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ABSTRACT

The discontinuous Galerkin (DG) method is high order, conservative, and offers excellent parallel effi-

ciency. However, when there are discontinuities in the solution, the DG transport scheme generates spurious

oscillations that reduce the quality of the numerical solution. For applications such as the atmospheric tracer

transport modeling, a nonoscillatory, positivity-preserving solution is a basic requirement. To suppress the

oscillations in the DG solution, a limiter based on the Hermite-Weighted Essentially Nonoscillatory

(H-WENO) method has been implemented for a third-order DG transport scheme. However, the H-WENO

limiter can still produce wiggles with small amplitudes in the solutions, but this issue has been addressed by

combining the limiter with a bound-preserving (BP) filter. The BP filter is local and easy to implement and can

be used for making the solution strictly positivity preserving. The DG scheme combined with the limiter and

filter preserves the accuracy of the numerical solution in the smooth regions while effectively eliminating

overshoots and undershoots. The resulting nonoscillatory DG scheme is third-order accurate (P2-DG)

and based on the modal discretization. The 2D Cartesian scheme is further extended to the cubed-sphere

geometry, which employs nonorthogonal, curvilinear coordinates. The accuracy and effectiveness of

the limiter and filter are demonstrated with several benchmark tests on both the Cartesian and spherical

geometries.

1. Introduction

The discontinuous Galerkin (DG) method may be

viewed as a hybrid approach combining the good fea-

tures of two classical numerical discretization ap-

proaches, the finite-volume (FV) and finite-element

methods, and exploiting the merits of both. The DG

spatial discretization combined with Runge–Kutta time

integration (RKDG method) provides a class of robust

algorithms for solving conservation laws (Cockburn and

Shu 1989; Cockburn 1997). Because of its computation-

ally attractive features such as local and global conser-

vation, high-order accuracy, high parallel efficiency

(petascale capability), and geometric flexibility, the DG

method is becoming increasingly popular in atmospheric

modeling [for the spherical geometry application, see,

e.g., Giraldo et al. (2002); Nair et al. (2005a); Läuter

et al. (2008)]. A recent review by Nair et al. (2011)

presents various DG applications in atmospheric science

with an extensive list of references.

Even though the RKDG scheme has many desirable

properties, for transport equations with strong shocks

or contact discontinuities, a nonlinear limiter must be

employed to suppress oscillations. There are extensive

studies on limiters for the low-order finite-volume

methods. The slope limiters used for FV schemes can be

extended to the modal form of DG methods (Cockburn

1997), however, this drastically reduces the high-order

accuracy of the DG scheme (Iskandarani et al. 2005;

Krivodonova 2007). To maintain the properties of

the DG scheme, the limiter used should not reduce the

order of accuracy in the region where the solution is

smooth. To address this issue, Qiu and Shu (2005b) have

developed high-order limiters based on the Weighted
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Essentially Nonoscillatory (WENO) schemes, where the

WENO-type nonoscillatory reconstruction technique

serves as a limiter for the RKDG method. A major

disadvantage of this type of limiter is its requirement

for a wider halo region (stencil), which could potentially

impede parallel efficiency. For example, a third-order

DG scheme requires a 5 3 5 stencil (i.e., halo size of

width 2 in each direction) to apply a consistent WENO

limiter. Subsequently, Qiu and Shu (2005a) improved

this deficiency by developing the Hermite-WENO

(H-WENO) limiter, for which a more compact stencil is

employed. For a third-order DG scheme, the H-WENO

limiter requires only a 3 3 3 stencil. The DG scheme

combined with an H-WENO limiter has been recently

used for a system of conservation laws in several appli-

cations (Luo et al. 2007; Balsara et al. 2007). Note that

a WENO or H-WENO limiter is only ‘‘essentially’’

nonoscillatory by design, which implies that minor wig-

gles may appear in the solution even after the limiter is

applied to the DG scheme. Therefore, the terminology

‘‘nonoscillatory DG scheme’’ is used throughout the text

in a weak sense.

Though the WENO-type limiters can remove spuri-

ous oscillations, there is no guarantee that they will al-

ways keep the numerical solution within the physical

bounds. The numerical solution may still have small-

amplitude oscillations even after the limiter is applied.

In other words, these schemes are not strictly positiv-

ity preserving. For many atmospheric tracers such as

humidity and mixing ratios, the global maximum and

minimum values are known in advance, and such tracers

have ‘‘zero tolerance’’ for negative values. Therefore,

for tracer transport models, the positivity preservation is

considered to be a basic requirement. Very recently,

Zhang and Shu (2010) developed a genuinely high-

order bound-preserving (BP) filter for multidimen-

sional RKDG methods, based on the Liu and Osher

(1996) one-dimensional limiter. The BP filter clips ex-

trema of the solution that go out of the physically le-

gitimate bounds without violating the conservation

property. Two nice features of the BP filter are that it is

local and that it can easily be turned into a positivity-

preserving filter when the lower bound is specified

as zero. Zhang and Shu (2011) further extended this

maximum-principle-satisfying filter to a variety of prob-

lems including systems of equations such as the Euler

and shallow-water equations. The nonoscillatory and

positivity-preserving properties for the proposed DG

transport scheme are achieved by applying the H-WENO

limiter and BP filter, respectively.

In this paper, we first introduce the basic DG scheme,

with emphasis on a P2 modal (third order) version, and

the implementation of an H-WENO limiter with a BP

filter option. The basic ideas are developed in 2D Car-

tesian geometry and then extended to the cubed sphere

(2D curvilinear) with several benchmark tests. The re-

mainder of the paper is organized as follows: in section 2,

the modal third-order DG scheme is described and the

corresponding H-WENO scheme is introduced. Section 3

describes the implementation of the nonoscillatory DG

scheme on the cubed-sphere geometry. In section 4,

numerical tests on both a 2D Cartesian domain and the

sphere are presented to demonstrate the performance

of the nonoscillatory scheme, followed by some discus-

sion and concluding remarks in section 5.

2. Nonoscillatory DG transport scheme

We consider the two-dimensional conservative trans-

port equation as follows:

›U

›t
1 $ � F(U) 5 S(U), in D3 (0, T], (1)

where U 5 U(x, y, t) is a conservative quantity with

a given initial value of U0(x, y) 5 U(x, y, 0), F is the flux

function, S(U) is a source term, and $� is the divergence

operator defined in D. The DG spatial discretization

procedure consists of partitioning the domain D into

nonoverlapping elements (cells) Ii,j, and seeking an ap-

proximate solution Uh ’ U on each element. We assume

the elements to be rectangular such that Ii,j 5 [xi21/2,

xi11/2] 5 [yj21/2, yj11/2]. The approximate solution is

U
h
2 Vk

h (I
i,j

), "I
i,j
2 D, such that U

h
j
Ii,j
2 Pk(I

i,j
), where

Vk
h is the vector space of polynomials Pk up to degree

k, defined over Ii,j.

A weak Galerkin formulation of the problem is ob-

tained by multiplying (1) by a test function uh 2 Vk
h , and

integrating by parts over Ii,j, leading to

ð
I

i,j

›Uh

›t
uh dx dy 5

ð
I

i, j

F(Uh) � $uh dx dy

2

þ
›I

i, j

uhF(Uh) � n ds

1

ð
I

i, j

S(Uh)uh dx dy, (2)

where ›Ii, j is the boundary corresponding to element

Ii,j and n is the outward-facing normal vector of the

boundary. The discontinuity at the element boundaries

(interfaces) within D is resolved by applying suitable

numerical fluxes (or approximate Riemann solvers).

a. A third-order modal formulation

The integral equation (2) is the crux of the DG algo-

rithm, the accuracy and efficiency of which are determined
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by the particular choice of Pk and the quadrature rules

for the integrals. An arbitrary high-order modal DG

discretization on the cubed sphere is given in Nair et al.

(2005b). Nevertheless, our focus here is the develop-

ment of a third-order modal nonoscillatory DG scheme.

Details of the ‘‘modal’’ and ‘‘nodal’’ variants of DG

scheme and their relative merits can be found in Nair

et al. (2011).

