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ABSTRACT

A mass-conservative cell-integrated semi-Lagrangian (CISL) scheme is presented and tested for 2D transport
on the sphere. The total mass is conserved exactly and the mass of each individual grid cell is conserved in
general. The scheme is based on a general scheme developed by Machenhauer and Olk that has increased cost
effectiveness without loss of accuracy, compared to the CISL scheme of Rančić. A regular latitude–longitude
grid is used on the sphere and upstream trajectories from the corner points of the regular grid cells (the Eulerian
cells) define the corner points of the departure cells. The sides in these so-called Lagrangian cells are generally
defined as straight lines in a (l, m) plane, where l is the longitude and m is the sine of the latitude. The mass
distribution within each Eulerian grid cell is defined by quasi-biparabolic functions, which are used to integrate
analytically the mass in each Lagrangian computational cell. The auxiliary computational cells are polygons
with each side parallel to the coordinate axis. Also, the computational cells have the same area as the Lagrangian
cells they approximate. They were introduced in order to simplify the analytical integrals of mass. Near the
poles, the east and west sides of certain Lagrangian cells cannot be approximated by straight lines in the (l, m)
plane, and are instead represented by straight lines in polar tangent plane coordinates. Each of the latitudinal
belts of Lagrangian cells in the polar caps are split up into several latitudinal belts of subcells, which can be
approximated by computational cells as in the case of cells closer to the equator. One latitudinal belt in each
hemisphere, which encloses the Eulerian pole (singular belt), is treated in a special way. First the total mass in
the singular belt is determined and then it is redistributed among the cells in the belt using weights determined
by a traditional SL scheme at the midpoints of the cells. By this procedure the total mass is still conserved
while the conservation is only approximately maintained for the individual cells in the singular belt. These
special treatments in the polar caps fit well into the general structure of the code and can be implemented with
minor modifications in the code used for the rest of the sphere.

Compared to two other conservative advection schemes implemented on the sphere the CISL scheme used
here was found to be competitive in terms of accuracy for the same resolution. In addition the CISL scheme
has the advantage over these schemes that it is applicable for Courant numbers larger than one. In plane geometry
the scheme of Rančić had an overhead factor of 2.5 in CPU time compared to a traditional bicubic semi-
Lagrangian scheme. This factor is reduced to 1.1 for the Machenhauer and Olk scheme on the plane while on
the sphere the factor is found to be 1.28 for the present scheme. This overhead seems to be a reasonable price
to pay for increased accuracy and exact mass conservation.

1. Introduction

In recent years, the use of semi-Lagrangian (SL) ad-
vection methods in numerical weather prediction (NWP)
models has become very popular. Compared to Eulerian
algorithms, SL methods allow for relatively long time
steps, decreasing the computational time required for
the completion of numerical forecasts. As a result, it

Corresponding author address: Dr. Bennert Machenhauer, Danish
Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen OE,
Denmark.
E-mail: bm@dmi.dk

has been adopted as the basis for high-resolution op-
erational NWP models (Ritchie et al. 1995; Côté et al.
1998) and is being tested for use in climate models
(Williamson and Olson 1998). The SL advection offers
additional advantages beyond the longer time step. It
gives minimal phase error, minimizes the computational
disperson, and can handle sharp discontinuities. Also,
efficient monotonic and positive-definite short-wave fil-
ters can be easily incorporated into SL advection
schemes (Nair et al. 1999a). However, a serious dis-
advantage of SL schemes in operational use is that they
do not formally conserve integral invariants as total
mass (Laprise and Plante 1995; Moorthi et al. 1995). A
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posteriori correction is often needed to enforce conser-
vation of such quantities.

The SL transport algorithm is very attractive mainly
due to its significant computational efficiency. There-
fore, it is desirable to exploit the efficiency of SL
schemes in computationally intensive climate and at-
mospheric chemistry models. For pollution transport
models and climate models, numerical conservation
properties are very important. Various methods have
been devised to make conventional SL schemes mass
conserving, but such methods require frequent ad hoc
mass restoration (e.g., Priestly 1993; Gravel and Stan-
iforth 1994). However such a posteriori mass fixing after
the upstream interpolation is not only computationally
expensive but also has a great deal of arbitrariness pre-
sent in the process, as pointed out by Machenhauer and
Olk (1997). Leslie and Purser (1995) have developed
3D mass-conserving SL schemes employing forward
trajectories based on so-called cascade interpolation for
limited area models. Rančić (1992, 1995) and Laprise
and Plante (1995) developed mass-conservative SL al-
gorithms on the 2D Cartesian plane, based on the cell-
integrated SL method employing a piecewise parabolic
method (PPM) of Colella and Woodward (1984). Ex-
tension of these methods in spherical geometry (global
domain) is a challenge because of the polar singularities.

There are only a few conservative transport schemes
available for spherical geometry application. Smolar-
kiewicz and Rasch (1991) have used a conservative Eu-
lerian scheme on a sphere with a very high computa-
tional cost. Rasch (1994) developed a scheme and dem-
onstrated its application on a reduced spherical grid. Li
and Chang (1996) developed a conservative scheme in
spherical geometry adopting the approaches of Prather
(1986) and Bott (1993). Lin and Rood (1996, hereafter
referred to as LR96) and Rasch (1998) developed ac-
curate multidimensional schemes from a 1D finite-vol-
ume-based scheme and applied them to spherical ge-
ometry. Unfortunately these schemes too have time step
restrictions; that is, the meridional Courant number must
satisfy Cu # 1. Very recently Hourdin and Armenguad
(1999) have reviewed conservative 1D finite-volume-
based global schemes, and presented tests of 3D ad-
vection using time splitting, that is, 1D advection done
sequentially in the three coordinate directions of a global
GCM.

In the present study, a scheme for 2D advection on
the sphere based on the so-called cell-integrated semi-
Lagrangian (CISL) scheme developed by Machenhauer
and Olk (1996, 1998), is proposed. This is a mass-con-
serving CISL advection scheme based on a 2D repre-
sentation (quasi-biparabolic), and applicable without
time splitting and the Courant number restriction. A
perspective for the future is a consistent extension of
the present scheme to a conservative 3D advection
scheme, which may be applied in all the advection terms
in a primative equations (PE) numerical model (Mach-
enhauer and Olk 1998) combined with the semi-implicit

time-stepping scheme (Machenhauer and Olk 1997). In
the present study, however, we focus on the develop-
ment and test the performance of the scheme for 2D
advection only.

In section 2, we describe the PPM used for the present
study. In section 3 the CISL remapping scheme is de-
scribed. Extension of the CISL method in spherical ge-
ometry is given in section 4. Numerical experiments to
test the accuracy and efficiency of the scheme are pre-
sented in section 5. Summary and conclusions are pre-
sented in Section 6.

2. Application of the PPM to SL schemes

The piecewise parabolic method of representation is
becoming popular in meteorological modeling (Carpen-
ter et al. 1990; Rančić 1992; Laprise and Plante 1995;
Machenhauer and Olk 1996, 1998). The PPM was used
originally in a finite-volume scheme developed by Co-
lella and Woodward (1984), which uses the average val-
ue of the grid zones rather than the gridpoint values.
This ‘‘cell integrated’’ scheme is inherently mass con-
servative and the monotonic or positive-definite option
can be easily incorporated into it (Carpenter et al. 1990).
Rančić (1992) developed a cell-integrated PPM-based
SL advection scheme in 2D Cartesian geometry. This
is a 2D extension of the Colella and Woodward (1984)
scheme in a semi-Lagrangian context.

In the traditional SL scheme employing backward
trajectories, the arrival points are assumed to be regular
grid points, and the estimated values of the field at a
new time level are computed at the upstream departure
points by means of a suitable interpolation. However,
in the finite-volume-based SL methods (hereafter re-
ferred to as CISL methods), the scalar fileds (or den-
sities) that are to be advected are the average values
over cell areas with known corner points (grid points).
The SL time discretization implies that the value of the
advected field at a new time level is just the average
value of the departure cell defined by the upstream po-
sitions (trajectory origins) corresponding to the arrival
cell’s corner grid points. Laprise and Plante (1995) dis-
cuss both upstream and downstream variants of CISL
methods. In the present study, however, we use only the
upstream variant of a CISL method.

