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Abstract

A forward-trajectory semi-Lagrangian scheme for advection on the surface of the sphere is proposed. The ad-

vection scheme utilizes the forward (downstream) trajectory originating at Eulerian grid points and cascade inter-

polation, a sequence of 1D interpolations, to transfer data from the downstream Lagrangian points to the Eulerian

points. A new and more accurate algorithm determines pole values. The resulting forward-trajectory semi-Lagrangian

scheme can easily incorporate high-order trajectory integration methods. This avoids the standard iterative process in

a typical backward-trajectory scheme. Two third-order accurate schemes and a second-order accurate scheme are

presented. A mass-conservative version of the forward-trajectory semi-Lagrangian scheme is also derived within the

cascade interpolation framework. Mass from a Lagrangian cell is transferred to the corresponding Eulerian cell with

two 1D remappings through an intermediate cell system. Mass in the polar region is redistributed by way of an

efficient local approximation. The resulting scheme is globally conservative, but restricted to meridional Courant

number, Ch 6 1.
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1. Introduction

Semi-Lagrangian (SL) advection combined with semi-implicit time-stepping was introduced in meteo-

rology by Robert [1,2] nearly two decades ago. The method has been applied at scales of motion ranging

from convection to the atmospheric general circulation [3,4]. Many current operational numerical weather

prediction models [3,5] implement SL advection, due to the inherent accuracy and less restrictive time step.

Recently, conservative SL transport schemes have been considered in climate modeling [6], where long time

integration demands computationally efficient transport algorithms.
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Semi-Lagrangian methods trace fluid motion by following particle paths or trajectories [7,37]. The

equation governing trajectories is a nonlinear ordinary differential equation (ODE) and can be solved using

a variety of numerical methods. Our method solves the equation forward in time, with the departure point

location as the initial condition, and finds the downstream arrival point. Note that upstream and down-

stream refer to integrating a particle trajectory backward or forward in time, respectively. Traditional SL

methods solve the trajectory equation backward in time, from the arrival point, by using a second-order

accurate implicit midpoint method requiring several iterations [1,7,16]. This iterative procedure is com-

putationally expensive [9,19]. Moreover, backward-trajectory schemes do not easily lend themselves to the
application of high-order methods [10]. The iterative process can be avoided by explicit methods. Both

upstream and downstream treatments require interpolation between regularly spaced Eulerian points and

(possibly distorted) Lagrangian points. Thus, accuracy is dictated by the accuracy of both trajectory and

interpolation calculations. In this paper, an explicit Taylor series method is compared with a Runge–Kutta

scheme for accuracy and computational efficiency.

The choice of interpolation order in SL advection schemes strongly impacts computational efficiency.

Cubic interpolation is commonly used [7], yielding fourth-order spatial accuracy. Two difficulties with

multi-dimensional polynomial interpolation are the number of operations required and the lack of formal
conservation. The cascade interpolation scheme introduced by Purser and Leslie [8] reduces the compu-

tational cost without degrading accuracy. Cascade schemes employ a sequence of one-dimensional (1D)

interpolations, thus reducing computational overhead. For example, a typical tensor product interpolation

in 3D requires OðN 3Þ operations per grid point per field, where N is the order of accuracy; whereas a

cascade scheme requires only OðNÞ operations [8]. Cascade interpolation can be used in either forward- or

backward-trajectory SL advection, as shown in [17]. Recently, Nair et al. [17,18] reduced the computational

overhead in intermediate grid generation and extended the cascade procedure to spherical geometry.

Another important feature of cascade interpolation is the use of forward (downstream) trajectories
originating on the Eulerian grid and terminating on the flow-distorted Lagrangian grid [8,17]. Forward-

trajectory SL (hereafter referred to as FSL) schemes have the same computational complexity as traditional

SL schemes. Purser and Leslie [9–11] further demonstrated that a high-order, SL scheme can be applied in

the context of a forward-trajectory approach in Cartesian geometry.

The cascade interpolation algorithm developed by Nair et al. [18], computes the intersection of La-

grangian longitudes and the Eulerian latitudes as intermediate grid points. In [18], intermediate grid lines in

the h-direction are formed by ‘‘wrapping a (Lagrangian) longitude all around the globe,’’ and grid lines in

the k-direction are Eulerian latitudes. To form such a grid system, the number of longitudes mmust be even.
A unique pole value is determined by an averaging procedure. This approach may not be suitable for a

more general grid system. However, the global FSL scheme considered here does not have such limitations.

Moreover, pole values are determined by a more accurate procedure.

Mass-conservation is an important issue for climate and atmospheric chemistry models. Traditional SL

advection schemes are not inherently conservative. This is a major disadvantage for constituent transport in

climate models. However, SL schemes can be made mass-conservative with a finite-volume approach (see

[10,14,27,28], especially [30] where the incompressible Navier–Stokes equations are discussed). Our con-

servative version of the FSL scheme adopts the 1D piecewise parabolic method (PPM) of [35] as a basic
component in the cascade interpolation framework. Spherical geometry requires special treatment of the

poles and several mass-conservative SL methods have been developed for spherical geometry

[15,34,26,29,25], suitable for global climate modeling. Here, we present a globally conservative FSL scheme,

following some of the ideas used in the recent work of Nair et al. [26].

In this paper, we focus on three major aspects of the global FSL scheme. First, we consider two third-order

numerical methods to solve the trajectory equations. Following that, we present the development of a general

FSL scheme on the sphere based on cascade interpolation. Finally, the development of a mass-conservative

version of the global FSL scheme (hereafter referred to as FSLc) is presented in the cascade framework.
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2. Forward-trajectory SL advection

In FSL schemes, trajectories originate from regularly spaced Eulerian grid points at time t, and termini

(arrival points) are located at the flow-distorted Lagrangian mesh at time t þ Dt. Fig. 1 depicts two-di-

mensional (2D) forward-trajectory advection of a grid cell, where arrival and departure points are marked

by open and closed circles, respectively. The shaded region shows a departure cell (rectangular) and the

corresponding arrival cell (polygon) formed by the arrival and departure points, respectively.

