systems showing the
changes in kinetic and geopotential energy from their initial values with a time step of 30 s. The change in total (kinetic1 geopotential)
energy is shown with time steps of 30 and 6 s.

FIG. 9. Time series of the change in global mean potential enstrophy for flow over an isolatedmountain with both
coordinate systems and with time steps of 30 and 6 s. The Cartesian solution is in darker (lighter) blue and non-
orthogonal is in red (purple) for the 30 (6) s steps.
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which is the absolute error due to the analytical di-
vergence being zero. Finally, we checked the accuracy of
the Laplacian operator on a scalar field prescribed by
c 5 sin(x/a) cos(y/a), following Thuburn et al. (2014).
The continuous and discrete forms of the Laplacian
operator are shown in appendix C. The accuracy is
second order as shown in Fig. 11f, which again is due to
the use of centered differences in the discretization.

5. Summary and discussion

We have extended the AL81 energy and potential
enstrophy conserving finite-difference scheme for the
shallow-water equations to generalized curvilinear co-
ordinates. This was done using classical tensor analysis
and discretizing the vector-invariant form of the

equations of motion in generalized coordinates. The re-
sult is a minor addition to the AL81 scheme, required for
energy conservation, which vanishes for rectangular
Cartesian coordinates. We simulated the divergent flow
over an isolatedmountain on a plane surfacewith doubly-
periodic boundary conditions using a nonorthogonal co-
ordinate; the extended scheme was shown to conserve
energy and potential enstrophy to within time-truncation
error. We compared the resolution-dependent error
norm convergence between runs using Cartesian and
nonorthogonal coordinates and found that the rates of
convergence are comparable (between first and second
order), although the error was somewhat larger with the
nonorthogonal coordinate, presumably due to coarse
resolution and lack of orthogonality of coordinate lines in
certain areas of the domain.

FIG. 10. As in Fig. 7, but for the steady geostrophically balanced (no
mountain) test case and the L1 error norm omitted.
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FIG. 11. Resolution-dependent local truncation error of the discrete operators and terms used in the nonorthogonal-coordinate
continuity and momentum equations. (a)–(e) Errors are based on the continuous initial velocity and height fields prescribed in the
steady geostrophically balanced (nomountain) test case. (f) Errors of the discrete Laplacian operator on a scalar field prescribed as c5
sin(x/a) cos(y/a). Note that the errors shown are normalized errors, except for (b), which shows the absolute error.
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The AL81 scheme provides a form of the Coriolis term
that does not produce unphysical, nonstationary geostrophic
modes that are sometimes associated with the Arakawa C
grid staggering (Eldred 2015). Like the original scheme, the
new scheme extended to generalized curvilinear coordinates
provides a consistent form of the Coriolis term. From a
normal mode analysis with the nonorthogonal coordinate, it
was found that the geostrophicmodes remain stationary, that
there are no unphysical computational modes introduced by
the scheme, and that all of the physicalmodes are stable.We
verified the steadiness of the geostrophic modes by deriving
the discrete linear vorticity equation and checking that for
nondivergent flow, the vorticity tendency is zero.
The spatial error convergence rates of the nonlinear

discrete terms are formally second order owing the use
of centered differencing and averaging, as in the original
AL81 scheme. We verified this empirically by calculat-
ing the local truncation error of each term of the model
equations for the geostrophically balanced flow field at
varying grid spacing. The error convergence of the height
field after a 7-day simulation of the geostrophically bal-
anced flow field was also second order.
As reported by AL81 and Hollingsworth et al. (1983),

there is a numerical instability (sometimes referred to as
the ‘‘Hollingsworth instability’’) that exists with theAL81
scheme when implemented in 3D models. The instability
can be avoided by using an alternative form of the dis-
crete kinetic energy (e.g., AL81). The result is a loss of
total energy conservation; however, potential enstrophy
is still conserved. We have not yet investigated a stable
kinetic energy discretization in generalized curvilinear
coordinates, but it will need to be done before im-
plementing the scheme for 3D modeling.
The results of the tests show that the generalizedAL81

scheme we have developed could be used advanta-
geously in finite-difference global models using cubed-
sphere discretizations. A way to obtain the conservation
characteristics, demonstrated in this paper for interior
grid points and with periodic boundary conditions, will
need to be developed for the interfaces between the six
regions representing the cube faces; this is left as work
for a forthcoming paper. Also, it may be possible to
obtain higher-order accuracy in a generalized-coordinate
scheme as was done by Takano and Wurtele (1982) for
the AL81 scheme. Finally, we note that while the

generalized grid we used in the paper was based on a
mathematically defined coordinate system, as is done
on cubed-sphere grids, the scheme may be used with
arbitrary quadrilateral grids, which could be used for
representing ocean basins. The elements of the metric
tensors would then be determined numerically instead
of analytically. At that point, further analysis will be
needed to determine if the scheme retains second-
order accuracy.
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APPENDIX A

Linearized Discrete System of Equations

The continuous system of equations (9)–(11) line-
arized about a resting basic state on the f plane can be
written as
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1
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p
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›x1
(
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›
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u2)
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5 0, (A1)
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52g
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0
u2q , (A2)

and

›u2

›t
52g

›h

›x2
2

ffiffiffiffiffi
G

p
h
0
u1q , (A3)

where h, u1, and u2 refer to perturbation values and q is
the basic-state potential vorticity given by

q5
f

h0

. (A4)

Applying the finite-difference scheme derived in section
3, the corresponding linearized discrete system sim-
plifies to
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APPENDIX B

Linearized Vorticity and Continuity Equations
at q Points

To support the result of our numerical eigendecompo-
sition that the generalized AL81 scheme has stationary

geostrophic modes, we derive the linearized discrete
vorticity equation and show that for geostrophicmodes, in
which the divergence vanishes, the vorticity tendency also
vanishes (e.g., Thuburn et al. 2009). The time tendency of
the perturbation relative vorticity zi,j from a resting basic
state on the f plane can be obtained by using (52) and (54)
in (56) combined with (62) and (A4) to give
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where u1 and u1 are the perturbation contravariant ve-
locity components. Note that the basic-state fluid depth

h0 has cancelled out. The linearized continuity equation
at vorticity points is readily obtained from (58) as
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When the flow is nondivergent as seen by the fluid depth
at mass points, the rhs of (B2) vanishes (i.e., the flow is
also nondivergent in terms of continuity at the vorticity
points). Therefore, the rhs of (B1) is zero, which confirms
that the nondivergent geostrophic modes are steady.

APPENDIX C

The Laplacian Operator

The Laplacian operator expressed in generalized curvi-
linear coordinates (e.g.,Nair 2009) canbewritten as follows:
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where c is a scalar. The discrete form of (C1) used in the
truncation error analysis of section 4d is given by
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