A major limitation of the DG scheme is the stringent

Courant–Friedrichs–Lewy (CFL) stability constraint

associated with explicit time stepping. For high-order

DG schemes employing polynomials of degree k . 1, an

approximate CFL limit estimate is 1/(2k 1 1) (Cockburn

1997). This is due to the fact that the DG method has

more degrees of freedom (dofs) to evolve in time per

element than a typical finite-volume or finite-element

method; this makes the scheme highly accurate at a

higher computational cost. However, reducing the order

accuracy has some benefits. It significantly improves

CFL stability and allows one to implement limiting al-

gorithms based on those designed for FV methods.

A moderate-order DG scheme, such as a third-order one

(k 5 2), has a CFL limit (approximately 0.2) comparable

to some high-order FV schemes (Chen and Xiao 2008).

In certain cases, a third-order DG scheme provides

a solution that is qualitatively comparable to that of

a fourth-order or fifth-order WENO scheme. Therefore,

in this paper our main focus is the development of

a practical third-order DG scheme, which we will refer

to as the ‘‘P2-DG’’ scheme. For that we utilize the modal

version of the DG method, which is amenable to limiting

methods as used for FV schemes.

To simplify the integrals in (2), we introduce new in-

dependent variables (j, h), and every element is mapped

to the standard element [21, 1]2 such that

j 5
2(x 2 xi)

Dxi

, h 5
2(y 2 yj)

Dyj

; j, h 2 [21, 1], (3)

where xi 5 (xi21/2 1 xi11/2)/2, yi 5 (yj21/2 1 yj11/2)/2,

Dxi 5 xi11/2 2 xi21/2, and Dyj 5 yj11/2 2 yj21/2. The ap-

proximate solution UhjIi,j
5 Ui,j for an element Ii,j can be

represented in terms of modal basis functions from the

set B 5 f1, j, h, jh, (3j2 2 1)/2, (3h2 2 1)/2g, composed

of the Legendre (orthogonal) polynomials:

Uh(j, h, t)jI
i,j

5 U0,0
i,j (t) 1 U1,0

i,j (t)j 1 U0,1
i,j (t)h

1 U1,1
i,j (t)jh 1 U2,0

i,j (t)
3j2 2 1

2

1 U0,2
i,j (t)

3h2 2 1

2
, (4)

where Ul,m
i,j (t), 0 # l 1 m # 2, are the six dofs (or mo-

ments) associated with the P2-DG scheme. The moments

are defined as follows:

Ul,m
i,j (t) 5

DxDy

4

ð1

21

ð1

21
Ui,j(j, h, t)ul,m(j, h) dj dh, (5)

where the test functions ul,m 2B. From (5) it is clear that

the first moment U0,0
i,j is the ‘‘cell average,’’ in an FV

sense. The integrals in (2) associated with the P2-DG

scheme are evaluated either by using the Gauss–Lobatto–

Legendre (GLL) or the Gauss–Legendre (GL) grid con-

sistent with the order of accuracy of the scheme, as

shown in Fig. 1.

For the flux term in (2), we consider the local Lax–

Friedrichs flux given by

F̂(U2
h , U1

h ) 5
1

2
[F(U1

h ) 1 F(U2
h )] � n 2 a(U1

h 2 U2
h )

� �
,

where a is the maximum value of the flux Jacobian

(which is the local maximum wind speed for the ad-

vection problem) and U2
h , U1

h denote the left (bottom)

and right (top) values of the numerical solution

(Cockburn 1997). This resolves the discontinuity at the

element edges. Further simplification of the weak form

(2) leads to the semidiscrete form, which is a system

of ordinary differential equations (ODE) in time for

each moment. More details of the discretization can

be found in Nair et al. (2011). In short, the six modes

Ul,m
h of the DG solution on any element will follow

the ODEs:

d

dt
Ul,m

h 5 L(Ul,m
h ), (6)

where L represents DG spatial discretization result-

ing from (2). Thus the approximate solution Uh on

each element at a new time level can be computed by

solving (6) and using (4). For the present work we use

the third-order Strong Stability Preserving (SSP)

Runge–Kutta time integration scheme (Gottlieb et al.

2001) to solve (6).

b. The H-WENO limiter

To suppress the oscillations in the numerical solution

in the presence of a shock or discontinuity, we employ

the Hermite-WENO limiting strategy. The H-WENO

limiting strategy for the DG scheme was first introduced

by Qiu and Shu (2005a). It is a variant of the traditional

WENO-type limiter (Qiu and Shu 2005b) in the sense

that they share the same methodology. Once a cell is
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identified as an oscillatory (or ‘‘troubled’’) cell, with a

shock detection technique such as the (total variation

bounded) TVB-type limiter (Cockburn et al. 1990), then

all the higher-order moments are modified except for

the first moment (i.e., cell average). Preservation of the

cell average is required to guarantee conservation. We

briefly outline the procedure below (details can be found

in Shu 1997).

The first step is to reconstruct several polynomials Pn

using the information from the neighboring cells, for

which a family of candidate stencils are required. Each

big stencil contains several small stencils (or substencils)

Sn consisting of the cell Ii,j and its neighbors, as depicted

schematically in Fig. 2. The WENO scheme uses a con-

vex combination of nonlinear weights wn from each

stencil, which depends on the local smoothness of the

solution, and ultimately creates the nonoscillatory so-

lution. The smoothness indicators bn, which are a mea-

sure of the smoothness of the solution, are computed for

each stencil; note that a smaller value of bn indicates

a smoother function Pn in Sn. The smoothness indicators

are then used to convert precomputed linear weights

(gn) to nonlinear weights (wn). As a limiter, WENO

modifies the high-order moments of the DG solution

using a combination of nonlinear weights (Qiu and Shu

2005b).

The major difference between the H-WENO and

WENO scheme is that the former uses a more compact

stencil than the WENO scheme for a given order of ac-

curacy. This makes the H-WENO algorithm more de-

sirable for a parallel computing environment. Unlike the

WENO method, which employs only the cell averages

from the neighboring cells, the H-WENO scheme relies

on cell averages as well as derivative information (or

‘‘Hermite’’ information). For the DG discretization, de-

rivatives are readily available, making the H-WENO

limiter more computationally attractive. The H-WENO

limiter retains all the nice qualities of the WENO limiter

such as conservation and the nonoscillatory property, and

it will not reduce the order of accuracy of the underlying

scheme in the smooth region. For instance, the H-WENO

stencil adopted for our P2-DG scheme uses a 3 3 3 ‘‘big’’

stencil, which is labeled in Fig. 2, as compared to the 5 3 5

stencil usually required by the WENO limiter.

To better illustrate the reconstruction process of the

H-WENO limiter, we require that the reconstructed

polynomial should retain the cell averages of all the cells

contained in each stencil. Our focus is the implementa-

tion of the 2D H-WENO limiter for the P2-DG scheme.

This requires a fourth-order accurate H-WENO re-

construction employing a big stencil with 3 3 3 cells,

and a set of eight small stencils fS
n
g8

n51
, as shown in

Fig. 2. For convenience, we denote the cells with a single

index I‘, ‘5 ‘(i, j) for the reconstruction procedure. The

H-WENO reconstruction involves the reconstruction

of polynomials Pn in each stencil Sn, subject to some

integral constraints. For example, on S1, we seek P1(x, y)

satisfying the following constraints:ð
I
‘

P1(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 1, 2, 4, 5

ð
I

4

P1(x, y)u1,0
1 dx dy 5 a1U1,0

4 ,

FIG. 1. For the DG discretization, every rectangular element is mapped onto a standard

element [21, 1]2 with the local (j, h) coordinates. (a) GLL quadrature grid with 4 3 4 points,

where on the boundary the solution points and flux points coincide. (b) GL quadrature grid

with 3 3 3 internal points (filled circles) and three flux points on each side (filled squares). The

values at the flux points are interpolated using the modal basis functions.
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ð
I

2

P1(x, y)u0,1
2 dx dy 5 a2U0,1

2 , (7)

where a0, a1, and a2 are known coefficients. Note that

the above constraints not only use the cell average (U0,0
‘ )

but also exploit the derivative information (U0,1
‘ , U1,0

‘ ).