The advection equation for a scalar field F ðx; tÞ is written as

dF
dt

� oF
ot

þ ðu � rÞF ¼ 0; ð1Þ

where F ðx; tÞ ¼ F ðxðt0Þ; t0Þ is the initial condition. The position vector u is determined from the velocity

vector uðx; tÞ by integrating the trajectory equation,

dx

dt
¼ uðx; tÞ: ð2Þ

Eq. (1) implies that the value of F is constant along trajectories described by (2).

Here, a two-time-level forward SL method integrates the material (substantial) derivative along the

forward trajectory originating at the grid point ðx0; tÞ and terminating at the Lagrangian point ðx�; t þ DtÞ.
The location of Lagrangian points can be estimated by approximating the solution of the ordinary dif-

ferential equation (2) using numerical methods, such as those discussed in [24]. Integrating in time along the

trajectory governed by Eq. (2) with initial condition xðt0Þ ¼ x0 results in the semi-discrete form

F ðx�; t þ DtÞ 	 F ðx0; tÞ
Dt

¼ 0: ð3Þ
Fig. 1. A schematic of forward-trajectory semi-Lagrangian advection. Trajectories are dotted lines originating at Eulerian grid points

and terminating at Lagrangian points at time-level t and t þ Dt, respectively. Eulerian grids at both time-levels are depicted as dashed

lines. Departure (Eulerian) points are marked by open circles and arrival (Lagrangian) points are marked by filled circles.
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Generally, the Lagrangian grid is curvilinear and the arrival points (Lagrangian points) do not fall on the

regular Eulerian grid intersections.

In order to formulate a consistent forward time-integration scheme, the value of the advected field

F ðx�; t þ DtÞ at arrival points is interpolated onto the Eulerian grid. This process is repeated at every time

step, distinguishing semi-Lagrangian methods from Lagrangian methods. Accurate transfer of data from

the flow-distorted Lagrangian mesh to the fixed Eulerian mesh is accomplished by using cascade inter-

polation.

2.1. Computation of the forward trajectories

The choice of trajectory integration scheme has fundamental implications for the accuracy and efficiency

of SL methods. The traditional SL scheme employs a backward trajectory method using an implicit OðDt2Þ
iterative algorithm [7,16,21]. Three to five iterations are typically required to converge [7,19]. McGregor [19]

introduced a high-order accurate and efficient explicit integration method based on a Taylor series ex-

pansion. This method was also shown to be accurate when applied to unstructured spherical geodesic grids

[23]. We will compare McGregor�s method (hereafter referred to as Ty3) with Runge–Kutta methods in the

FSL scheme context.

2.1.1. McGregor’s method

McGregor�s method [19] uses a Taylor series to approximate Eq. (2) and is described here for com-

pleteness. The Taylor series expansion of the arrival point xðt þ DtÞ about the departure point xðtÞ along
the trajectory is

xðt þ DtÞ ¼ xðtÞ þ
XN
m¼1

ðDtÞm

m !
dmxðtÞ
dtm

þ OðDtNþ1Þ: ð4Þ

The time derivative is approximated as

d

dt

 ûu � r;

where

ûu ¼ u xðtÞ; t
�

þ Dt
2

�

is the time-centered wind field.

Computation of trajectories on the surface of the sphere can be performed by using 3D Cartesian ðx; y; zÞ
coordinates. For a sphere of radius a ¼ 1,

x ¼ cos h cos k;
y ¼ cos h sin k;
z ¼ sin h:

9=
; ð5Þ

The corresponding inverse equations are,

k ¼ tan	1ðy=xÞ;
h ¼ sin	1ðzÞ:

�
ð6Þ

The Cartesian ðx; y; zÞ coordinate values vary smoothly across the poles, unlike longitude-latitude ðk; hÞ
coordinates.
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Departure points are located at the grid points x ¼ ðx; y; zÞ for the FSL scheme, so the velocity com-

ponents determined from (5), are

uðx; tÞ ¼ dxðtÞ
dt

¼ dx
dt

;
dy
dt

;
dz
dt

� �
¼ ð	u sin k 	 v sin h cos k; u cos k 	 v sin h sin k; v cos hÞ; ð7Þ

where u ¼ cos h dk
dt and v ¼ dh

dt are components of velocity vector along the k- and h-directions, respectively.
Second and higher-order time derivatives required in (4) are computed by repeatedly applying a finite-

difference approximation of the operator

ûu � r ¼ ûu
a cos h

o

ok
þ v̂v
a

o

oh
ð8Þ

for each component of ðx; y; zÞ, except at the poles where the operator is singular [19]. Time-centered wind
fields ûu ¼ ðûu; v̂vÞ are extrapolated from velocities at previous time steps [7,19].

2.1.2. Runge–Kutta methods

Numerical solutions of Eq. (2) may not be sufficiently accurate near the poles unless a special

method is used [38], because of the factor cos h appearing in u ¼ cos h dk
dt. Initial wind data is converted

from ðk; hÞ coordinates to corresponding Cartesian components using (7), and the trajectory

equations are solved in Cartesian ðx; y; zÞ-space. Arrival points are converted back to ðk; hÞ coordinates
using (6).