We call the arrival cells Eulerian cells and the de-
parture (or upstream) cells Lagrangian cells. The Eu-
lerian cell walls are defined by grid lines while the La-
grangian cell walls are defined by specified curves con-
necting the departure points of the Eulerian cell corner
points. These curves must approach grid lines when the
velocities, determining the corner point trajectories, ap-
proach zero. For an orthogonal 2D Cartesian grid system
the Eulerian walls are straight lines and consequently
the Lagrangian walls are specified as straight lines too.
Thus the Eulerian cells are rectangles and the Lagrang-
ian cells may be considered quadrilaterals. Machenhauer
and Olk (1997) examined the stability of the CISL
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scheme in a 1D case. For a stable and conservative
solution, it is necessary to choose the time step Dt in
such a way that the trajectories do not cross intersect.
This is analogous to the Lipschitz criterion for stability
in the case of the traditional SL advection scheme (Smo-
larkiewicz and Pudykiewicz 1992). Moreover for 2D
advection, this condition implies that the line segments
forming the cell do not cross (Scroggs and Semazzi
1995); that is, the areas of the Lagrangian cells should
be well defined. The CISL scheme has essentially two
basic steps. First, parabolic profiles are fitted within each
Eulerian cell using the cell average values. The second
step consists of determining the mass (density) enclosed
in each Lagrangian cell by analytically integrating the
parabolas over the Lagrangian cell area; this step is often
called remapping (Dukowicz 1984).

a. Parabolic representation of cells in 1D

First we consider the 1D case of the CISL scheme
and further it will be extended to 2D, including spherical
geometry. A parabola in any Eulerian cell can be
uniquely defined as

2h(x) 5 h 1 h x 1 h x ,0 1 2 (1)

where h0, h1, and h2 are the coefficients of the parabola,
and x is a normalized local variable such that

x ∈ [21/2, 11/2].

Let be the cell-averaged density defined byh
11/2

h 5 h(x) dx, (2)E
21/2

and let hL 5 h(21/2) and hR 5 h(1/2) be the left and
right cell boundary (edge) values, respectively, which
are cubically interpolated from the given neighboring
cell-averaged densities (Colella and Woodward 1984).
Then the parabola is determined in such a way that it
fits the boundary values and fulfills (2). With these con-
straints the density distribution function h(x) can be rep-
resented as follows:

1
2h(x) 5 h 1 dhx 1 h 2 x , (3)S1 212

where for convenience we have introduced the derived
coefficients,

dh 5 h 2 h , h 5 6h 2 3(h 1 h ).R L S L R

These coefficients can be further modified to make
monotonic or positive-definite versions of h(x). In the
present study, we use such filtering constraints as sug-
gested by Carpenter et al. (1990) and LR96.

b. Cell representation in 2D

Rančić (1992) showed that the CISL method can be
applied for conservative transport in a 2D context, by

introducing a biparabolic function to represent the dis-
tribution of density in each Eulerian cell. A biparabolic
function is a direct extension of (1) in 2D, with nine
coefficients. Computation of these nine coefficients can
be very expensive. However, we use a ‘‘quasi-bipara-
bolic’’ function (4) with only five coefficients to rep-
resent the mass distribution in each cell. This can sig-
nificantly reduce the computational cost of the remap-
ping procedure (section 3) by simplifying the area in-
tegrals involved in the 2D remapping scheme. Although
formally only second-order accurate in the two coor-
dinate directions, our results show that the quasi-bipar-
abolic function still yields a very accurate representa-
tion. Another advantage is that the quasi-biparabolic
representation in each cell may be easily modified to be
monotonic and/or positive definite.

The quasi-biparabolic function representing an Eu-
lerian cell can be written in normalized local (x, y) co-
ordinates as

1
x x 2 yh(x, y) 5 h 1 a x 1 b 2 x 1 a y1 212

1
y 21 b 2 y , (4)1 212

where

x, y ∈ [21/2, 1/2],

is the average value in the cell, and (ax, bx) and (ay, by)h
are coefficients of the parabola in the x and the y di-
rection, respectively. Note that the above 2D parabolic
function needs only two 1D parabolic fits to determine
the coefficients. These coefficients are defined as in the
1D case, and may be further modified for either the
monotonic or positive-definite option in the respective
two coordinate directions. Moreover, with this definition
of h(x, y), it can be easily shown that the surface integral
of the density distribution function over the cell is equal
to the cell-average value ( ):h

1/2 1/2

h(x, y) dx dy 5 h.E E
21/2 21/2

3. The CISL remapping

Mass enclosed in the Lagrangian cells can be deter-
mined using a remapping technique (Dukowicz 1984).
This is the most important computational aspect of a
CISL method. In the 1D case remapping is not a difficult
task; however, in 2D, remapping can be difficult as the
Lagrangian cells are arbitrary quadrilaterals formed on
the domain spanned by regular Eulerian cells. Rančić
(1992), Laprise and Plante (1995), Scroggs and Semazzi
(1995), and Machenhauer and Olk (1998) have devel-
oped different remapping methods in 2D. Rančić (1995)
and LR96 have extended the 1D remapping schemes
into 2D with a dimension-splitting approach.



652 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 1. Schematic diagram illustrating the remapping scheme used
for CISL advection in the 1D case, where xj61/2 denote regular Eulerian
grid points (open squares) and the corresponding Lagrangian grid
points (filled circles) are denoted by . The density distribution*xj61/2

in the domain is represented by piecewise parabolas, and hj(x) is the
parabolic representation of the density distribution in an Eulerian cell
defined by Dxj. The density in the corresponding Lagrangian cell is
represented by the parabolic curves joining A1 and B1.

In order to formulate the conservative CISL scheme,
here we consider the differential form of the continuity
equation:

]r
1 = · rV 5 0, (5)

]t

where r is the density and V is the velocity vector. When
integrating (5) over a time-dependent Lagrangian vol-
ume V(t), that is, a volume of the fluid enclosed by a
material boundary surface moving with the fluid, we
get the following integral form of the continuity equa-
tion:

d
r dV 5 0, (6)Edt V(t)

where d/dt is the total (Lagrangian) derivative. The in-
tegral in (6) represents the mass of a particle enclosed
in V(t) and thus (6) states that mass of an individual
particle is conserved along its trajectory. Note that in-
stead of integrating over a Lagrangian volume, if we
integrate (5) over the total volume considered, which
we assume has fixed closed boundaries, then the result
is also an equation of the form (6). In this case it states
that the total mass is conserved. Here, by fixed closed
boundaries we mean a time-dependent boundary surface
with no inflow or outflow of mass, as in the following
applications.

When integrating (6) over a time step, Dt, along a
trajectory of the fluid particle, we get the following two-
time-level SL scheme:

r dV 5 r dV, (7)E E
n11 nV(t ) V(t )

where tn 5 nDt and tn11 5 (n 1 1)Dt are the current and
the unspecified future time of the advection step, re-
spectively. By defining the volume-average density to be

1
r 5 r dV, (8)EV V

(7) can be written as
n11 nn11 nr V 5 r V , (9)

where the superscripts n and n 1 1 denote the departure
(current) and arrival (future) time levels. In the follow-
ing discussions, 1D and 2D versions of (9) will be con-
sidered for developing the CISL remapping algorithm.

a. The CISL scheme in 1D

First we consider the 1D CISL advection scheme in-
troduced by Machenhauer and Olk (1996, 1998) to il-
lustrate the remapping algorithm, in a two-time-level
context. Figure 1 schematically illustrates the CISL ad-
vection in the 1D case. Assume that the arrival points
are regularly spaced Eulerian grid points xj61/2 at time
t 1 Dt (or time level n 1 1), and corresponding de-

parture points are the irregularly spaced Lagrangian
points at time t (or time level n). In Fig. 1, thex*j61/2

Eulerian and Lagrangian points are marked by open
squares and filled circles, respectively. Let Dxj 5 (xj11/2