Without indicating the cell dependence, a general from

of Pn(x, y) in terms of the local coordinates (j, h) can be

expressed as

Pn(j, h) 5 U0,0
n 1 U1,0

n j 1 U0,1
n h 1 U1,1

n jh

1 U2,0
n

3j2 2 1

2
1 U0,2

n

3h2 2 1

2
. (8)

Using the integral constraints, (8) can be further modi-

fied for each stencil Sn. The details for the reconstruction

process are given in appendix A.

As mentioned above, we use a TVB-type limiter to

identify an oscillatory cell Ii,j, while keeping the cell

average (U0,0
i,j ) unchanged. Modification of higher-order

moments involves several steps. First compute the op-

timal linear weights gn assigned for each reconstructed

polynomial Pn(x, y). The details of this may be found in

Qiu and Shu (2005a); we list only the key results here.

For the first-order moments U1,0
i,j and U0,1

i,j , the linear

weights are

g1 5 g2 5 g3 5 g4 5
11

76
; g5 5 g6 5 g7 5 g8 5

2

19
.

FIG. 2. The stencils used for the H-WENO reconstruction to limit a cell Ii,j are shown for

a single index I‘55. For the P2-DG scheme, the H-WENO limiter requires a big stencil with 3 3

3 cells, and eight small stencils S1, S2, . . . , S8. Each small stencil contains a combination of cells

from the big stencil, including the cell to be limited (I5).

3110 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



For the second-order moments U1,1
i,j , U2,0

i,j , and U0,2
i,j , gn 5

1/8, n 5 1, . . . , 8. The smoothness indicators bn associated

with each Pn(x, y) for the first-order moments U1,0
i,j and

U0,1
i,j are, respectively,

bn 5 �
2

m51

jIi,jj
m21

ð
I

i,j

›m

›xm
Pn(x, y)

� �2

dx dy,

bn 5 �
2

m51

jIi,jj
m21

ð
I

i,j

›m

›ym
Pn(x, y)

� �2

dx dy. (9)

And for the second-order moments U1,1
i,j , U2, 0

i,j , and U0, 2
i,j ,

the smoothness indicators are computed as follows:

bn 5 �
2

jmj52

jIi,jj
m21

ð
I

i, j

›jmj

›xm
1 ›ym

2
Pn(x, y)

� �2

dx dy (10)

(see appendix B for the details of the smoothness in-

dicator computation). The next step is to convert the

linear weights gn into normalized nonlinear weights wn

using smooth indicators bn:

wn 5
~wn

�
n

~wn

, ~wn 5
gn

(« 1 bn)2
,

where « 5 O(1026) to prevent a zero denominator. Fi-

nally, we replace all the higher-order moments Ul,m
i,j ,

1 # (l 1 m) # 2 by modified moments ~U
l,m

i,j using

~U
l,m
i,j 5 �

8

n51

wnUl,m
n . (11)

The limited approximate solution corresponding to

(4) is obtained by replacing the unlimited coefficients

with the limited coefficients (11), and this com-

pletes the H-WENO limiting process for the P2-DG

scheme.

Qiu and Shu (2005a) have shown that the H-WENO

limiter coupled with the DG scheme is indeed third-

order accurate for smooth problems. However, just like

the WENO limiter, the H-WENO limiter is also only

essentially nonoscillatory, which means it may not elim-

inate all small oscillations near the physical bounds. This

is the motivation for us to further implement a bound-

preserving filter for the P2-DG scheme combined with

the H-WENO limiter.

c. The BP filter

To preserve the initial bounds of the numerical solu-

tions and eliminate negative densities (if positivity is

a requirement), we can apply a bound-preserving filter

as an additional option. The BP filter has several at-

tractive features. It is local, conservative, computation-

ally cheap, and easy to implement (Zhang and Shu

2010). For P2-DG, the moments are evolving with re-

spect to time. However, the gridpoint values of the ap-

proximate solution Uh on Ii,j at any instant can be

computed from the polynomial representation (4). Let

pi,j(x, y) be the modal DG polynomial on the cell Ii,j with

cell average u
i,j

, and let Si,j be the local computational

stencil in the gridpoint (physical) space corresponding

to Ii,j.

The BP filter essentially replaces pi,j(x, y) with a mod-

ified polynomial ~pi,j(x, y), such that

~pi,j(x, y) 5 ûpi,j(x, y) 1 (1 2 û)ui,j,

û 5 min

"�����
M 2 ui,j

Mi,j 2 ui,j

�����,
�����
m* 2 ui,j

m*i,j 2 ui,j

�����, 1

#
, (12)

where the local extrema are M
i,j

5 max
(x,y)2Si,j

p
i,j

(x, y) and

m*i,j 5 min(x,y)2Si, j
pi,j(x, y). In (12), M and m* are, respec-

tively, the global maximum and minimum values of

the initial condition, which are usually known in the

context of a certain atmospheric tracer transport. From

(12) it is clear that ~pi,j(x, y) preserves the cell average ui,j,

which is a basic requirement for local conservation, for

û 2 [0, 1]. More details of the filter function (12) and

other applications can be found in a recent review by

Zhang and Shu (2011). The positivity-preserving option is

a special case of the BP filter, and can be achieved by-

setting m* 5 0. The local gridpoint stencil Si,j in the P2-

DG context has a tensor product of four GLL quadrature

points in each dimension or the tensor product of three

GL points plus the Gauss points on the four boundaries

for flux interpolation, as shown in Fig. 1.

The filter (12) is in fact based on the 1D filter de-

veloped by Liu and Osher (1996) for an FV scheme.

Zhang and Shu (2010) have proved that this filter sat-

isfies the strict maximum principle and is genuinely high

order and extensible to DG applications. We note that,

although the BP filter keeps the bounds of the solution in

the range [m*, M], there is no guarantee that it will re-

move all the internal oscillations within the cells. How-

ever, the combination of the H-WENO limiter and the

local BP filter addresses this issue.

3. Nonoscillatory DG scheme for cubed sphere

The cubed-sphere geometry (Sadourny 1972) has be-

come a popular choice for the spherical grid system

in global modeling because it offers a quasi-uniform

rectangular grid structure on the sphere without pole
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problems. This grid structure is suitable for high-or-

der element-based Galerkin methods as well as cell-

centered FV methods. There are different variants of the

cubed-sphere topology, but we will consider the cubed-

sphere geometry employing the equiangular central

projection as described in Nair et al. (2005b). The sphere

D is decomposed into six identical regions by an equi-

angular central (gnomonic) projection of the faces of an

inscribed cube. The central angles of projection x1 5 x1(l,

u), x2 5 x2(l, u) are the local coordinates for each face

such that x1, x2 2 [2p/4, p/4], where l and u are the

longitude and latitude of the sphere with radius R, re-

spectively. This results in a nonorthogonal curvilinear

coordinate system (x1, x2), which is free of singularities;

however, the edges of the six faces are discontinuous.

The metric tensor associated with the central mapping

is given by

gij 5
R2

r4 cos2x1 cos2x2
3

1 1 tan2x1 2 tanx1 tanx2

2tanx1 tanx2 1 1 tan2x2

� �
,

where r2 5 1 1 tan2x1 1 tan2x2, with tensor indices i, j 2
f1, 2g. The metric term (Jacobian of the transformation)

is then
ffiffiffi
g
p

5 jgijj
1/2. The horizontal velocity vector on the

sphere v(l, u) 5 (u, y) can be expressed in terms of co-

variant (u1, u2) and contravariant (u1, u2) vectors, which

are related through ui 5 gij uj, ui 5 gij uj, where gij 5 g21
ij .

For each face of the cubed sphere, covariant and contra-

variant vectors can be computed from (u, y) as follows:

"
u1

u2

#
5 A21

"
u

y

#
,

"
u1

u2

#
5 AT

"
u

y

#
,

A 5 R

"
cosu(›l/›x1) cosu(›l/›x2)

›u/›x1 ›u/›x2

#
, (13)

where A is local to each face of the cubed sphere such

that ATA 5 gij. The details of the local transformation

laws and the matrix A are given in Nair et al. (2005b),

and will not be discussed herein.