Our third-order accurate Runge–Kutta scheme (RK3) for Eq. (2) is [20]

xnþ1 ¼ xn þ
1

4
k1 þ

3

4
k3; ð9Þ

where

k1 ¼ Dtuðxn; tnÞ;

k2 ¼ Dtu xn

�
þ 1

3
k1; tn þ

1

3
Dt
�
;

k3 ¼ Dtu xn

�
þ 2

3
k2; tn þ

2

3
Dt
�
:

Interpolation of Cartesian velocity components in 3D, required in Eq. (9), is expensive. However, this is

achieved by interpolating the Cartesian velocity components in ðk; hÞ-space, utilizing Eqs. (6).

For comparison, a second-order accurate Runge–Kutta (RK2) scheme was tested,

xnþ1 ¼ xn þ k2; ð10Þ

where

k2 ¼ Dtu xn

�
þ 1

2
k1; tn þ

1

2
Dt
�
;

k1 ¼ Dtuðxn; tnÞ:

The interpolation procedures are analogous to those described for (9).

Note that the vector sum in (9) and (10) represents a point on the unit sphere, and is subject to the

condition kxnþ1k2 ¼ 1. This constraint is enforced [22,23] before transforming the Cartesian coordinate

values back onto the ðk; hÞ grid using (6).
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3. Cascade interpolation

In the FSL scheme, cascade interpolation transfers values of the field from Lagrangian points to

Eulerian points, by means of 1D operations. The grid-to-grid transfer of data in the cascade cycle is

achieved via an intermediate grid system, corresponding to the intersection of Lagrangian and Eulerian grid

lines. For the present study, the intermediate grid is defined by the intersection of Lagrangian longitudes

(Hi-curves) and Eulerian latitudes. Fig. 2 displays schematically the position of the Eulerian points (open

squares) and the Lagrangian points (filled circles) over a region away from poles. The Eulerian grid lines are
marked by dashed lines and the corresponding Lagrangian longitudes are denoted as curves. Intermediate

grid points are determined by the intersections of Hi-curves with the latitudes h ¼ hj, denoted by slashes in

Fig. 2. Details of an efficient implementation of the FSL scheme in 2D Cartesian geometry are given in [17].

In this paper, we focus on the formulation of the FSL scheme in spherical geometry.

To summarize our numerical method, each Lagrangian longitude, Hi is approximated by piecewise

great-circle segments [18]. This is analogous to using piecewise straight line segments in the case of a 2D

plane [17]. In addition, the Hi-curves are extended beyond the poles for interpolation in the h-direction. The
procedure for finding intermediate grid points is the same as in [18].

The cascade algorithm consists of two 1D interpolation phases, first along Hi-curves (vertical direction

in Fig. 2), followed by 1D interpolation along the latitude circles (horizontal direction). In the first phase,

the Lagrangian points are taken as nodes (see Fig. 2) and the intermediate points are target points. For the

second phase, intermediate points are the nodes and Eulerian grid points are the target points. Interpo-

lation along the Hi-curve is performed assuming the great-circle distance (arc length) along the curve is the

independent variable [18].

3.1. Cascade interpolation over the polar zones

Here, we introduce an efficient and accurate algorithm to compute the pole values. When the Eulerian

grid is uniformly spaced in the k-direction, with an even number of points, Hi-curves are extended by

adding a few segments of the piecewise great circle along the Lagrangian longitude, corresponding to the
Eulerian longitude k ¼ ki � p. If this is not the case, then the Hi-curve may be extended by adding segments
Fig. 2. Schematic diagram illustrating Eulerian (open squares) and Lagrangian (solid circles) points over the equatorial region of a

sphere. Eulerian grid lines are denoted by dashed lines and Lagrangian longitudes (Hi-curves) and latitudes are respectively denoted by

vertical and horizontal solid curves. Intermediate grid intersections of the Lagrangian longitudes and the Eulerian latitudes are marked

by the slashes.



Fig. 3. Schematic diagram illustrating cascade interpolation over the polar zones. Dashed lines depict Eulerian latitudes and longi-

tudes, respectively. The corresponding Lagrangian latitudes and longitudes (Hi-curves) are represented by solid curves. Eulerian and

Lagrangian poles are shown as an open square and a filled square, respectively. Intermediate grid intersections are marked by filled

circles. Dotted line indicates a great-circle trajectory connecting the Eulerian and Lagrangian poles.
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to the Lagrangian longitude nearest to the Hi-curve. The number of segments to be added depends on the

location of the Lagrangian pole with respect to the Eulerian pole. Fig. 3 illustrates the polar cascade stencil

as projected onto a polar stereographic plane. The regular Eulerian grid consists of dashed lines, while the

corresponding Lagrangian grid lines are solid curves. The Eulerian and Lagrangian poles are marked by

open and filled squares, respectively.

Cascade interpolation is modified for the polar regions. Values of the advected field located at La-

grangian grid points are transferred to intermediate locations (marked as filled circles in Fig. 3) by 1D cubic

(or high-order) interpolations. These are followed by 1D interpolations along latitude circles to transfer
data from intermediate locations to Eulerian grid points. However, values at the Eulerian pole points are

still undetermined. There are several ways to compute these values [18].

In this paper, the pole values are determined by interpolating along a great-circle trajectory joining the

Eulerian and Lagrangian pole points. This trajectory is schematically shown in Fig. 3 as a dotted line, and

cross marks (
) denote the intersection with regular Eulerian latitudes. Values at cross marks are obtained

by 1D interpolations performed along the latitude circles, during the second phase of a cascade cycle. One-

dimensional interpolations along the trajectories, determine the values at Eulerian pole points, with the

cross marks (
) as nodes.
4. Conservative FSL schemes

We now proceed to construct a conservative algorithm based on the cascade procedure described above.