2 xj21/2) be the grid spacing (cell width) of the Eulerian
grid and let the corresponding Lagrangian grid spacing
be D 5 ( 2 ). With this spatial discreti-x* x* x*j j11/2 j21/2

zation, let (x) be the known density distribution at thenh j

time level n, of the jth Eulerian cell. Then the cell-
average density (mass per unit length) of the arrival

n11
h j

cell defined by Dxj at the new time level n 1 1 can be
determined by using the 1D equivalent to (9):

n11 *h Dx 5 h Dx*,j j j j (10)

where * denotes the upstream value evaluated at the
known time level n and * is the integral mean valueh
of the density distribution over the Lagrangian cell
D ; that is,x*j

*xj11/21* nh 5 h (x) dx. (11)j E jDx*j *xj21/2

The density distributions (x) in Eulerian cells arenh j

often represented by piecewise polynomials (Bott 1993;
Rasch 1994). Also the density across the cell walls is
not necessarily continuous (Laprise and Plante 1995).
In the present study, we use the piecewise parabolic
function (3) to represent the density distribution for each
of the Eulerian cells. This representation is generally
continuous across the cell walls. Thus, to determine the
average density at the new time level , the rhs of

n11
h j

(10) should be evaluated, which implies that the function
(3) needs to be integrated (analytically) over the La-
grangian cell [ , ] as shown in (11).x* x*j21/2 j11/2

Geometric interpretation of the remapping is rather
easy as illustrated in Fig. 1. The shaded region repre-
sents the mass in the Lagrangian cell (shown as area
under the parabolic curves A1B1). It may be computed
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FIG. 2. Schematic illustration of the CISL remapping scheme in
2D, where the filled circles represent the Lagrangian grid points cor-
responding to the Eulerian grid points (grid intersections) in the (l,
m) plane. The Lagrangian cells are approximated by polygons (com-
putational cells) with sides (dashed lines) parallel to the l or m co-
ordinate axis. The vertical sides of the polygons are constructed
through the midpoints (3) of the walls of the Lagrangian cells, and
horizontal sides of the polygons pass through the Lagrangian points.

as the total accumulated mass toward the line x 5
from the common reference line in the left x 5x*j11/2

xR minus the accumulated mass toward the line x 5
from the reference line x 5 xR. If we denote thex*j21/2

total mass accumulated toward the line x 5 fromx*j11/2

the reference line by A( ), then the mass in the La-x*j11/2

grangian cell is
*h Dx* 5 A(x* ) 2 A(x* ).j j j11/2 j21/2

Thus, the new cell-average value of density at the future
time level, from (10), is

n11 1
h 5 [A (x* ) 2 A (x* )]. (12)j j11/2 j21/2Dxj

On a uniform grid with a constant wind field, it can be
shown that the process of parabolic representation of
density distribution in Eulerian cells, followed by up-
stream estimation of density at Lagrangian cells, is for-
mally equivalent to an SL scheme with cubic interpo-
lation at upstream points (Laprise and Plante 1995).

b. The CISL remapping in 2D

We use a fully 2D remapping rather than using a
dimension-splitting approach (Rančić 1995). Figure 2
schematically illustrates our CISL scheme in 2D with
(l, m) as Cartesian coordinates. The filled circles are
the upstream Lagrangian points corresponding to the
Eulerian grid (thin lines) intersections. The Lagrangian
cell walls are shown as thick lines with midpoints
marked by 3s.

The upstream Lagrangian cells are generally quad-
rilaterals with irregularly oriented sides, and the com-
putation of the exact mass enclosed in such cells is a

complicated task, which we want to simplify for the
sake of efficiency. Following Machenhauer and Olk
(1998), first we approximate the Lagrangian cells by
‘‘computational cells,’’ which are polygons with sides
parallel to the coordinate axis l or m. Each computa-
tional cell is constructed so that it has the same area as
the Lagrangian cell it approximates. In Fig. 2 the sides
of the computational cells are shown as dashed lines,
for convenience we consider a particular computational
cell bounded by the polygon BCC1AA1D1DB1B (the
shaded region). The vertical sides (or walls) of the com-
putational cells are constructed with lines through the
midpoints (3) of the Lagrangian cell walls and lines
along the horizontal sides pass through the Lagrangian
points (here, on a map with north upward, ‘‘vertical’’
and ‘‘horizontal’’ lines means lines oriented north–south
and east–west, respectively). In general, the computa-
tional cell (polygon) has eight sides; however, in certain
special cases it can have fewer sides. Thus in Fig. 2,
the shaded polygon approximates the Lagrangian cell
in question, and mass computed in the polygon ap-
proximates that in the Lagrangian cell.

The entire closed domain can be filled with such poly-
gons without any overlaps or cracks (disjoint regions),
which ensures exact total mass conservation. Now we
discuss mass computation in the shaded polygon
BCC1AA1D1DB1B using the 2D remapping scheme. Let
l 5 0 be the common reference line (Fig. 2), from which
accumulated mass is computed toward each vertical side
of the computational cell. Thus, the mass enclosed (MC)
in the shaded polygon is

M 5 M (AA ) 2 M (BB ) 1 M (CC )C S 1 S 1 S 1

2 M (DD ), (13)S 1

where MS denotes the mass in the rectangular region
from the reference line to the specified vertical segment
(see Fig. 3 for details).

Generally, the first, second, third, and fourth terms
are the accumulated masses toward those sides that end
up in the east, west, south, and north sides, respectively.
However, to be valid in general the accumulated masses
in Eq. (13) must be determined with signs, positive or
negative, which depend on the orientation of the La-
grangian cell sides in question. The accumulated masses
to be substituted into (13) with the right signs are de-
termined by expressions introduced in the next subsec-
tion. Equation (13) may be used as a general formula
for determining the mass in a particular cell. As in the
case of the Lagrangian cells, the computational cells
also share their boundary walls with their neighbors,
and therefore it is only necessary to find the accumulated
mass corresponding to the east and the south walls of
each of the Lagrangian cells, while computing from west
to east and south to north.

As seen from Fig. 2, the accumulated mass MS(AA1)
is equal to the accumulated west-side mass MS(BB1) for
the neighboring cell located to the west of the current
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FIG. 3. Schematic illustration of the mass accumulated from the
vertical reference line l 5 l1 to the computational cell wall P1P2

[Ms(P1P2)], represented by the upper shaded stripe. If a stripe is
separated by a grid line (bottom stripe), then accumulated mass is
computed for each individual stripe and added, i.e., MS(Q1Q2) 5
MS(Q1Q) 1 MS(QQ2).

cell, and MS(CC1) is equal to the accumulated north-
side mass MS(DD1) for the neighboring cell south of
the current cell. Thus, using Eq. (13) while stepping
through the grid, one just adds the accumulated masses
MS(AA1) and MS(CC1) to the current cell, and subtracts
the same amount, respectively, from the neighbor to the
east and the neighbor to the south.

c. Determination of the accumulated mass

In 2D, (9) can be written as follows:
n11 *h DA 5 h DA*, (14)

where DA is the area of the arrival cell at the future
time t 1 Dt and DA* is the area of the upstream La-
grangian cell at time t. In order to predict the value of
the average density (mass per unit area)

n11
at the futureh

time level n 1 1, the quantity *DA* in (14) should beh
known. In other words, we need to evaluate the follow-
ing integral:

* nh DA* 5 h (l, m) dl dm, (15)EE
DA*

where hn(l, m) is the known density distribution at the
time level n. First, we represent hn(l, m) in each Eulerian
cell by the quasi-biparabolic function (4), introduced in
the previous section. Trajectory origins corresponding
to the Eulerian cell’s corner points are then determined,
and straight lines joining these points define the La-
grangian cell with area DA*. Mass enclosed in the actual
Lagrangian cells is finally approximated by that in the
computational cells, using the 2D remapping scheme
(13). The accumulated masses toward the computational
cell walls remain to be estimated.