The general (tensorial) form of the transport equation

(1) in curvilinear coordinates for a scalar field c without

a source term can be written as follows:

›c

›t
1

1ffiffiffi
g
p

›

›xi
(ui ffiffiffi

g
p

c) 5 0.

Since the metric term
ffiffiffi
g
p

is time-independent, the above

equation on the cubed sphere (D) can be written in the

following flux form:

›

›t
(
ffiffiffi
g
p

c) 1
›

›x1
(u1 ffiffiffi

g
p

c) 1
›

›x2
(u2 ffiffiffi

g
p

c) 5 0. (14)

If we consider the scalar U 5
ffiffiffi
g
p

c, then (14) becomes

the standard form as given in (1), with fluxes F 5 (u1U,

u2U); moreover, (14) may be treated as a simple 2D

Cartesian case in (x1, x2) space (Levy et al. 2007). For the

DG discretization, each face of the computational do-

main is partitioned into nonoverlapping Ne 3 Ne cells

(elements) such that Ne 3 Ne 3 6 cells span the entire

domain D.

4. Numerical experiments

a. Cartesian tests

To validate the nonoscillatory DG scheme, we solve

(1) without a source term on Cartesian domains using

several benchmark tests, including a solid-body rotation

test suggested by LeVeque (2002). The initial scalar

fields include smooth and nonsmooth distributions to

check the effectiveness of the limiter and filter. For the

following tests we use the 3 3 3 GL quadrature grid

shown in the right panel of Fig. 2, and the third-order

SSP Runge–Kutta (Gottlieb et al. 2001) method for time

integration.

1) ADVECTION OF A 1D IRREGULAR SIGNAL

To see the effects of the BP filter and H-WENO

limiter on the P2-DG scheme, we first solve a simple

one-dimensional form of the conservation law (1), ct 1

(uc)x 5 0, on a periodic domain [2p, p]. The initial

value of the scalar c(x, t 5 0) 5 c0 is given as a three-

level step function (or irregular signal) in [0, 1], with

values of c0 5 0, 0.5, 1 for x 2 [2p, p], as indicated by

thin lines in Fig. 3. The computational domain consists

of 80 cells with a uniform velocity of u 51. In Fig. 3, the

numerical solution cn after one revolution (period) is

shown as dashed lines. Although the BP filter keeps the

numerical solution within the initial bounds [0, 1] as

shown in Fig. 3b, the solution remains oscillatory at the

level cn 5 0.5, similar to the P2-DG case (Fig. 3a).

However, the H-WENO limiter with the BP filter re-

moves the oscillations (Fig. 3c) while strictly preserving

the initial bounds. The P2-DG solution combined with

the H-WENO limiter appears to be very similar to

Fig. 3c (not shown), but in this case the solution is not

strictly positivity preserving, as there are minor un-

dershoots (overshoots) at cn 5 0. In other words, the

purpose of the BP filter is to preserve the solution

within the initial bounds; nevertheless, it has no control

over the internal oscillations of the solution or it can-

not make the solution nonoscillatory. In general, the

P2-DG solution with the H-WENO and BP combina-

tion is essentially nonoscillatory, but preserves the

bounds of the initial data.
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2) SOLID-BODY ROTATION OF A GAUSSIAN HILL

For the 2D case we consider the conservation law

ct 1 (uc)x 1 (yc)y 5 0 on a periodic domainD. The first

2D test case is the solid-body rotation of a Gaussian hill

on a square domain D 5 [21, 1]2. The velocity field is

prescribed as (u, y) 5 (2vy, vx), where the constant

angular velocity v 5 1. For the solid-body rotation test,

the initial scalar field translates to a circular trajectory

without incurring any deformation. Moreover, the ex-

act solution is available at any time. The initial condi-

tion is given by

c(x, y, t 5 0) 5 ac expf2bc[(x 2 x0)2
1 (y 2 y0)2]g,

where ac and bc are taken to be 1.0 and 100/3, respectively.

For the purpose of testing the order of accuracy, we

take x0 5 0, y0 5 0, and assume periodic boundary

conditions. Note that for the solid-body rotation test we

have used small time steps to minimize the temporal

errors. An approximate estimate is given as Dt 5 0.5CnD,

where Cn 5 0.15 is a CFL number less than the theo-

retical maximum (0.2) for P2-DG, and D is the minimum

grid spacing. From Fig. 4, it is clear that both the H-WENO

limiter and the BP filter are third-order accurate. Com-

bining the filter and limiter together does not degrade the

order of accuracy of the underlying DG scheme.

3) SOLID-BODY ROTATION OF A NONSMOOTH

DISTRIBUTION

The second test case on the Cartesian domain is still

the solid-body rotation under the same velocity field, but

with a nonsmooth scalar field comprising a square block

and a cone (LeVeque 2002). This field is given by

c(x, y, t 5 0)5

1 if max(jx2 0:35j, jy 20j) # 0:25

12 r̂ if r̂ , 1

0 otherwise

,

8<
:

where r̂ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x 2 x

0
)2

1 (y 2 y
0
)2

q
/0:35 with x0 5 20.45,

y0 50.

Figure 5 shows the contour plots of the numerical

results and the exact solution after finishing a full circle

of rotation. The grid resolution is 80 3 80, which means

FIG. 3. Results after one complete period for the uniform advection of an irregular signal (three-level step function) on a 1D periodic

domain [2p, p] employing 80 cells. Reference solution is marked as thin solid lines and numerical solution is marked as dashed lines.

Numerical solution with (a) P2-DG, (b) P2-DG and BP filter, and (c) P2-DG with both H-WENO limiter and BP filter.

FIG. 4. Convergence plots for 2D Cartesian solid-body rota-

tion of a Gaussian hill. The P2-DG transport scheme combined

with the H-WENO limiter or BP filter or both is used for the

convergence tests.
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Dx 5 Dy 5 0.025, on a square domain [21, 1]2. In Fig. 6a,

a 3D projection of the numerical solution is shown. It

can be seen clearly from the results that the H-WENO

limiter effectively removes the nonphysical oscillations

that occur near the discontinuities when using a DG

scheme. Figures 6a–c show a 3D projection of the so-

lution on a 64 3 64 mesh with the DG scheme without

the limiter or filter, with the BP filter, and with both the

H-WENO limiter and BP filter, respectively. The BP

filter alone helps to keep the numerical solution within

the physical bounds [0, 1] as shown in Fig. 6b, but there

may be oscillations within these bounds. However, the

H-WENO and BP combinations completely eliminate

oscillations while being strictly positive definite, as

evident from Fig. 6c. Thus, using the nonoscillatory

DG scheme achieves a substantial improvement in the

quality of the numerical solution over using the DG

scheme alone.

b. 2D spherical tests

For validating transport schemes, two types of stan-

dard tests are often used: a solid-body rotation test and

a deformational flow test. We consider the solid-body

rotation test suggested by Williamson et al. (1992) and

Pudykiewicz (2006), and a new challenging deforma-

tional flow test described in Nair and Jablonowski (2008)

and Nair and Lauritzen (2010). For the P2-DG scheme

with a limiter (filter), we solve the transport equation (14)

on the cubed sphere with the following tests. All the

computations for the P2-DG scheme are performed using

a 4 3 4 GLL grid as shown in Fig. 1a. Normalized

standard errors l1, l2, and l‘ and relative minimum (cmin)

FIG. 5. Numerical results of solid-body rotation of a nonsmooth distribution (a circular cone and

a square block) after one revolution with Dx 5 Dy 5 0.025 using the (a) P2-DG scheme only, (b) P2-DG

with the BP filter, (c) P2-DG with the H-WENO limiter, and (d) P2-DG with the H-WENO limiter and

BP filter. Solid lines show contour values from 0.05 to 0.95 with increments of 0.1. Thick solid lines

indicate the contour values of 0.05 and 0.75 of the exact (reference) solution.
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and maximum (cmax) errors (Williamson et al. 1992) are

used for validating the numerical scheme. The relative

minimum–maximum errors are defined as

cmin 5
min(c) 2 min(c0)

Dc0

, cmax 5
max(c) 2 max(c0)

Dc0

,

(15)

where Dc0 5 max(c0) 2 min(c0), c is the numerical

solution, and c0 is the initial solution.