The ‘‘advective’’ form of the transport equation (1) will not, in general, guarantee mass-conservation. Here,

we consider the integral form of the continuity equation,

oq
ot

þr � qu ¼ 0; ð11Þ
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as given in [12],

d

dt

Z
V ðtÞ

qdV ¼ 0; ð12Þ

where u is the velocity vector, d=dt is the total derivative, q is the density of the fluid, dV is the element of

volume integral, and the integration is over the time-dependent Lagrangian volume V ðtÞ. The value ofR
V ðtÞ qdV is the mass of the fluid enclosed in the volume V ðtÞ, and Eq. (12) states that the value is constant as
V ðtÞ moves with the local fluid velocity.

Integrating (12) from t to t þ Dt results in the semi-discretized formZ
V ðtþDtÞ

qdV ¼
Z
V ðtÞ

qdV : ð13Þ

In our conservative FSL scheme (FSLc), V ðtÞ is the Eulerian cell and V ðt þ DtÞ is the Lagrangian cell, as

shown by the shaded regions in Fig. 1. In order to formulate a forward time marching scheme, the mass in
Lagrangian cells at time t þ Dt must be transferred to regular Eulerian cells at the same time-level. This

process is often referred to as remapping [13,25–27].

4.1. Intermediate cells for the FSLc

Conservative cascade remapping is performed through an intermediate cell system (compared to the

intermediate grid system of the previous section). Recently, Nair et al. [26] developed a conservative cascade

scheme (hereafter referred to as CCS) on the sphere for backward-trajectory SL advection. Their scheme is

computationally efficient and applicable for polar meridional Courant number Ch 6 1. Some of the ideas

introduced in [26] are adopted here; however, the intermediate cell generation and special treatment for the

polar zones are modified in the context of forward trajectories.

The spherical ðk; hÞ domain is transformed to a Cartesian ðk; lÞ-plane, where l ¼ sin h, with the area-
preserving transformation described in [15,25,26], introducing variable resolution along the l-direction.
The CCS is implemented in the ðk; lÞ-system, including special treatment for polar zones, by restricting the

polar meridional Courant number, Ch 6 1. Thus, the Lagrangian pole is located within the first array of

Eulerian cells near the pole line ðl ¼ �1Þ.
To begin, we describe the cascade scheme away from the pole. The computational procedure is analo-

gous to the FSL described in the previous section. Lagrangian cells are approximated as polygons with sides

parallel to either the k or the l-axis [15,25]. In Fig. 4, Eulerian cells are shown as rectangles with corner

points depicted as open squares, the dotted lines indicate walls of an approximated Lagrangian cell,
hereafter referred to as a computational cell.

Initially, we construct the intermediate cells required in the first phase of the cascade interpolation.

Intermediate points are depicted as slashes in Fig. 4, and are computed as described previously for the FSL

scheme. Intermediate grid lines along the Hi-curves are approximated by piecewise straight line segments

through the midpoints of two adjacent intermediate points. These are shown as vertical piecewise dotted

lines in Fig. 4, will be the east or west walls of intermediate cells. The north and south walls of intermediate

cells are line segments of the corresponding horizontal Eulerian grid lines.

Computational cells are formed using intermediate cells. North and south walls are the horizontal lines
through midpoints between Lagrangian corner points. These walls are depicted as horizontal dotted lines in

Fig. 4. The east and west walls are constructed from intermediate cells as shown in Fig. 4. The shaded

region in Fig. 4 shows a typical computational cell, and such cells span the entire domain without over-

lapping or introducing disjoint regions.



Fig. 4. Schematic diagram illustrating the conservative cascade scheme (CCS) for FSL. Eulerian and Lagrangian points are shown as

open square and filled circles, respectively. Intermediate grid intersections are marked by slashes. Lagrangian cells are approximated as

polygons with sides (dotted lines) parallel to coordinate axes. The shaded region shows a single approximate Lagrangian cell (com-

putational cell).
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4.2. Conservative cascade remapping

Consider a ‘‘column’’ of contiguous computational cells bounded by two Hi-curves as depicted in Fig.

4. First, mass is transferred to intermediate cells by a 1D remapping. This is followed by 1D conser-

vative remapping where the mass in intermediate cells is transferred to Eulerian cells. Thus, in the first

phase of the CCS algorithm, the Lagrangian grid is the source grid and the intermediate grid is the

target grid. In the second phase, the intermediate grid is the source grid and the Eulerian grid is the

target grid.

The conservative remapping can be described in general terms using n as the independent variable. In

practice, n could be either k or l. In 1D, cell k is the region nk	1=2 6 n6 nkþ1=2 and has cell width Dnk ¼
nkþ1=2 	 nk	1=2. The density distribution function for cell k is denoted by hkðnÞ. The corresponding target cell
is identified by n0

k with width Dn0
k ¼ n0

kþ1=2 	 n0
k	1=2 such that

P
k Dnk ¼

P
k Dn0

k. Let hk be the average

density

hk ¼
1

Dnk

Z nkþ1=2

nk	1=2

hkðnÞdn: ð14Þ

The cell-averaged density in the target cell n0
k is

h
0
k ¼

1

Dn0
k

Z n0kþ1=2

n0k	1=2

hðnÞdn; ð15Þ

where hðnÞ is defined piecewise in the interval ½n0
i	1=2; n

0
iþ1=2�. Mass in the target cell can be computed based

on a 1D conservative remapping scheme [13,25,27]. The computation of hk at a new time level using (13) is

discussed in [25,26], and will not be presented here.