Computational cells by design are made of rectan-
gular regions. We refer to each of the rectangular regions

from the reference line (usually left border of the do-
main) to a cell wall as a stripe. Thus, accumulated mass
toward any computational cell wall, for example, AA1,
(Fig. 2) is the total mass in the stripe PP1A1A. Figure
3 shows different formations of stripes (shaded regions).
Now, we discuss the computation of accumulated mass
toward a cell wall (or the total mass in a stripe). Consider
the upper stripe in Fig. 3, bounded by the region
[la, lb] J [ma, mb], then the mass MS in that stripe is

l mb b

M 5 h(l, m) dl dm, (16)S E E
l ma a

where h(l, m) is the density distribution function in the
domain (for ease of notation, the dependence of the
function on time index n is suppressed). Let la 5 l1

be the reference line and

l ∈ [l , l ], m , m ∈ [m , m ]b k k11 a b j j11

as shown in Fig. 3. Using the properties of a definite
integral, (16) can now be written as

l mk21 i11 b

M 5 h (l, m) dl dmOS E E ij
i51 l mi a

l mb b

1 h (k, m) dl dm, (17)E E kj

l mk a

where hij(l, m) is the piecewise quasi-biparabolic func-
tion representing the density distribution at each Euler-
ian cell Cij.

Here an Eulerian grid cell is characterized by two
indices increasing in the positive direction of the l and
m axes, respectively. The cell indices are also used for
the southwestern corner point. We use the convention
that the indices of a Lagrangian (departure) point are
the same as those of the corresponding Eulerian (arrival)
point. From Eq. (16) it is seen that the sign of MS de-
pends on the sign of mb 2 ma. In order to get the right
signs of the accumulated masses to be used in Eq. (13)
for the cell (i, j), we must, according to the above con-
ventions, for a south wall, use ma 5 mi, j and mb 5 mi11, j.
In the case of an east wall we must use ma 5 m i, j11 and
mb 5 mi11, j11.

For convenience we now introduce the local (x, y)
coordinate system for each Eulerian cell Cij such that

m 2 ml 2 l 1 1jix 5 2 and y 5 2 ,
Dl 2 Dm 2i j

where Dli 5 li11 2 li and Dmj 5 mj11 2 m j. For each
left and right grid point l 5 li and l 5 li11, we have
x 5 21/2 and x 5 1/2, respectively. Let [ya, yb] be the
values corresponding to [ma, mb] and xb be the value
corresponds to lb in (x, y) coordinates, respectively, so
that, xa, xb, ya, and yb ∈ [21/2, 1/2]. Now (17) can be
modified for the evaluation of accumulated mass toward
a cell wall P1P2 (Fig. 3) as follows:
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1/2 yk21 b

M (P P ) 5 Dl Dm h (x, y) dx dyOS 1 2 i j E E ij
i51 21/2 ya

x yb b

1 Dl Dm h (x, y) dx dy. (18)k j E E kj

21/2 ya

The quasi-biparabolic function (4) for any cell Cij can
be expressed as

x yh (x, y) 5 f (x) 1 f (y), (19)ij ij ij

where

1
y y y 2f (y) 5 h 1 a y 1 b 2 y andij ij ij ij[ ]12

1
x x x 2f (x) 5 a x 1 b 2 x .ij ij ij[ ]12

Substituting (19) into (18) and simplifying, we get

yb 1
y y 2M (P P ) 5 H 1 A y 1 B 2 y dyS 1 2 E ij ij ij1 2[ ]12ya

xb

x1 Dl Dm (y 2 y ) f dxk j b a E kj[
21/2

yb1
y1 x 1 f dy , (20)b E kj1 2 ]2 ya

where
k21 k21

y yH 5 Dl Dm h , A 5 Dl Dm a , andO Okj i j ij kj i j ij
i51 i51

k21

y yB 5 Dl Dm bOkj i j ij
i51

are the ‘‘accumulated coefficients.’’
Thus, to determine the accumulated mass at the La-

grangian cell walls, at each time step, it is necessary to
know three accumulated coefficients for each cell in
addition to the five coefficients of the quasi-biparabolic
function (4). The integral (20) can be analytically in-
tegrated and may further be derived for efficient nu-
merical evaluation. Also, (20) is designed for nonuni-
form resolution grids. The stripe bounded by the rect-
angle maP2P1mb in Fig. 3 may be considered as an el-
ementary stripe. Any other formation of the stripes can
be split into such elementary stripes and accumulated
mass can be estimated. For example, if the stripe is
separated by a grid line (bottom stripe shown in Fig.
3), then the accumulated mass for each stripe above and
below the grid line of separation, the sum of which is
the total accumulated mass, can be determined individ-
ually. The remapping calculation is inherently asym-
metrical with respect to the two coordinate directions.
However, this has only a negligible impact, at least for

remapping in a Cartesian grid. Tests have shown only
negligible differences between the results obtained with
masses accumulated in either the l or the m direction
(Machenhauer and Olk 1998).

4. Extension to spherical geometry

Extension of CISL methods to spherical geometry is
not straightforward due to polar singularities. A special
treatment is needed in polar caps to obviate the pole
problems, as is also done in the conservative Eulerian
advection schemes of Rasch (1994), Li and Chang
(1996) and LR96.

The time discretization (9) form of the Lagrangian
derivative on a spherical surface domain may be written
as in (14)

n11 *h DA 5 h DA*, (21)

where DA and DA* are arrival cell area at time t 1 Dt
and corresponding Lagrangian cell area at time t, re-
spectively, on the surface of the sphere. The mass in
the Lagrangian cell is

* 2 nh DA* 5 a h (l, u) cosu dl du, (22)EE
DA*

where l and u are the longitude and latitude, respec-
tively; a is the radius of the sphere; and hn(l, u) is the
known density distribution function at the time level n.
Also, l ∈ [0, 2p] and u ∈ [2p/2, p/2].

The integral (22) can be simplified by introducing the
independent variable m 5 sinu such that m ∈ [21, 1].
By virtue of this substitution the integral in (22) trans-
forms to an integral in the Cartesian (l, m) system and
(22) becomes

* 2 nh DA* 5 a h (l, m) dl dm. (23)EE
DA*

The above equation, except for the factor a2, is formally
similar to (16). Therefore, we can use the same pro-
cedures as those described for the Cartesian 2D case;
that is, the integral in (22) is evaluated as a2MC, where
MC is determined by (13).

At first, however, the Eulerian and corresponding La-
grangian cells must be defined on the (l, m) plane. On
the sphere we use a spherical coordinate grid, which is
equidistant in latitude and longitude, that is, with uni-
form grid spacing (Dl, Du). By the transformation from
the spherical coordinate system to the (l, m) system,
the equidistant latitude–longitude grid transforms into
a grid with straight coordinate grid lines. In the (l, m)
plane the longitudes (l grid lines) remain equidistant,
while the latitudes (m grid lines) become increasingly
compressed toward the poles and thus become non-
equidistant. Both pole points become straight lines, m
5 61. Therefore, in the (l, m) plane, as in the plane
case, all the Eulerian cell walls are straight grid lines.
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→

FIG. 4. (a) (top) Schematic illustration of straight-line segments P0P1, P0P2, P0P3, and P0P4 in a polar tangent (X, Y ) plane and (bottom)
the corresponding transformed curves in the (l, m) plane; P0 is the Lagrangian pole point and the line segments represent sides in two
Lagrangian cells in a singular belt. (b) Schematic illustration of the singular belt (shaded region) as projected onto a polar stereographic
plane. The regular latitudes and longitudes are denoted by dashed circles and straight lines, respectively. The Lagrangian latitudes and
longitudes are shown as ellipses and smooth curves, respectively. The Eulerian pole is marked by a filled circle and the corresponding
Lagrangian pole is marked by an open square. (c) Schematic diagram showing the ‘‘singular belt’’ (shaded region) in the (l, m) plane. The
thick curves are the Lagrangian latitudes corresponding to the thin m-grid lines. The point marked by 3 denotes the Lagrangian pole point
corresponding to the Eulerian pole line defined by m 5 1. The upstream Lagrangian points (cell corner points) are marked by open circles;
see the text for further details.

As in the plane case (except near the poles) we define
the Lagrangian cell walls as straight lines connecting
the departure points of the Eulerian cell corner points
and find that generally the Lagrangian cells are quad-
rilaterals. Again if the velocities, determining the corner
point trajectories of a cell, are zero, that is, there is no
movement of the cell, then the straight Lagrangian cell
walls are identical to the straight Eulerian cell walls, as
required for consistency.