1) SOLID-BODY ROTATION: COSINE BELL

We first consider the cosine bell (CB) test (Williamson

et al. 1992), which is the de facto standard test case for

spherical advection problems. Since the exact solution is

known at all times, error measures can be computed. The

initial condition is formulated as

c(l, u, t 5 0) 5
(h0/2)[1 1 cos(prd/r0)] if rd , r0

0 if rd $ r0

,




where h0 5 1000 m is the maximum height, rd is the great-

circle distance from (l, u) to the center of the cosine

bell, which is initially placed at (3p/2, 0), and r0 5 R/3 is

the radius of the cosine bell with R 5 6.371 22 3 106

denoting the earth’s radius. The wind field is non-

divergent and defined to be

u 5 u0(cosa cosu 1 sina cosl sinu) and (16)

y 5 2u0 sina sinl, (17)

where u0 5 2pR/12 days, so that it takes 12 days to

complete a full rotation. The orientation of the wind

field can be controlled by setting the parameter a. In the

following computation, a is set to be p/4, so the cosine

bell goes through four vertices and all six faces. This

configuration is the most challenging case for the cubed-

sphere geometry. The numerical solution is computed

on a 32 3 32 3 6 mesh with a relatively small time step

Dt 5 600 s, which corresponds to an approximate CFL

number of 0.02.

In Table 1, we give normalized standard error norms

at t 5 T 5 12 days. Normalized standard error measures

are comparable to those seen in the recent high-order

FV models (Chen and Xiao 2008; Ullrich et al. 2010;

FIG. 6. A 3D perspective of the numerical solution shown in Fig. 5 but on a 64 3 64 grid.

(a) P2-DG oscillatory solution, (b) P2-DG with the BP filter, where the bounds are preserved

but oscillations are visible within the bounds [0, 1], and (c) a nonoscillatory solution using the

P2-DG scheme combined with the H-WENO limiter and the BP filter.
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Katta et al. 2012, manuscript submitted to Quart. J. Roy.

Meteor. Soc.). Figure 7 shows the contour plots of the

numerical solution after one full rotation. From the re-

sults, it is clear that the nonoscillatory scheme will elim-

inate the negative values produced by the DG scheme

near the foot of the bell.

2) SOLID-BODY ROTATION: MULTISCALE SIGNAL

Although the cosine-bell advection test is widely pop-

ular, it is often considered to be an easy test, especially

for checking the monotonicity of the numerical scheme

because the scalar distribution (cosine bell) is quasi-

smooth and covers only about 10% of the entire spher-

ical domain (elsewhere the value is set to zero). We also

consider a challenging initial condition introduced in

Pudykiewicz (2006), where the scalar field is a multiscale

signal comprising continuous and discontinuous func-

tions. The velocity field is the same as in the cosine-bell

test (16) and (17), but the flow is oriented along the

equatorial direction (a 5 0). The initial scalar field is

defined as follows:

c(l, u) 5 cos4u 2 1 [f1(l) 1 f2(l)] 1 1 0:3 sin
50l

9

� �� �


3 1 1 0:4 sin
50l

10

� �� ��
, (18)

where f1(l) 5 21 for l 2 D1 [ [8p/25, 28p/25], f1(l) 5

0 for l 2 [0, 2p] 2 D1, f2(l) 5 1 for l 2 D2 [ (28p/25,

39p/25], and f2(l) 5 0 for l 2 [0, 2p] 2 D2.

Figure 8a shows the initial condition for the multiscale

signal (18), and Fig. 8b shows the numerical solution

(after 12 days) with the P2-DG scheme and the H-WENO

limiter. The experimental setup is similar to that of the

solid-body rotation test, where a mesh with 32 3 32 3 6

cells and a time step of Dt 5 600 s are used. The P2-DG

numerical solution without the H-WENO limiter is vi-

sually indistinguishable from that with the H-WENO

limiter (Fig. 8b) and therefore not shown. Table 2 lists

the normalized errors for the P2-DG scheme with or

without the H-WENO limiter. Figures 8c,d show the

value of c(l, u) sampled along the equator (1D data)

after one revolution using the P2-DG scheme without

and with the H-WENO limiter, respectively. The exact

solution is indicated using black dots and the numerical

solution is displayed as a solid line. For this test, it is

clear that the P2-DG scheme itself is capable of handling

the shock in the multiscale signal, and the H-WENO

limiter has only a marginal impact on the solution (see

Fig. 8d; Table 2). Moreover, it is found that the BP filter

has little or no influence on the solution, as is evident

from Table 2.

3) DEFORMATIONAL FLOW ON THE SPHERE:
VORTEX PROBLEM

We consider a special case of the deformational flow

test, the moving-vortex problem, introduced in Nair and

Jablonowski (2008). This test consists of two steady

vortices, which are created on a sphere and whose cen-

ters are located at diametrically opposite sides. The flow

field is nondivergent, time-dependent, and highly de-

formational. The vortices are designed to move along

a great-circle trajectory while deforming, and the ana-

lytic solution is known at a given time. However, we use

a static option for the vortices so that the vortex cen-

ters remain at the initial position and are numerically

integrated for an extended period of time (60 days)

as opposed to the recommended 12 days (Nair and

Jablonowski 2008). The purpose of this test is to check

the vortex filament formation at the smallest resolvable

scale by the numerical model (Pudykiewicz 2011; Flyer

and Wright 2007).

The analytic solution at time t is given as follows:

c(l9, u9, t) 5 1 2 tanh

�
r

g0

sinfl9 2 v(u9)tg
�

, (19)

where (l9, u9) are the rotated spherical coordinates with

respect to the regular (l, u) coordinates, r 5 r0 cosu9 is

the radial distance of the vortex, and the parameters

r0 5 3 and g0 5 5. For the current tests, the north pole

of the rotated sphere is located at (lc, uc) 5 (3p/2, 0),

which is also the center of one of the vortices. The angular

velocity v(u9) is defined in terms of the tangential ve-

locity Vt,

TABLE 1. Normalized standard errors for c for the solid-body (cosine bell) rotation test after a full revolution. The third-order P2-DG

transport scheme with different limiter (filter) combinations is used for the test. The flow orientation is along the northeast direction (a 5

p/4) on a 32 3 32 3 6 cubed-sphere mesh with a time step Dt 5 600 s. Minimum and maximum heights of the cosine bell (c) after

a revolution are indicated by Min ht and Max ht, respectively.

Scheme l1 l2 l‘ Min ht Max ht

DG 9.75 3 1023 6.47 3 1023 5.88 3 1023 25.1482 1000.9833

DG 1 BP 8.11 3 1023 5.59 3 1023 9.49 3 1023 2.65 3 1023 999.2054

DG 1 H-WENO 1.22 3 1022 8.44 3 1023 1.38 3 1022 25.9211 1000.4346

DG 1 H-WENO 1 BP 9.49 3 1023 6.87 3 1023 1.32 3 1022 4.10 3 1023 996.6210
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v(u9) 5
Vt/(Rr) if r 6¼ 0,

0 if r 5 0,




and the tangential velocity of the vortex field is defined by

Vt 5 u0

3
ffiffiffi
3
p

2
sech2(r) tanh(r),

where u0 5 2pR/(12 days) It is scaled such that 12 model

days are required for a full vortex evolution for the test

recommended in Nair and Jablonowski (2008). The

uniform wind field (u, y) is given by

u 5 Rv(u9)[sinuc cosu 2 cosuc cos(l 2 lc) sinu], (20)

y 5 Rv(u9)[cosuc sin(l 2 lc)]. (21)

The numerical experiment is performed with a rela-

tively high-resolution mesh employing 100 3 100 3 6

cells and a time step of Dt 5 600 s. Figure 9 shows the

solution after 36 and 60 model days. The initial condition

c(l9, u9, t 5 0) is shown in Fig. 9a, and the analytic (ref-

erence) solution (19) at day 60 is shown in Fig. 9d. The

numerical solution with the P2-DG scheme and the

P2-DG combined with the H-WENO limiter at day 36

FIG. 7. An orthographic projection of the solution of the solid-body rotation of a cosine bell

on the cubed sphere. The wind fields are oriented along the northeast direction (a 5 p/4), and

12 days are required for a full revolution. (a) Initial height of the cosine bell, which ranges from

0 to 1000 units, (b) P2-DG solution where spurious undershoots can be seen, (c) numerical

solution with the H-WENO limiter and BP filter, and (d) numerical solution with the BP filter.