The density distribution (hkðnÞ) in the source cell is typically represented by a polynomial. However, we

adopt the PPM developed by Colella and Woodward [35], which uses a second-degree polynomial. This
method has proven to be cost-effective for meteorological modeling [15,25,26,29]. Note that, the coefficients

of the parabola hkðnÞ may be further modified to preserve monotonicity of the flow field [25,26,29].
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4.3. FSLc scheme over the polar regions

Application of the conservative cascade scheme requires special treatment near the poles. This is mainly

due to the polar singularities associated with the latitude–longitude grid system. Cell-based conservative SL

schemes require that the grid cells are well-defined (i.e., cell walls do not cross and the cells do not collapse

in a single time step, see [25,28,29]). Even with smaller time steps, this condition is likely to be violated for

the Lagrangian cell that includes the Eulerian pole because of the grid singularity [25,26].

Lagrangian cell walls are curved and poorly approximated as straight line segments in polar zones of the

ðk; lÞ system. In [25,26], additional points are introduced in the l-direction to circumvent this problem. For

the FSLc scheme considered here, the initial mass distribution is approximated without using any addi-
tional grid points. However, this may lead to a crude approximation of the mass for cells in the polar zones,

and may adversely affect local mass conservation, even though this approach is globally conservative. In

order to improve local mass conservation for these cells, we apply a modified version of the redistribution

technique described in [25,26].

To illustrate the cascade procedure near the polar zone, consider the north polar zone as shown in Fig. 5.

Typically, Lagrangian cells located in the first row away from the (Eulerian) pole line are the most de-

formed. (Note that, the pole depicted as an open square in Fig. 3, has been mapped to the top boundary line

segment in Fig. 5). The west and east walls are constructed with vertical line segments through the inter-
mediate grid points (shown as cross marks) of the south walls. The north walls of these cells coincide with

the polar line segment l ¼ 1. First, the total mass enclosed in a region formed by an array of computational

cells along the latitude is computed. Then, the total mass is redistributed to the target cells using the

‘‘weights’’ derived from the FSL method. The FSL scheme described in the previous section is not only

efficient but is also accurate for cross-polar advection. These properties of the FSL scheme can be exploited

for polar mass redistribution.

To calculate the weights, let di be the density in cell i, obtained by downstream cascade interpolation.

The approximate mass obtained by the FSL scheme for cell �i� is Mi ¼ jdijAi, where Ai is the area of the
target cell. Consider a horizontal belt of computational cells in the polar zone with total mass M . This total

mass is initially computed by applying the cascade method in the constituent cells, then taking the sum.

Using the weight

wi ¼
MiP
l Ml

; ð16Þ

the new mass in target cell �i� is Ci ¼ Mwi. Note that
P

i Ci ¼ M , so that the scheme is conservative.
Fig. 5. Schematic illustration of the computational cells used near the polar zones of ðk;lÞ-plane. The Lagrangian latitudes are shown
as dashed horizontal curves with filled circles denoting Lagrangian points, and cross marks denote intermediate grid points. The

Lagrangian pole is shown as a filled square and located in an Eulerian cell with north and south walls bounded by the pole line and first

latitude from the pole, respectively (Ch 6 1). The dotted straight line segments represent the walls of the computational cells.
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Once the redistribution in horizontal cells (k-direction) is complete, the same approach can be applied in
the vertical direction (l-direction), but only near the poles. The modified mass along the horizontal belts is

used for redistribution in the vertical direction, where cells from the belt on either side of the pole point

(when viewed from above the pole) are symmetrically arranged in a column with the pole point in

the middle. In the present context, a column of six cells, three each from either side of the pole, is used. The

weights for vertical redistribution are determined from the FSL method using Eq. (16), however, the

summation for six vertical cells and corresponding values ofMi are used. This represents an improvement of

the method originally introduced in [25].
When the polar meridional Courant number, Ch > 1, the conservative option of the cascade scheme fails

[26]. Therefore, the present form of FSLc is not applicable. A possible remedy is to combine the FSLc

scheme with a 2D remapping algorithm, such as one presented in [25], over the polar regions. However, this

is beyond the scope of present study.
5. Numerical experiments

Cross-polar advection is considered to be the most challenging aspect of global transport, especially

when attempting to maintain accuracy. Here, we consider solid-body rotation and deformational flow tests,

over the poles, to evaluate the performance of both the FSL and FSLc schemes. If F ¼ F ðk; h; tÞ is the
advected field (density), then the normalized errors are defined by [39],

l1 ¼
IðjF 	 FTjÞ
IðjFTjÞ

;

l2 ¼
I ½ðF 	 FTÞ2�
I ½ðFTÞ2�

" #1=2

;

l1 ¼ max8k;h jF 	 FTj
max 8k;h jFTj

;

M ¼ IðF Þ 	 IðFTÞ
IðF0Þ

;

Fmax ¼
max8k;hðF Þ 	max 8k;hðFTÞ

DF0

Fmin ¼
min8k;hðF Þ 	min 8k;hðFTÞ

DF0
;

where FT and F0 are, respectively, the true solution and its initial value, DF0 is the difference between the

maximum and minimum solution at initial time, and the global integral I is as defined follows,

IðF Þ ¼ 1

4p

Z 2p

0

Z p=2

	p=2
F ðk; h; tÞ cos hdkdh: ð17Þ

The integral IðF Þ is computed as the sum over grid point values for discrete truncation.

5.1. Solid-body rotation tests

First, we consider the ‘‘cosine bell’’ test problem proposed by Williamson et al. [39]. This problem is

widely used to evaluate global advection schemes (see [18,25,29,38]). Because the exact trajectory of the
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advecting field and exact solution for the problem are known, this test is very useful for checking the ac-

curacy of the computed trajectory and the numerical solutions.