As the mapping of an area on the sphere to the (l,
m) plane is area preserving (a2 cosudldu 5 a2DlDm),
areas on the globe may be evaluated by integration over
the corresponding areas in the (l, m)plane. With these
properties and definitions the remapping procedures de-
scribed in the previous section for the plane 2D case
can be used. However, certain special treatments have
to be introduced. In section 4b we specify special treat-
ments that are needed for the Lagrangian cells near the
Eulerian poles. These, special treatments are needed be-
cause of the convergence of the latitudes and the sin-
gularities at the polar lines in the (l, m) plane. In ad-
dition, due to the periodic boundary condition in the
zonal direction, special treatment is required for cells
that are separated by the reference line l 5 0. This
problem is dealt with in section 4c.

a. The CISL scheme in the polar regions

In the spherical latitude–longitude coordinate system,
the north–south Lagrangian cell walls should be great
circle segments to be consistent with the form of the
Eulerian cells. Such Lagrangian cell walls would appear
as straight-line segments in the (l, m) coordinate system
over the regions away from pole lines. However, near
a pole line in the (l, m) plane the north–south cell walls
would be curved, and the curvature would increase as
the lines move toward the pole (see Fig. 4a). Thus, a
straight-line segment (wall) in the polar zones of the (l,
m) plane will not be a true image of the great circle
segment representing north–south wall in the latitude–
longitude system. Therefore, the choice of straight-line
segments as the north–south walls for the Lagrangian
cells in the polar zones is not accurate and this may
adversely affect the local mass conservation. In order
to circumvent this deficiency, we need to consider a
local tangent plane coordinate system, where straight-
line segments are good approximations for the north–

south walls of the Lagrangian cells. Note that the east–
west walls of the Lagrangian cells in the latitude–lon-
gitude coordinate system near the polar zones are well
represented by straight lines in the corresponding (l, m)
system. This is mainly because the lengths of these sides
become very small near the polar zones in both coor-
dinate systems, and any deviation from the actual east–
west sides has only a negligible effect on the cell area.

We introduce two tangent plane coordinate systems,
one tangent to the north pole and the other one tangent
to the south pole, both with the origin at the pole point.
They are both polar systems with the polar angle equal
to l and the polar radius r 5 in the northÏ2(1 2 m)
pole system and r 5 in the south pole sys-Ï2(1 1 m)
tem. Note that transformations between the spherical
coordinate system and both tangent plane systems are
area-preserving dldm 5 7rdrdl. For the north pole
system the corresponding rectangular coordinates are

X 5 Ï2(1 2 m) cosl, and (24)

Y 5 Ï2(1 2 m) sinl, (25)

and for the south polar region the tangent plane coor-
dinates are given by

X 5 Ï2(1 1 m) cosl, and Y 5 Ï2(1 1 m) sinl.

Then the corner points of a Lagrangian cell near the
poles can be expressed in terms of (X, Y) in the re-
spective tangent planes.

It is possible to compute analytically in these tangent
plane coordinate systems the accumulated mass for a
strip from the reference line l 5 0 toward a straight
line connecting two east-side corner points. This would
be the most ideal procedure. However, for simplicity,
here we introduce an approximate procedure. In the po-
lar regions where the east cell sides in the (l, m) system,
which correspond to the straight cell sides in the tangent
plane system, are strongly curved lines, they are treated
as piecewise straight lines by the introduction of ad-
ditional points along the curved sides. Thus, all the
straight east cell sides in a polar latitude cell row on
the tangent plane are divided into a certain number of
equal pieces by auxiliary points (Xp, Yp). These points
are then transformed to the (l, m) coordinate system
using
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21l 5 tan (Y /X ), and (26)p p p

2 2m 5 1 2 (X 1 Y )/2 (27)p p p

for the north pole region [for the south pole region lp

is given as in (26) and the corresponding mp 5 ( 12X p

)/2 2 1]. Here, they are treated as corner points in2Y p

auxiliary subcells. The latitude cell row in question is
thus divided into a certain number of rows of subcells
with straight east cell sides. Therefore, the remapping
of these subcell rows can be done exactly as for the
nondivided cell rows outside the polar regions, with
only small modifications in the code.

b. Estimation of mass in the polar ‘‘singular’’
regions

In general the Lagrangian cells or subcells are quad-
rilaterals in the (l, m) plane with well-defined cell sides
as specified in the preceding subsections. Exceptions
are the two Lagrangian cells, which include an Eulerian
pole, that is, the north pole or the south pole. As an
example, Fig. 4a shows schematically such a cell in-
cluding the north pole, in the upper figure in the tangent
plane and in the lower figure in the (l, m) plane. The
cell in question is denoted by P0P1P2. Also shown is a
Lagrangian cell P0P3P4 in the same latitudinal row. Be-
cause the cell sides are so close to the Eulerian pole the
east and west cell sides are very much curved in the
(l, m) plane and would require the addition of several
auxiliary points in order to be approximated well by
piecewise straight-line segments. Furthermore, it is ev-
ident that the usual remapping procedure will not work
for the cell including the pole point as it is not a closed
quadrilateral in the (l, m) plane. Therefore, some special
treatment would be required for the pole-point cell and
in addition all the cells in the same latitude row would
have to be divided into several subcells. This could be
done, but it would, respectively, complicate the pro-
gramming and decrease somewhat the efficiency of the
whole advection scheme. Instead we test here a simple,
approximate method that fits well into the general pro-
gram structure. We call the degenerated polar cells ‘‘sin-
gular cells’’ and call an array of cells along the latitude
circles that includes a singular cell a ‘‘singular belt.’’
Our approximate method retains the conservation of
mass for the whole singular belt but treats only ap-
proximately the conservation for each individual cell in
the belt. Figure 4b schematically shows the singular belt
(shaded region) on a tangent plane. The dashed circles
are regular latitudes, and the longitudes are denoted by
dashed straight lines. The corresponding Lagrangian lat-
itudes are shown as ellipses and longitudes as thin
straight lines. The Eulerian pole is marked by a filled
circle, and the corresponding Lagrangian pole is marked
by an open square.

Without loss of generality, we may consider a solid-
body rotation case on the sphere (Williamson et al.
1992) to illustrate the computational procedure. Figure

4c schematically shows the distribution of Lagrangian
points in the (l, m) plane, for such a case when the
wind flow is along the pole-to-pole direction. In the
figure the Lagrangian pole is denoted as 3 and located
in the second row of Eulerian cells from the pole line
(i.e., the directional Courant number along the longi-
tudes, 1 , Cu # 2). The thick curves are the Lagrangian
latitudes on which the cell corner points are marked by
open circles. We have seen that for the singular cell (in
the shaded region) the mass cannot be constructed using
the regular approach. Nevertheless, for the last row of
triangular Lagrangian cells with the Lagrangian pole
point as the common corner point (Fig. 4b). In Fig 4c
this belt is shown as a region bounded by the closed
curve Lb enclosing the Lagrangian pole point), the com-
putational cells can be constructed and the mass in the
individual cells can be estimated in the usual ways.

For computational convenience, we determine the to-
tal mass in the singular belt and redistribute it for the
constituent cells. We consider the north pole region
bounded by the Lagrangian latitude La (Fig. 4c) and the
pole line defined by m 5 1. First, we construct an array
of auxiliary cells by drawing lines parallel to the m axis
from the Lagrangian points on the lower boundary line
(La) to the pole line. The computational cells corre-
sponding to the new set of auxiliary cells can now be
constructed and mass enclosed in each of such cells can
be determined by the regular approach. Total mass
bounded by the Lagrangian latitude (La) is then the sum
of the masses in the constituent cells. Also the total
mass in the closed region bounded by Lb containing the
Lagrangian pole can be determined by the regular ap-
proach. Thus, the total mass in the singular belt is the
difference between the total mass in the closed region
bounded by Lb and the total mass in the region bounded
by La. This idea can be further generalized for any Cu

. 1, where inside the singular belt we may have con-
centric closed regions enclosing the Lagrangian pole.
For the cases of Cu # 1, the singular belt does not
contain the closed region bounded by Lb as shown in
Fig. 4c, and in this case the mass in the region bounded
by La gives the total mass in the singular belt.