The cubed sphere with a mesh of 32 3 32 3 6 and a time step Dt 5 600 s are used for the

simulation.

SEPTEMBER 2012 Z H A N G A N D N A I R 3117



are shown in Figs. 9b,c, respectively, while the results at

day 60 are shown in Figs. 9e,f, respectively. The solution

with the P2-DG and BP filter combination is visually

identical to that of the P2-DG scheme (Figs. 9b,e),

therefore it is not shown. At this resolution the P2-DG

scheme (with or without the BP filter) preserves the fine

filaments of the vortex field and its structure appears

similar to the exact solution (Fig. 9d) and comparable to

the numerical solution shown in Fig. 10 of Pudykiewicz

(2011). At day 36, the solution with P2-DG combined

with the H-WENO limiter (Fig. 9c) shows minor deg-

radation near the narrow filament walls as compared to

the P2-DG case (Fig. 9c). In Fig. 9f (at day 60), over

the central regions of the vortex fields, some of the fine

filament structures are broken or merged together as

compared to the unlimited P2-DG case.

FIG. 8. Solid-body rotation test of a multiscale signal comprising continuous and discontin-

uous functions: (a) exact (initial) solution and (b) numerical solution after a revolution

(12 days) with P2-DG and H-WENO; for this test, the wind field is oriented along the equator

(a 5 0). The 1D numerical solution (solid lines) sampled along the equator after 12 days, and

the exact reference solution marked as thick black dots: (c) P2-DG solution and (d) solution

with P2-DG and H-WENO combination. The cubed-sphere mesh with 32 3 32 3 6 cells and

a time step Dt 5 1440 s are used for the numerical simulations.

TABLE 2. Normalized standard errors for c for the solid-body rotation test with a multiscale signal on a 32 3 32 3 6 cubed-sphere mesh.

The third-order P2-DG transport scheme with H-WENO limiter and/or BP filter combinations is used for the test. The standard global

error measures are based on Williamson et al. (1992).

Scheme l1 l2 l‘ cmax cmin

DG 0.0088 0.0318 0.1662 6.41 3 1024 21.58 3 1026

DG 1 H-WENO 0.0195 0.0335 0.1661 21.93 3 1024 4.71 3 1028

DG 1 H-WENO 1 BP 0.0195 0.0335 0.1661 21.93 3 1024 4.71 3 1028
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Note that the deformational (vortex) test is a smooth

problem for which the DG scheme does not require

a limiter. This is also clear from the multiscale signal test

(a quasi-smooth case) considered above. The P2-DG

scheme is local and relies only on the cell in question,

and even with the application of the BP filter, its local

data dependency does not change. However, when the

H-WENO limiter is applied alone with the P2-DG

scheme, sharp gradients (thin filaments) in the solution

are smoothed out because of excessive limiting. This is

also due to the fact that the H-WENO limiter depends

on a 3 3 3 wide stencil. If minor oscillations are present

in a cell the limiter may be activated, employing the

values from the least oscillatory cells in the stencil. This

often leads to the flattening of legitimate sharp peaks,

similar to the effect of a slope limiter. A way to avoid

unwanted limiting (excessive dissipation) by the H-WENO

limiter is to employ better (stringent) criteria for iden-

tifying oscillatory (troubled) cells.

We have also computed the normalized standard

l1, l2, and l‘ errors after 12 model days. These values,

for the P2-DG case with and without the BP filter, are

virtually identical. When approximated to two deci-

mal places, they are 6.93 3 1026, 3.30 3 1025, and

8.91 3 1024, respectively. The corresponding values

for the P2-DG case combined with the H-WENO and

BP combination are 1.31 3 1025, 6.81 3 1025, and

1.61 3 1023, respectively. The cmax for all the cases is

very close and approximately equal to 8.77 3 1029.

The cmin for the P2-DG case is 1.58 3 1027 and

for the other two cases it is approximately equal to

4.04 3 1028.

FIG. 9. The solutions for the deformational flow (vortex) test on the cubed sphere at simulated days 36 and 60: (a) initial solution; and

day 36 (b) P2-DG solution and (c) P2-DG solution with H-WENO. Day 60 (d) exact (reference) solution, (e) P2-DG solution, and (f)

P2-DG solution with H-WENO. Note that the numerical solutions with or without the BP filter are visually indistinguishable. The cubed-

sphere mesh with 100 3 100 3 6 cells and a time step Dt 5 600 s are used for the numerical simulations.
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4) DEFORMATIONAL FLOW ON THE SPHERE:
SLOTTED CYLINDER

To further validate the P2-DG scheme on the sphere,

we use a new challenging benchmark deformational

flow test case proposed by Nair and Lauritzen (2010).

We are particularly interested in two cases with

nonsmooth (twin slotted cylinder) and quasi-smooth

(twin cosine bell) initial conditions. Note that this

problem is specified in nondimensional units on a

unit sphere (R 5 1). The twin slotted cylinder is de-

fined by

c(l, u) 5

c if ri # r and jl 2 lij $ r/6 for i 5 1, 2,

c if r1 # r and jl 2 l1j , r/6 and u 2 u1 , 2
5

12
r,

c if r2 # r and jl 2 l2j , r/6 and u 2 u2 .
5

12
r,

b otherwise,

8>>>>>><
>>>>>>:

(22)

where c 5 1, b 5 0.1, the radius of the cylinder r 5 ½, and

ri 5 ri(l,u) is the great-circle distance between (l, u) and

a specified center (li, ui):

ri(l, u) 5 arccos[sinui sinu 1 cosui cosu cos(l 2 li)].

The initial positions of the centers of the distributions

are at (l1, u1) 5 (5p/6, 0) and (l2, u2) 5 (7p/6, 0), re-

spectively. The slots are oriented in opposite directions

for the two cylinders so that they are symmetric with

respect to the flow. Figure 10a shows the initial position

of the slotted cylinders.

For the quasi-smooth case, the slotted cylinders are

replaced by two symmetrically located cosine bells,

which are defined as follows:

c(l, u) 5

b 1 ch1(l, u) if r1 , r,

b 1 ch2(l, u) if r2 , r,

b otherwise,

8<
: (23)

FIG. 10. Numerical solution for the deformational flow test on the cubed sphere with nonsmooth (twin slotted cylinder)

initial conditions. (a) The initial slotted cylinders move along the zonal direction while deforming, and return to the initial

position after making a complete revolution. The mesh size is 45 3 45 3 6 and Dt 5 0.001 25. The P2-DG solution at

halftime (t 5 T/2) with the (b) BP filter and H-WENO combination and (c) BP filter, respectively. (d) The slotted

cylinders after one cycle of revolution (deformation) with the BP and H-WENO combination at the final time T 5 5.
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where c 5 0.9, b 5 0.1, and

hi(l, u) 5
hmax

2
[1 1 cos(pri/r)] if ri , r, for i 5 1, 2:

Other parameters are the same as those used for the

slotted-cylinder (SC) case.

The wind field is nondivergent but highly deforma-

tional. The initial distributions are deformed into thin

filaments halfway through the simulation while they are

being transported along the zonal direction by the solid-

body component of the flow. Note that an exact solution

for this test is only available at the final time t 5 T, and it

is identical to the initial condition. The time-dependent

nondivergent wind field is defined as

u(l, u, t) 5 k sin2(l9) sin(2u) cos(pt/T) 1 2p cos(u)/T,

y(l, u, t) 5 k sin(2l9) cos(u) cos(pt/T),

where l9 5 l 2 2pt/T, k 5 2.0, and T 5 5 units.