The initial scalar (density) distribution is defined as follows,

F ðk; hÞ ¼
1
2
1þ cosðpr=RÞ½ � if r < R;

0 if rPR;



ð18Þ

where r is the great-circle distance between ðk; hÞ and the bell center. The bell radius R is 7p=64, is initially
centered at ð3p=2; 0Þ. The computational domain consists of 128
 65 grid points, including the poles

[25,26]. For the FSLc scheme, cell-centered values (128
 64) are used. Velocity components of the ad-

vecting wind field are

u ¼ u0ðcos a cos h þ sin a cos k sin hÞ;
v ¼ 	u0 sin a sin k;

where a is the angle between the axis of solid-body rotation and the polar axis of the spherical coordinate

system [39]. When a is zero or p=2, flow is along the equator (zonal) or along the pole-to-pole (meridional)

direction, respectively. Here, we focus on cross-polar advection where the flow is meridional, a ¼ p=2 or

a ¼ p=2	 0:05. The latter corresponds to an offset polar flow that avoids symmetry with respect to the

spherical grid system.

We also consider the ‘‘slotted cylinder’’ problem [41], where the initial data is not smooth, unlike the

previous case. The cylinder has radius 10p=64 units initially located on the equator at ð3p=2; 0Þ. A constant

value (0:05) is added to the initial field so that the maximum height of the cylinder is 1:05 units.

5.1.1. Trajectory error

Forward trajectories are computed using Ty3, RK3 and RK2, as described in Section 2. The accuracy of

the trajectories is measured using the L2 norm as follows,

L2 ¼ I ½ðxa
�

	 x�
aÞ

2�
�1=2

; ð19Þ

where x�
a and xa are, respectively, the exact and computed arrival points, and I is the global integral defined

by (17).

The Runge–Kutta schemes use either cubic or linear interpolation to estimate the wind fields at inter-

mediate time levels. Table 1 shows the absolute L2 error for these schemes.
Third-order schemes give better results, as expected. However, RK3 with cubic interpolation is com-

putationally more expensive than Ty3, where the wind fields are interpolated twice per time step. RK2 with

cubic interpolation is slightly less accurate compared to RK3, but requires only one interpolation per time

step. The third-order RK3 scheme with linear interpolation does not show an improvement in accuracy

over the less expensive RK2. One possible reason for this could be the dominance of spatial error in RK3

[31]. The error analysis study of Falcone and Ferretti [32], for backward-trajectory SL schemes indicates

that the overall error is of the form OðDtk þ Dxpþ1=DtÞ, where k refers to the time integration scheme order

and p to the interpolation order. A similar analysis would be required [16,33], in the forward trajectory

context, to establish the role of spatial and temporal errors.
Table 1

The absolute L2 errors for the three different trajectory integration schemes

Scheme Ty3 RK3 (cubic) RK2 (cubic) RK3 (linear) RK2 (linear)

L2 error 7:827
 10	7 8:038
 10	7 4:139
 10	6 1:423
 10	5 1:285
 10	5
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5.1.2. Solid-body rotation test results

Fig. 6(a) shows the numerical solution with the FSL scheme combined with cubic Lagrange interpo-

lation. Here, the computed trajectories (Ty3) are used. (The results with exact trajectories and those

computed with RK3 are found to be visually indistinguishable.) In Fig. 6(a), the top left and right panels

show the bell approaching and passing over the north pole. The bottom left panel shows the bell leaving the

north pole after 72 time steps while the bottom right panel shows the bell after one complete revolution (256
(a)

(b)

Fig. 6. (a) Orthographic projection for solid-body rotation of a cosine-bell approaching, passing over and leaving the north polar

region of the sphere at time-steps 56, 64 and 72, respectively. The bottom right panel shows the cosine-bell after one revolution (256

time steps) located at the initial position, the exact solution is shown as dashed contours. (b) Orthographic projection for the offset

(a ¼ p=2	 0:05) solid-body rotation of a cosine-bell over the north pole (left panel) and on the equator (right panel) after one complete

revolution. Conservative version of FSL scheme is used for the numerical integration, the exact solution is shown as dashed contours.
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time steps). The numerical solution does not appear to exhibit any noise while crossing over the pole. Note

that, in Fig. 6(a) the cosine-bell moves from the bottom to the top for each panel and contour values vary

from 0.1 to 0.9 from the outermost to the innermost, respectively. When compared to the exact solution

(dashed contour), the pattern seems to have slightly stretched along the flow direction, which is typical for

cubic Lagrange interpolation (see similar results in [18]). The quality of the numerical solution may be

further improved using a 1D version of cubic splines or Hermite polynomials for interpolation [18,38].

For the FSLc scheme, these experiments were repeated. Here, the initial field (density) is treated as cell-

centered averages. There are 128
 64 cells spanning the surface of the sphere. Fig. 6(b) shows the nu-
merical solution with the FSLc scheme, where the wind flow is off-centered (a ¼ p=2	 0:05). The left panel
in Fig. 6(b) shows the numerical solution over the pole after 64 time steps, where the dashed contours are

the exact solution. The right panel in Fig. 6(b) shows the numerical solution after one revolution (256 time

steps) centered on the equator (initial position). The exact solution is marked by dashed contours, the

numerical solution deforms slightly from the exact solution as the cosine-bell moves around the sphere.

Numerical results with solid-body rotation of the cosine bell are presented in Table 2. Exact trajectories

are used for this set of experiments, so the interpolation scheme is the only source of error. Results from the

backward-trajectory SL scheme with cascade cubic interpolation (BSL) [18] are included in Table 2 for
comparison. The normalized errors Fmax and Fmin show that FSL scheme performs slightly better than the

BSL. The l1 error is much better for FSL scheme as compared to BSL. The polar cascade procedure used

for the FSL scheme leads to a significant improvement in the error, particularly the l1 error.