The next step is to redistribute the total mass (TM) in
the singular belt for each of the constituent cells. We
use a conventional SL method for finding the weights
of redistribution. First, we estimate the coordinates of
the cell centers for each of the cells in the singular belt
on the tangent plane, for example, defined by (24) and
(25), using the known (l, m) coordinates of the corner
points. Then, the upstream values of the density, wi, at
these points are determined by employing the compu-
tationally efficient quasi-bicubic interpolation (Ritchie
et al. 1995).

The mass in the Lagrangian cell is then given byMC i

|w |iM MC 5 T , (28)i |w |O i
i
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such that S i 5 TM. The absolute values of theMC i

weights are used to avoid negative values.

c. Computational cells separated by the reference
line

Accumulated mass is always determined from the
common reference line, usually considered to be the
west boundary wall of the computational domain. The
(l, m) plane is east–west periodic and the longitude l
5 0 is a natural choice as a reference grid line. Since
the domain is periodic, some of the computational cells
may be separated by the vertical reference line. Near
the polar regions the computational cells may be ad-
vected several grid lengths depending on the zonal wind
velocity and may cross the reference line.

The remapping process (13) in such cells needs spe-
cial attention, since the vertical walls of the computa-
tional cells may lie on either side of the reference line.
There are many ways to solve this problem. We choose
a simple approach described as follows. If a computa-
tional cell is separated by the reference line, then the
accumulated mass (or the mass in the stripes) toward
the vertical walls that appear to the right side of the
reference line should be modified. This is done by add-
ing the total mass in the stripes with the same width
wrapping around the latitude circles, starting from the
reference line and going to the reference line.

5. Numerical results

Different options of the CISL scheme have been test-
ed in 1D and 2D Cartesian geometry. Since here we
mainly focus on the spherical geometry application of
the CISL scheme, these results are not presented. Here
we consider two numerical experiments to test the CISL
scheme in spherical geometry. These experiments are
solid-body rotation of a passive scalar on the surface of
the sphere and a deformation flow test for a time-de-
pendent vortex simulated near the poles.

The scalar c used in the following advection tests is
equal to the 2D density h(l, m) used in (14) and (21),
that is, mass per unit area. Thus it could be the surface
pressure divided by gravity (Ps/g) in a shallow water
model. It could also be the pressure difference divided
by gravity between the top and bottom of a model layer
in a GCM, that is, c 5 Dk(P)/g, as used by Machenhauer
and Olk (1998), in their extension of the present 2D
CISL scheme to 3D. In this extension c could addi-
tionally be the mass per unit area of any single atmo-
spheric component in a GCM, for example, water vapor
or a chemical constituent, in this case c 5 qkDP/g where
qk is a specific measure of concentration of the com-
ponent in question (mass of component per unit mass
of moist air).

a. Solid-body rotation

Solid-body rotation is a commonly used experiment
to test an advection scheme over the sphere. The details
of the experiment are given in Williamson et al. (1992).
We use the parameter values of the experiment setup as
given in Williamson and Rasch (1989) and Nair et al.
(1999b, hereafter referred to as NCS99).

The velocity components of the advecting wind field
are given by

u 5 u (cosa cosu 1 sina cosl sinu), and (29)0

y 5 2u sina sinl, (30)0

where a is the angle between the axis of solid-body
rotation and the polar axis of the spherical coordinate
system (Williamson et al. 1992). The flow field is such
that when a 5 0, the axis of rotation is the polar axis,
and when a 5 p/2, it is in the equatorial plane. The
initial scalar distribution is assumed to be a cosine bell.
Thus


1 pr9 1 1 cos , if r9 , R1 2[ ]c(l, u) 5 2 R (31)


0, if r9 $ R,

where

21r9 5 cos [sinu sinu 1 cosu cosu cos(l 2 l )] (32)c c c

is the great circle distance between (l, u) and the bell
center, initially taken as (lc, uc) 5 (3p/2, 0). The bell
radius R is set to 7p/64 as in Rasch (1994), Li and
Chang (1996), LR96, and NCS99. The analytic solution
of the advection equation at any time step appears to
be identical to the initial condition since the solid-body
rotation translates the cosine bell around the globe with-
out incurring any deformation of shape.

The spherical (l, u) domain consists of a 128 3 65
uniform-resolution (2.81258) mesh, where the first and
last latitudinal grid lines represent the south and the
north poles, respectively. Thus, there are 128 3 64 grid
cells spanning the entire spherical domain or the equiv-
alent computational (l, m) plane. Note that the scalar
field is initially determined as gridpoint values at the
cell centers rather than being average values over the
cells, as they should have been. The time step and the
value of the maximum wind speed u0 are chosen such
that the angular velocity of the rotational flow is either
v 5 2p/256 or v 5 2p/72 per time step. In these cases
the meridional Courant number Cu 5 0.5 or Cu 5 1.78,
and a complete revolution around the globe takes 256
or 72 time steps, respectively.

b. Results of solid-body rotation

Numerical experiments have been performed for a 5
0, p/2 2 0.05, and p/2 with exact trajectories as rec-
ommended by Williamson et al. (1992). Three different
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options of the CISL scheme have been used, which are
the monotonic option (CISL-M), the positive-definite
option (CISL-P), and the CISL scheme without any fil-
tering (CISL-N). In addition to that, a conventional SL
scheme with bicubic-Lagrange interpolation (SL-BCL)
has been used for comparison.

As discussed in section 4, to improve the local mass
conservation, the Lagrangian cells in the polar regions
are meridionally subdivided by introducing trajectory
points along the east (or west) walls. However, the sin-
gular belt is excluded from such division and the total
mass in this belt is estimated and redistributed to the
constituent cells. For the present study, the three La-
grangian belts closest to the pole in each hemisphere
have been ‘‘refined’’ by introducing additional points.
We have done two sets of experiments, by introducing
three, two, and one additional points (nonuniform re-
finement) along each east (or west) wall of the Lagrang-
ian cells (starting closest to the pole) and another com-
bination of two, two, and two (uniform refinement)
points. The nonuniform refinements (three, two, and
one) were found to be slightly more accurate than the
uniform refinement. Also we have experimented with
different combinations with more Lagrangian belts and
additional points. There was no significant improvement
in the results with high-resolution refinement of more
belts and the above-mentioned combinations were found
to be the most cost effective.

Results after one complete revolution around the
globe (256 time steps) using the CISL-P and CISL-M
schemes are displayed in Fig. 5, together with the an-
alytic solution (dashed contours), where the contour val-
ues varies from 0.1 to 0.9 with uniform increments of
0.1. For this experiment we have used three, two, and
one additional points on the north–south cell walls in
the Lagrangian belts. The top panels in Fig. 5 are for
polar flow with a 5 p/2, while the bottom panels are
for equatorial flow with a 5 0. Since the flow pattern
of CISL-N is very similar to that of CISL-P, the cor-
responding figures of CISL-N are not shown. For the
polar flow, the cosine bell has undergone a small stretch-
ing in the flow direction for CISL-P. When the flow is
along the equator, the numerical solution obtained by
using the CISL-P scheme is very close to the analytic
solution. However in both cases the numerical solution
with the CISL-M scheme is less accurate than that of
CISL-P. Monotonicity constraints resulted in slight deg-
radation of the shape of the cosine bell. Particularly in
the central region (Fig. 5; CISL-M), the bell is stretched
along the direction of the flow for both cases when a
5 p/2 and a 5 0. Also, for the monotonic case, stretch-
ing of the central region of the cosine bell is visible in
Fig. 14 of LR96.

Table 1 shows the normalized errors [for definition
of error measures, see Williamson et al. (1992) and
NCS99] for the solid-body rotation experiment with a
5 p/2. Also for easy comparison, the results from sim-
ilar case studies by LR96 and Rasch (1994) are provided

in the same table. The error measures show that our
results are comparable with the flux-form SL (FFSL)
schemes of LR96 with monotonic [FFSL-5(M)] and
positive definite constraints [FFSL-3(P)]. The CISL
gives better accuracy in l` (normalized maximum ab-
solute error), maximum (normalized overshoot), and
minimum (normalized undershoot) errors (monotonic
case). However, the FFSL scheme has slightly smaller
l1 (normalized mean absolute error) and l2 (normalized
root mean square error) in both cases shown. Rasch
(1994) developed a 2D forward-in-time upwind-biased
flux-form scheme and extended it to the ‘‘reduced spher-
ical grid’’ (RG2.8). Table 1 shows that both the CISL
and the FFSL schemes are more accurate than Rasch’s
scheme.