Figure 10 shows the results of the deformational flow

tests with the P2-DG scheme combined with different

limiter/filter options. Figures 10c,d show the results for

the slotted-cylinder case at the halftime (t 5 T/2) and

final time (t 5 T). The P2-DG scheme combined with the

H-WENO limiter and BP filter at resolution 45 3 45 3 6

captures the original shape of the slotted-cylinder as

shown in Fig. 10d. The P2-DG scheme with the BP fil-

ter produced visibly identical results (not shown). For

brevity, we do not show the deformational results with

the twin cosine-bell problem, but error norms are tab-

ulated in Table 3.

As shown in Fig. 10, the nonoscillatory DG scheme

preserves the discontinuity quite well and completely

removes undesirable overshoots and undershoots. In

Table 3, the normalized standard errors are given for

different combinations of the limiter (filter) for the

nonsmooth case. The l1, l2, and l‘ errors for the non-

smooth case are significantly higher than those shown

for the quasi-smooth case in Table 3. This is because

the initial data for the slotted-cylinder case are severely

nonsmooth (C0 discontinuous). However, for the twin

cosine-bell case (Table 3), the results compare well with

those reported in the Nair and Lauritzen (2010) paper.

We provide a rough estimate of the additional compu-

tational overhead required for the BP filter and H-WENO

limiter. Both filter and limiter are applied at every stage

of the third-order Runge–Kutta (RK3) time stepping

scheme. As compared with the DG (oscillatory) scheme,

it is found that the DG scheme and BP filter com-

bination takes 28% more computational time, while the

DG scheme combined with the H-WENO limiter and

BP filter consumes about 40% more time. Note that the

H-WENO scheme is selectively applied only to the cells

that need limiting, while the BP filter is applied to each

cell. Also, we notice that the BP filter could be applied at

the last stage of the RK3 time stepping without incurring

any significant change in the quality of solutions. This

might be an efficient option for some application where

the passive tracer transport is performed in isolation

from the model dynamics.

We have also tested the effectiveness of the BP limiter

in a nodal version of the DG scheme as described in Nair

and Lauritzen (2010) (fourth order using 4 3 4 GLL

points). Implementation of the BP scheme in the nodal

DG version is straightforward because the solution

evolves in physical (gridpoint) space. It is found that the

numerical solution for the nonsmooth case is very sim-

ilar to those shown in Fig. 10. However, for fifth- and

higher-order nodal DG versions, the solutions are still

within the physical bounds, but increasingly contam-

inated by internal oscillations within the elements.

5. Summary and conclusions

The discontinuous Galerkin (DG) methods are not

inherently nonoscillatory. When there are discontinuities

and sharp gradients in the solution, the DG transport

schemes generate spurious oscillations that are un-

acceptable for many practical applications. The main

focus of this paper is the development of a third-order

DG transport scheme that is amenable to limiting pro-

cesses and has more lenient CFL stability when used

with explicit time stepping. A third-order modal version

of the DG scheme (P2-DG) with 6 degrees of freedom

TABLE 3. Normalized standard errors for c for the deformational flow test with the twin SC and twin CB cases on a 45 3 45 3 6 mesh.

The third-order P2-DG transport scheme with different limiter (filter) combinations is used for the test.

Scheme (tests) l1 l2 l‘ cmax cmin

DG (SC) 0.1498 0.2490 0.8447 0.1748 20.1985

DG 1 BP (SC) 0.1543 0.2711 0.8367 0.0000 0.0000

DG 1 H-WENO 1 BP (SC) 0.1543 0.2712 0.8361 0.0000 0.0000

DG (CB) 0.0117 0.0226 0.0301 20.0047 20.0261

DG 1 BP (CB) 0.0094 0.0206 0.0383 20.0085 0.0000

DG 1 H-WENO 1 BP (CB) 0.0194 0.0505 0.1298 20.0274 0.0000
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per element (cell) was developed in Cartesian geome-

try. To suppress oscillations, a limiter based on the

Hermite-Weighted Essentially Nonoscillatory (H-WENO)

method was applied to the P2-DG scheme. The H-WENO

limiter uses a 3 3 3 computational stencil such that the

oscillatory cell is located at the center. Although it

suppressed oscillations, the H-WENO limiter cannot

guarantee that the legitimate physical bounds of the

initial solution are maintained, and oscillations of very

small amplitude may still remain in the solution. To

address this issue, a bound-preserving (BP) conservative

filter was combined with the H-WENO limiter. The BP

filter is local to the element and computationally efficient.

This option provides strict positivity preservation for the

P2-DG scheme. An explicit third-order Runge–Kutta

(RK3) method was adopted for time integration.

To validate and verify the resulting nonoscillatory

DG scheme, a variety of benchmark tests were per-

formed. The H-WENO limiter and BP filter were

optionally applied to remove the nonphysical oscilla-

tions and to keep the numerical solution within the

physical bounds. The effects of the H-WENO limiter

and BP filter on the P2-DG scheme were demon-

strated using a simple 1D test. On the 2D Cartesian

domain, two solid-body rotation tests were used. With

Gaussian initial data for solid-body rotation, the test

shows that the nonoscillatory scheme is indeed third

order. The solid-body rotation with nonsmooth data

shows that the scheme is nonoscillatory and positivity

(bound) preserving. However, there is a slight degra-

dation with the H-WENO limited solution. This could

be due to ‘‘excessive limiting’’ on the cells that do not

require limiting. A better limiting criterion, other than

the TVB shock detection method currently used for

the H-WENO scheme, might improve the H-WENO

solution further.

The nonoscillatory P2-DG scheme was then extended

to the spherical (cubed sphere) geometry. On the cubed

sphere, a standard advection (cosine bell) test was per-

formed first to test the nonoscillatory scheme. In ad-

dition, solid-body rotation of a multiscale signal that

contained smooth and nonsmooth regions was con-

sidered. Results show that the nonoscillatory scheme

eliminates all negative values and small oscillations,

which occur near the foot of the cosine bell in the DG

solution, without affecting the accuracy of the DG

scheme. On the sphere, two deformational flow tests

(with both smooth and nonsmooth fields) were used to

further validate the P2-DG scheme with the H-WENO

limiter and the BP filter. For the smoothly deforming

vortex problem, the P2-DG scheme could easily resolve

the fine filament structures of the vortex on a 100 3

100 3 6 mesh after 60 model days. However, the solution

with the H-WENO limiter could not resolve the fine

filaments because of excessive limiting as seen in the

Cartesian case. For this test, it is found that the BP filter

has only a very small impact on the fine filament struc-

ture. This indicates that the P2-DG scheme does not

need limiting for smooth problems. If positivity preser-

vation is an issue then the BP filter is a very good choice,

and the filter does not adversely affect the quality of the

DG solution.

A new challenging deformational flow test was also

used to assess the performance of the nonoscillatory

scheme in the presence of discontinuities. For this test,

nonsmooth (slotted cylinders) and quasi-smooth (cosine

bells) initial data were used. Numerical results, which

were obtained on a 45 3 45 3 6 mesh, show that the

nonoscillatory scheme provides a good approximation

to the exact solution. The standard relative errors, and

the global maximum and minimum, show that there is

a substantial improvement in the quality of the solution

of the nonoscillatory scheme as compared to the solu-

tion obtained by the regular DG scheme. Extending

the P2-DG transport scheme to the 3D case is straight-

forward at a higher computational cost. Nevertheless,

a dimension-split approach might save computational

expenses significantly and ease the implementation of

the limiter.
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APPENDIX A

H-WENO Reconstructions

In section 2, we discussed the P2-DG discretization

for each cell Ii,j 5 I‘(i,j), where we considered local co-

ordinates (j, h) on I‘, and the orthogonal basis set B.

For the H-WENO reconstruction on each stencil Sn, n 5

1, 2, . . . , 8, as shown in Fig. 2, the polynomials Pn(j, h)

given in (8) need to be modified. For the P2-DG scheme,

a fourth-order H-WENO reconstruction is required.

The reconstructed Hermite quadratic polynomials on

each small stencil are derived as follows using the in-

tegral constraints associated with the smoothness in-

dicators (9) and (10):
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d On stencil S1, we require P1(x, y) to satisfyð
I
‘

P1(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 1, 2, 4, 5

ð
I

4

P1(x, y)u1,0
4 dx dy 5 a1U1,0

4 ,

ð
I

2

P1(x, y)u0,1
2 dx dy 5 a2U0,1

2 .