Fig. 7 shows a cross-sectional view of the scalar fields after one complete revolution, located on the

equator. The top panels in Fig. 7 show the cosine bell for the FSL (left panel) and FSLc (right panel)

schemes. The height of the bell has reduced for the numerical solution (dashed-dotted line) as compared to

the exact solution (solid thin line). The lower panels in Fig. 7 show the numerical solution for the slotted

cylinder, for FSL (left panel) and the FSLc scheme. The numerical solution has spurious oscillations near
sharp edges, however, the monotonic version of the FSLc scheme completely removes the noise (solid thick

line in the bottom right panel).

The FSLc results are listed in the last two rows of Table 2. The PPM-based conservative scheme is more

accurate in l1, l2 and Fmin as compared to FSL and BSL. For the CCS in [26], the corresponding l1, l2 and
l1 errors for solid-body rotation case (a ¼ p=2) are 0.053, 0.047 and 0.049, respectively. These are more

accurate than the results obtained with the present version of FSLc scheme. The FSLc does not use a filter

to smooth out noise while crossing over the pole. Accuracy of the FSLc scheme might be further enhanced

at the cost of additional computation, by adding grid points along the vertical walls of the Lagrangian cell
near the polar zones, as suggested in [25,26]. Nevertheless, we do not use this option to improve the ac-

curacy for FSLc, because our aim is to introduce a simple and efficient polar mass redistribution method for

the conservative cascade scheme.

Computational efficiency of the FSLc scheme was measured with respect to the CCS scheme of [26],

without the code optimization. For the solid-body rotation test with exact trajectories, the FSLc was found
Table 2

The normalized standard global errors for the FSL schemes, the conservative version of FSL scheme (FSLc) is also shown

Scheme l1 l2 l1 M Fmax Fmin

FSL ða ¼ p=2Þ 0.231 0.141 0.113 0.0063 	0:113 	0:031
FSL ða ¼ p=2	 0:05Þ 0.231 0.141 0.117 0.0037 	0:117 	0:029
BSL ða ¼ p=2Þ 0.235 0.144 0.121 0.0067 	0:121 	0:034
BSL ða ¼ p=2	 0:05Þ 0.234 0.144 0.120 0.0039 	0:120 	0:030
FSLc ða ¼ p=2Þ 0.132 0.115 0.146 0.0a 	0:136 	0:007
FSLc ða ¼ p=2	 0:05Þ 0.133 0.115 0.151 0.0a 	0:134 	0:006
aNote that the mass errorsM for the FSLc scheme are of the order of machine precision, and therefore these error values are set to 0.0.



Fig. 7. Cross-sectional plots (along the equator) for the cosine-bell (top two panels) and the slotted cylinder (bottom two panels), after

one revolution along the pole-to-pole direction. The initial solutions are shown as thin lines and the dashed-dotted lines show the

numerical solutions. The monotonic solution for the FSLc is shown as thick line, in the bottom right panel.
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to be approximately 1.1 times faster than the CCS (without filters) in [26]. This also indicates that the FSLc

is more than twice as efficient as conventional BSL scheme (see [26]).

5.1.3. Order of accuracy of the FSLc scheme

In this section, we provide computational evidence that the method is at least second-order accurate.

First, the time step is refined, demonstrating that the error is dominated by spatial terms (see Table 3).
Here, we compute the absolute errors ‘1, ‘2 and ‘1 corresponding to the non-normalized l1, l2 and l1
errors, respectively. Even though the ‘1 error decays slightly, the ‘2 and ‘1 errors are nearly identical,

indicating the spatial dominance. The second experiment examines the spatial discretization errors and the

third experiment involves refinement in both space and time.

Represent the error as a truncation of a discretization parameter d as EðdÞ ¼ kUcomputed 	 Uexactk, where
Dt ¼ OðdÞ and the spacing between grid points has the same magnitude as d. Based on the assumption that

EðdÞ ¼ OðdpÞ for some p, we make the ansatz EðdÞ ¼ Kdp, where K is constant across all experiments. Of
Table 3

Absolute errors for the FSLc with different time steps

Grid Time step ‘1 ‘2 ‘1

64
 33 512 0.1174 0.1247 0.4519

64
 33 256 0.0796 0.1181 0.4450

64
 33 128 0.0659 0.1074 0.4101
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course, K will have some variation. However, this ansatz gives an estimate of the order. Thus, we estimate

p 
 pest with the formula

pest ¼ log2
EðdÞ

Eðd=2Þ

� �
:

Results from refining the spatial grid (keeping the temporal spacing constant) are presented in Table 4.

Most truncation error analyses utilize the ‘2-norm, and the ‘2-norm results indicate second-order accuracy

(pest 
 2). Refining space and time together is studied in Table 5, where we see additional evidence of

second-order accuracy. These tests do not prove the order of accuracy; rather, we seek to simply provide an

indication that the methods are second-order accurate. To conclude the method is formally second-order, a

truncation error analysis is required.

5.2. Deformational flow test

For the deformational flow test, we use the idealized cyclogenesis problem [36] in spherical geometry

[18]. The smooth deformational flow test on the surface of the sphere is described in [25,26], and is con-

sidered here for FSLc scheme. Two steady vortices are simulated such that each vortex center is located
near the north and south poles, respectively. The normalized tangential velocity of the vortex field is given

by

Vt ¼
3

ffiffiffi
2

p

2
sech2ðq0Þ tanhðq0Þ;

where q0 is ‘‘radius’’ of the vortex. The exact solution at time t is

F ðk0; h0; tÞ ¼ 1	 tanh
q0

c
sinðk0

�
	 x0tÞ

�
;

where ðk0; h0Þ are the rotated spherical coordinates with poles at the vortex centers, c is the parameter that
defines characteristic width [18], x0 ¼ x0ðh0Þ is the angular velocity and q0 ¼ q0ðh0Þ. For the definition of

these and other parameters defining the vortex, see [25,26].
Table 4

Absolute errors for the three different grid resolution for FSLc with same number of time steps

Grid Time step ‘1 ‘2 ‘1

EðdÞ pest EðdÞ pest EðdÞ pest

64
 33 512 0.1174 (. . .) 0.1247 (. . .) 0.4520 (. . .)