Table 2 shows error measures for solid-body rotation
along the equator (a 5 0) after one revolution or 256
time steps. Compared with the corresponding results in
Table 1 the errors of the CISL-N and CISL-P schemes
are consistently smaller for flow along the equator. This
is in spite of much higher resolution in the zonal di-
rection in the polar caps, which is in favor of the cross-
pole experiments. It indicates that the special procedures
introduced in the polar regions might be improved. In
the case of the CISL-M scheme the errors are larger in
Table 2 than in Table 1. This indicates that the error
introduced by monotonization of the quasi-biparabolic
function in this case dominates those introduced by the
approximation in the polar caps.

Further, we have performed a series of polar flow
tests with the CISL scheme to prove its robustness. Fig-
ure 6 shows a polar stereographic projection of the co-
sine bell advection at time steps 32, 64, and 96, as the
bell approaches, passes over, and leaves the north pole,
respectively. The bottom panel of Fig. 6 shows the cross
polar simulation with the shift parameter a 5 p/2 2
0.05. In both cases there is no visible distortion of the
cosine bell as it passes over the pole. Moreover, Fig. 6
(top panel) is very similar to Fig. 13 of LR96. Time
traces of l1, l2, and l` for the CISL-P scheme with a 5
p/2 are shown in Fig. 7. Here, error plots are more
variable at time steps 64 and 192 (when the bell crosses
the poles) with relatively large values for l`. However,
the curves become again relatively smooth when the
bell has crossed the poles. Compared to Figs. 7 and 8
of Rasch (1994), the maximum value of the time traces
of error is much smaller with the CISL scheme.

In addition to the regular slow cross-polar advection
test, we have done experiments with the strong flow. In
this case 72 time steps are used for one revolution (Cu

5 1.78) with a 5 p/2. For this set of experiments we
have used the uniform refinement for the polar Lagrang-
ian belts. Figure 8 shows the position of the cosine bell
near the north pole (top-left and -right panels) and over
the south pole (bottom-left panel) and at the initial po-
sition (bottom-right panel) after 72 time steps (one rev-
olution); the CISL-P scheme is used for the advection.
There is no visible distortion for the cosine bell even
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FIG. 5. Results on an orthographic projection of solid-body rotation of a cosine bell after one revolution (256 time
steps). The CISL scheme with the positive-definite option (CISL-P) and the monotonic option (CISL-M) are used for
the advection. (top left), (top right) The numerical solution with the CISL-P and the CISL-M scheme, respectively,
when the flow is along the pole-to-pole direction (a 5 p/2). (bottom left), (bottom right) The numerical solutions
with CISL-P and CISL-M, respectively, when the flow is along the equator (a 5 0). The analytic solution is shown
by dashed contours.

for the strong polar wind. After one revolution, the nu-
merical solution appears to be very close to the analytic
solution (dashed contours). Table 3 shows the standard
errors for this particular test. For comparison, errors of
regular SL advection with a bicubic-Lagrange inter-
polation (SL-BCL) are also listed. From this table it is
evident that in addition to conserving the mass exactly,
which the SL-BCL does not, the accuracy of the CISL
scheme is superior to that of the SL-BCL scheme. Note
that for this experiment the FFSL schemes of LR96 or
Rasch’s schemes could not be used since the meridional
Courant number Cu . 1.

c. Deformational flow test

In order to compare the accuracy and robustness of
the CISL scheme further with the conventional SL
scheme, here we consider a deformation flow test in
spherical geometry. NCS99 gives the details of the ide-
alized vortex problem of Doswell (1984) on the surface
of the sphere. The flow field is deformational and more
challenging than the solid-body rotation. Here we use
a different version of the vortex problem than that con-
sidered by NCS99. The flow field used here is positive
definite, smooth, and the vortex is simulated on the sur-
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TABLE 1. Error measures for solid-body rotation of a cosine bell
for CISL schemes when the flow is along the pole-to-pole direction
(a 5 p /2) with 256 time steps for one revolution. The letters N, P,
and M denote no filter, positive definite and monotonic options, re-
spectively. For comparison, results of various published schemes are
also presented; see text for the details.

Scheme l1 l2 l` Max Min

CISL-N
CISL-P
CISL-M

0.063
0.059
0.084

0.046
0.045
0.084

0.048
0.048
0.109

20.016
20.016
20.052

20.0041
20.0034
20.0001

FFSL-5(P)
FFSL-3(M)
RG2.8
RG2.8M

0.047
0.078
0.289
0.181

0.041
0.079
0.196
0.158

0.053
0.124
0.164
0.196

20.053
20.124
20.150
20.210

20.0013
20.0009
20.0271

0

TABLE 2. Error measures for solid-body rotation of a cosine bell
for CISL schemes when the flow is along the equator (a 5 0) with
256 time steps for one revolution.

Scheme l1 l2 l` Max Min

CISL-N
CISL-P
CISL-M

0.051
0.025
0.094

0.035
0.025
0.091

0.032
0.031
0.108

20.015
20.014
20.052

0.0065
0.0
0.0

face of the sphere rather than projected onto a polar
tangent plane.

Let (l9, u9) be the rotated coordinate system with the
north pole at (l0, u0) with respect to the regular spher-
ical coordinate system (l, u). Consider the rotation of
the (l9, u9) system with angular velocity v9 such that

dl9
5 v9 and (33)

dt

du9
5 0. (34)

dt

In the case of the solid-body rotation test problems, the
angular velocity v9 is a constant, but for the deforma-
tional problem we consider an v9 that varies with respect
to the latitude u9.

A steady circular vortex is defined to have normalized
tangential velocity:

3Ï3
2V 5 sech (r9) tanh(r9), (35)t 2

where r9 5 r0 cosu9 is the radius of the vortex and r0

is a constant. The angular velocity is specified as

0 if r9 5 0,
(36)v9(u9) 5 Vt if r9 ± 0.

r9

The analytical solution at time t is

r9
c(l9, u9, t) 5 1 2 tanh sin(l9 2 v9t) , (37)[ ]d

where d is the smoothness parameter for the flow field.
The initial condition for the advected scalar is given by
c(l9, u9, 0).

The exact upstream position of a particle at time t that
arrives at a point (l9, u9) at time t 1 Dt is given by

l9(t) 5 l9(t 1 Dt) 2 v9Dt, (38)

u9(t) 5 u9(t 1 Dt). (39)

How to specify the problem in the unrotated (l, u) co-
ordinate system and the derivation of the components
of velocity are described in NCS99.

For the present study we have set the parameters
(l0, u0) 5 (p 1 0.025, p/2.2), r0 5 3, and d 5 5. With
these conditions two symmetric vortices are created, one
near the north pole and the other one near the south
pole. The flow field is smooth, and the vortex centers
are approximately at 818N and 818S. Also, this setup
keeps the vortex centers away from the poles to avoid
symmetry with the underlying spherical geometry. The
point values of the initial field are generated at the cell
centers on a 128 3 64 grid of cells, and integrated for
three time units with 32 time steps. The corresponding
Courant numbers in the l and u directions are Cl 5
38.3 and Cu 5 1.65, respectively.

d. Results for the deformational flow test

Figure 9 (top-left panel) shows the initial conditions
of the smooth scalar field and (top-right panel) the an-
alytic solution after three time units. The bottom-left
panel of Fig. 9 shows the numerical solution after 32
time steps with CISL-N, and the bottom-right panel
shows the same with SL-BCL (without any filter). The
shape of the vortex center is better captured by the
CISL-N scheme as compared to the SL-BCL scheme.
Table 4 shows that in addition to exact mass conser-
vation the numerical solution of the CISL scheme is
also more accurate. However the very small overshoots
and undershoots, that is, the maximum and minimum
errors, with the CISL scheme are slightly greater than
the corresponding values of the SL-BCL scheme. The
main reason for this difference is probably due to the
truncation error involved in the difference process of
the remapping scheme (13), where the mass in a com-
putational cell is determined as the difference of ac-
cumulated masses.