Using the above six constraints, P1 is reconstructed as

P1(j, h) 5 U0,0
5 1 (2U0,0

4 1 U0,0
5 2 U1,0

4 )j 1 (2U0,0
2 1 U0,0

5 2 U0,1
2 )h 1

(U0,0
1 2 U0,0

2 2 U0,0
4 1 U0,0

5 )

4
jh

1
(2U0,0

4 1 U0,0
5 2 2U1,0

4 )

6

3j2 2 1

2

� �
1

(2U0,0
2 1 U0,0

5 2 2U0,1
2 )

6

3h2 2 1

2

� �
.

d On stencil S2, we require P2(x, y) to satisfy

ð
I
‘

P2(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 2, 3, 5, 6

ð
I

6

P2(x, y)u1,0
6 dx dy 5 a1U1,0

6 ,

ð
I

2

P2(x, y)u0,1
2 dx dy 5 a2U0,1

2

P2(j, h) 5 U0,0
5 1 (2U0,0

5 1 U0,0
6 2 U1,0

6 )j 1 (2U0,0
2 1 U0,0

5 2 U0,1
2 )h 1

(U0,0
2 2 U0,0

3 2 U0,0
5 1 U0,0

6 )

4
jh

1
(U0,0

5 2 U0,0
6 1 2U1,0

6 )

6

3j2 2 1

2

� �
1

(2U0,0
2 1 U0,0

5 2 2U0,1
2 )

6

3h2 2 1

2

� �
.

d On stencil S3, we require P3(x, y) to satisfy

ð
I
‘

P3(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 4, 5, 7, 8

ð
I

4

P3(x, y)u1,0
4 dx dy 5 a1U1,0

4 ,

ð
I

8

P3(x, y)u0,1
8 dx dy 5 a2U0,1

8

P3(j, h) 5 U0,0
5 1 (2U0,0

4 1 U0,0
5 2 U1,0

4 )j 1 (2U0,0
5 1 U0,0

8 2 U0,1
8 )h 1

(U0,0
4 2 U0,0

5 2 U0,0
7 1 U0,0

8 )

4
jh

1
(2U0,0

4 1 U0,0
5 2 2U1,0

4 )

6

3j2 2 1

2

� �
1

(U0,0
5 2 U0,0

8 1 2U0,1
8 )

6

3h2 2 1

2

� �
.

d On stencil S4, we require P4(x, y) to satisfy

ð
I
‘

P4(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 5, 6, 8, 9

ð
I

6

P4(x, y)u1,0
6 dx dy 5 a1U1,0

6 ,

ð
I

8

P4(x, y)u0,1
8 dx dy 5 a2U0,1

8

P4(j, h) 5 U0,0
5 1 (2U0,0

5 1 U0,0
6 2 U1,0

6 )j 1 (2U0,0
5 1 U0,0

8 2 U0,1
8 )h 1

(U0,0
5 2 U0,0

6 2 U0,0
8 1 U0,0

9 )

4
jh

1
(U0,0

5 2 U0,0
6 1 2U1,0

6 )

6

3j2 2 1

2

� �
1

(U0,0
5 2 U0,0

8 1 2U0,1
8 )

6

3h2 2 1

2

� �
.
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d On stencil S5, we require P5(x, y) to satisfyð
I
‘

P5(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 1, 2, 3, 4, 5, 7

P5(j, h) 5 U0,0
5 1

(U0,0
1 2 2U0,0

2 1 U0,0
3 2 2U0,0

4 1 2U0,0
5 )

4
j 1

(U0,0
1 2 2U0,0

2 2 2U0,0
4 1 2U0,0

5 1 U0,0
7 )

4
h

1
(U0,0

1 2 U0,0
2 2 U0,0

4 1 U0,0
5 )

4
jh 1

(U0,0
1 2 2U0,0

2 1 U0,0
3 )

12

3j2 2 1

2

� �
.

1
(U0,0

1 2 2U0,0
4 1 U0,0

7 )

12

3h2 2 1

2

� �
.

d On stencil S6, we require P6(x, y) to satisfyð
I
‘

P6(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 1, 2, 3, 5, 6, 9

P6(j, h) 5 U0,0
5 1

(2U0,0
1 1 2U0,0

2 2 U0,0
3 2 2U0,0

5 1 2U0,0
6 )

4
j 1

(22U0,0
2 1 U0,0

3 1 2U0,0
5 2 2U0,0

6 1 U0,0
9 )

4
h

1
(U0,0

2 2 U0,0
3 2 U0,0

5 1 U0,0
6 )

4
jh 1

(U0,0
1 2 2U0,0

2 1 U0,0
3 )

12

3j2 2 1

2

� �

1
(U0,0

3 2 2U0,0
6 1 U0,0

9 )

12

3h2 2 1

2

� �
.

d On stencil S7, we require P7(x, y) to satisfyð
I
‘

P7(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 1, 4, 5, 7, 8, 9

P7(j, h) 5 U0,0
5 1

(22U0,0
4 1 2U0,0

5 1 U0,0
7 2 2U0,0

8 1 U0,0
9 )

4
j 1

(2U0,0
1 1 2U0,0

4 2 2U0,0
5 2 U0,0

7 1 2U0,0
8 )

4
h

1
(U0,0

4 2 U0,0
5 2 U0,0

7 1 U0,0
8 )

4
jh 1

(U0,0
7 2 2U0,0

8 1 U0,0
9 )

12

3j2 2 1

2

� �

1
(U0,0

1 2 2U0,0
4 1 U0,0

7 )

12

3h2 2 1

2

� �
.

d On stencil S8, we require P8(x, y) to satisfyð
I
‘

P8(x, y) dx dy 5 a0U0,0
‘ , ‘ 5 3, 5, 6, 7, 8, 9

P8(x, y) 5 U0,0
5 1

(22U0,0
5 1 2U0,0

6 2 U0,0
7 1 2U0,0

8 2 U0,0
9 )

4
j 1

(2U0,0
3 2 2U0,0

5 1 2U0,0
6 1 2U0,0

8 2 U0,0
9 )

4
h

1
(U0,0

5 2 U0,0
6 2 U0,0

8 1 U0,0
9 )

4
jh 1

(U0,0
7 2 2U0,0

8 1 U0,0
9 )

12

3j2 2 1

2

� �

1
(U0,0

3 2 2U0,0
6 1 U0,0

9 )

12

3h2 2 1

2

� �
.
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APPENDIX B

The Smoothness Indicator

Here we give the explicit formulation of the smooth-

ness indicators (bn) in (9) and (10) associated with all the

higher-order moments of the P2-DG for each recon-

structed polynomial Pn(x, y). For notational conve-

nience, we assume Pn(x, y) is expressed in the general

form

Pn(j, h) 5 U0,0
n 1 U1,0

n j 1 U0,1
n h 1 U1,1

n jh

1 U2,0
n

3j2 2 1

2
1 U0,2

n

3h2 2 1

2
.

Combined with the coefficients given in appendix A, one

can compute the smoothness indicators from the for-

mulas listed below.

d For the mode U1,0
i,j , we require

bn 5 �
2

m51

jIi,jj
m21

5

ð
I

i,j

�
›m

›xm
Pn(x, y)

�2
dx dy.

For each Pn(x, y), this gives

bn 5 4(U1,0
n )2

1
4

3
(U1,1

n )2
1 156(U2,0

n )2.

d For the mode U0,1
i,j , we require

bn 5 �
2

m51

jIi,jj
m21

ð
I

i,j

�
›m

›ym
Pn(x, y)

�2
dx dy.

For each Pn(x, y),

bn 5 4(U0,1
n )2

1
4

3
(U1,1

n )2
1 156(U0,2

n )2.

d For the higher-order modes, U1,1
i,j , U2,0

i,j , U0,2
i,j , we re-

quire

bn 5 �
2

jmj52

jIi,jj
m21

ð
I

i,j

"
›jmj

›xm
1 ›ym

2
Pn(x, y)

#2
dx dy.

For each Pn(x, y),

bn 5 16[(U1,1
n )2

1 9(U2,0
n )2

1 9(U0,2
n )2].
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