6. Summary and conclusions

A mass-conservative cell-integrated semi-Lagrangian
(CISL) scheme has been presented and tested for 2D
transport on the sphere. This scheme is based on a gen-
eral remapping scheme developed by Machenhauer and
Olk (1996, 1997, 1998) and designed to be cost effective
without loss of accuracy as compared to the CISL
scheme of Rančić (1992). Here the 2D advection scheme
is extended in a simple and cost-effective way to the
spherical geometry by introducing special treatments
near the poles. A regular latitude–longitude grid is used
on the sphere and one-time-step upstream trajectories
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FIG. 6. Polar stereographic projection of the cosine bell advection
over the north pole by the CISL-P scheme. (top) The positions of the
cosine bell at time steps 32, 64, and 96 (from bottom to top of the
frame). (bottom) As in the top panel but for the offset polar flow
with a 5 p/2 2 0.05.

FIG. 7. Time traces of the normalized l1, l2, and l` errors for the
solid-body rotation test of the cosine bell, when the flow is along the
pole-to-pole direction. The CISL-P scheme with 256 time steps is
used for one revolution in the advection test.

TABLE 3. Error measures for solid-body rotation experiments when
a 5 p /2, with 72 time steps for one revolution. The traditional SL
scheme with bicubic-Lagrange interpolation (SL-BCL) is used for
comparison.

Scheme l1 l2 l` Mass Max Min

CISL-N
CISL-P
CISL-M
SL-BCL

0.037
0.034
0.040
0.112

0.031
0.029
0.042
0.073

0.033
0.033
0.068
0.063

0
0
0
0.0023

20.028
20.028
20.024
20.0047

20.0034
20.0029
20.0004
20.046

from the corner points of the regular grid cells (the
Eulerian cells) define the corner points of the departure
cells. The sides in these so-called Lagrangian cells are
generally defined as straight lines in a (l, m) plane. The
mass distribution within each Eulerian grid cell is de-
fined by quasi-biparabolic functions, which are used to
integrate analytically the mass in each Lagrangian com-

putational cell. The computational cells are auxiliary
polygons, each with sides parallel to the coordinate axes
and with the same area as the Lagrangian cell they ap-
proximate. They were introduced in order to simplify
the analytical integrals of mass.

Near the poles the east and west sides of the La-
grangian cells cannot be approximated by straight lines
in the (l, m) plane and are instead represented by straight
lines in polar tangent plane coordinates. Each of these
lines are divided in a certain number of equal pieces,
the end points of which are transformed to the (l, m)
plane. Thereby, the latitudinal belt of Lagrangian cells
in the polar zones are split up into several latitudinal
belts of subcells, which can be treated as the usual belts
closer to the equator. One latitudinal belt in each hemi-
sphere, the so-called singular belt, which enclose the
Eulerian pole, is treated in a special way. Otherwise it
would have required a special treatment of the singular
cell enclosing the Eulerian pole and a subdivision in
many subbelts of the whole singular belt. First the total
mass in the singular belt is determined and then it is
distributed among the cells in the belt using as weights
values at the midpoints of the cells determined by a
traditional SL scheme. By this procedure the total mass
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FIG. 8. Results on an orthographic projection of solid-body rotation of a cosine bell in the pole-to-pole direction.
The number of time steps required for one revolution is 72, which corresponds to the directional Courant numbers
Cl 5 36.2, Cu 5 1.78. The CISL-P scheme is used for the advection. (top left), (top right) The position of the cosine
bell as it passes over the north pole at time steps 16 and 20, respectively. (bottom left), (bottom right) The cosine
bell over the south pole (at time step 54) and over the equator (after one revolution), respectively. The initial position
(analytic solution) is marked by dashed contours.

is still conserved while the conservation for the indi-
vidual cells in the singular belt is only approximately
maintained. These special treatments in the polar caps
fit well into the general program structure and can be
implemented with only small modifications in the gen-
eral code used for the rest of the sphere.

Compared to two other conservative advection
schemes implemented on the sphere, LR96 and Rasch
(1994), our CISL scheme was found to be competitive
in terms of accuracy for the same resolution. In addition
the CISL scheme has the advantage over these schemes
that it is applicable for Courant numbers larger than
one. Tests also showed that the polar cap treatments

introduced here are relatively accurate. However, there
is room for improvement in making advection over the
poles as accurate as it is along the equator. Such an
improvement is possible and may be achieved by ex-
tending the general procedure we have used near the
poles to the singular belt, that is, by introducing a suf-
ficient number of auxiliary points for dividing the La-
grangian cells in the singular belts. Then mass in the
singular cells may be determined separately by a pro-
cedure similar to the one used in the present study for
the whole singular belts. Together with the so-called
reduced grid system (Rasch 1994), this might be just as
efficient as the simple approach introduced above.
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FIG. 9. Results of a polar vortex simulation over the sphere. The vortex center is located near the pole. (top left)
The initial field and (top right) analytic solution after three nondimensional time units. (bottom left) The numerical
solution simulated by the CISL scheme without any filter (CISL-N), and (bottom right) simulated field when using
the traditional SL scheme with bicubic-Lagrange interpolation. For the numerical integrations, 32 time steps are used.

TABLE 4. Error measures for polar vortex simulation test using CISL schemes and the SL-BCL scheme. For numerical integration 32 time
steps are used (three time units).

Scheme l1 l2 l` Mass Max Min

CISL-N
CISL-P
CISL-M
SL-BCL

0.0011
0.0011
0.0013
0.0072

0.0025
0.0025
0.0031
0.0142

0.0144
0.0144
0.0211
0.0513

0
0
0
0.0002

26.4 3 1025

26.4 3 1025

28.1 3 1025

1.4 3 1026

21.9 3 1025

21.9 3 1025

5.2 3 1025

6.9 3 1027

Computational efficiency is an important issue for
transport schemes. The algorithm presented here has not
been optimized to reduce the computational cost. Nev-
ertheless, we have compared the performance of our
CISL scheme with the traditional SL scheme based on

bicubic-Lagrange interpolation (SL-BCL). Considering
at first Cartesian coordinates in a plane, the cell method
developed by Rančić (1992) had been shown to be very
accurate as compared to the SL-BCL scheme. However,
the scheme took approximately 2.5 as much computa-
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tional time as that of the SL scheme. We have done a
similar experiment for solid-body rotation of a slotted
cylinder (Nair et al. 1999a) on a uniform-resolution grid.
Our CISL scheme takes approximately 1.1 as much
computational time as that of the SL-BCL scheme, the
accuracy of the solution is much better than that of SL-
BCL, and it is comparable to the numerical solution
produced by an SL scheme with cubic spline interpo-
lation (Nair et al. 1999a).

In the spherical domain our CISL scheme is slightly
more expensive, mainly due to the additional compu-
tational requirement in the polar caps. For the solid-
body rotation experiment over the sphere, we found that
the CISL scheme takes approximately 1.28 as much
computational time as the SL-BCL scheme does. How-
ever, in addition to conserving the mass exactly, which
the SL-BCL does not, the accuracy of the CISL scheme
is superior. This overhead of 28% may be reduced with
optimized codes, but even if it is not reduced, it seems
to be a reasonable price to pay for the increased ac-
curacy, including exact mass conservation. Concerning
memory requirements in the CISL remapping scheme
we note that, in addition to the coefficients of the quasi-
biparabolic function, accumulated coefficients need to
be stored along the latitudinal direction. Also the indices
of the departure points need to be stored as this cell
information can be shared for all fields to be advected
at any time step. An optimized way of coding could,
however, significantly reduce the memory requirement.

In the present study we have concentrated on a CISL
scheme for 2D advection only. A perspective for the
future is, however, a consistent extension of that scheme
to a conservative 3D advection scheme (Machenhauer
and Olk 1998), which may be applied in all the advec-
tion terms in a global multilevel PE numerical model
and be combined with the semi-implicit time-stepping
scheme (Machenhauer and Olk 1997).
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