128
 65 512 0.0176 (2.7) 0.0345 (1.8) 0.1684 (1.4)

256
 129 512 0.0021 (3.0) 0.0045 (2.9) 0.0313 (2.4)

Table 5

Absolute errors for the three different grid resolution for the FSLc with variable time steps

Grid Time step ‘1 ‘2 ‘1

EðdÞ pest EðdÞ pest EðdÞ pest

64
 33 128 0.0659 (. . .) 0.1074 (. . .) 0.4101 (. . .)

128
 65 256 0.0144 (2.2) 0.0291 (1.9) 0.1425 (1.6)

256
 129 512 0.0021 (2.8) 0.0045 (2.7) 0.0316 (2.2)



Fig. 8. Orthographic projection for the polar vortex with center located near the north pole. The exact and numerical solution with

FSLc are shown respectively, in the left and the right panels, at t ¼ 3, and that corresponds to 64 time steps for the FSLc scheme.
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The vortex centers are located at approximately 81� north and south latitudes, respectively. The initial

values F ðk0; h0; t ¼ 0Þ are generated at the cell centers on a 128
 64 grid and integrated for 3 time units with

64 time steps, corresponding to directional maximum Courant numbers Ck ¼ 19:1 and Ch ¼ 0:82, respec-
tively. Fig. 8 shows exact and numerical solutions with FSLc after t ¼ 3 time units. The relative errors l1, l2
and l1 for the FSLc scheme are 0.0015, 0.0043 and 0.0334, respectively. These results are slightly less
accurate than that of the CCS scheme in [26], but better than a traditional SL scheme with bicubic Lagrange

interpolation (see, Table 2 of [26]). Exact trajectories are used for numerical integration. The numerical

solution is similar to the exact solution with the overall structure of the vortex well captured by FSLc.

However, a slight degradation near the center of the vortex is visible for the numerical solution, comparable

to the results given in [25,26].
6. Summary and conclusions

A computationally efficient forward-trajectory semi-Lagrangian scheme (FSL) for advection on the

surface of a sphere was developed. The scheme uses forward trajectories, originating on a regular grid

(Eulerian points) and terminating at the downstream (Lagrangian) points. The accuracy of the FSL scheme

was evaluated using two test problems, solid-body rotation and deformational flow near the poles.

At every time step, the advecting field is transferred from the irregular Lagrangian grid to the regular

Eulerian grid by means of cascade interpolation through an intermediate grid system. The cascade method

presented here can be used for a SL scheme (with forward or backward trajectories) on a latitude–longitude
spherical grid. The global cascade scheme developed by Nair et al. [18], employed an alternative inter-

mediate grid system where the number of longitudes is assumed to be even. In general, this approach cannot

be used for a variable-resolution global grid, and the pole values are estimated in an arbitrary manner. The

cascade procedure proposed here is free from these limitations. Moreover, the FSL scheme can handle the

pole problem efficiently, because the pole values are estimated accurately by interpolating along the polar

trajectory connecting Lagrangian and Eulerian poles.

Most SL schemes employ OðDt2Þ backward-trajectory iterative schemes for estimating upstream posi-

tions. This is a computationally expensive component of the SL advection process. Backward trajectories
imply simple upstream interpolation, where the nodes are regularly spaced grid points. A forward-trajec-

tory SL scheme necessitates downstream interpolation, where data are transferred from an irregular to
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regular grid. On the sphere, standard multi-dimensional interpolation is computationally prohibitive.

However, with the global cascade approach presented here, calculations are more efficient. The FSL scheme

avoids the iterative search process and high-order trajectory integration (ODE) schemes can be easily in-

corporated. Numerical experiments with the FSL scheme show that its accuracy is comparable to the

traditional SL scheme.

Two OðDt3Þ accurate trajectory algorithms based on the Taylor series expansion [19] and Runge–Kutta

(RK3) scheme were evaluated. The ODEs are solved in Cartesian ðx; y; zÞ coordinates, but function values

are estimated in ðk; hÞ coordinates and transformed back to the corresponding Cartesian coordinates. This
approach is particularly useful for solving the trajectory equations in the polar zones. A second-order ac-

curate Runge–Kutta scheme was tested for comparison. To maintain high-order accuracy, the Runge–Kutta

schemes optionally implements cubic interpolation for estimating function values at intermediate time-

levels. However, this may be expensive, particularly for third or higher-order Runge–Kutta schemes. For

practical applications, a low-storage Runge–Kutta scheme [40] may be desirable. McGregor�s scheme, based
on the Taylor method (Ty3) was found to be much less expensive compared to RK3 (with cubic interpo-

lation), and had comparable accuracy. For practical application on the sphere, Ty3 is an appropriate choice,

because it is easy to implement and the order of accuracy can be increased in a less expensive way. High-
order Adam–Bashforth schemes may be an interesting alternative for forward-trajectory integration [8,11].

A conservative version of the FSL algorithm, FSLc was developed and tested using solid-body rotation

and deformational flow. The scheme employs 1D piecewise parabolic remapping, and was developed in the

cascade interpolation framework. The FSLc scheme is approximately 10% more efficient than the back-

ward-trajectory conservative cascade scheme. The accuracy of FSLc is comparable to or better than that of

the standard SL scheme employing cubic Lagrange interpolation. A simple polar mass redistribution

method works well for maintaining accuracy, and the FSLc does not use any polar filter. The accuracy of

the FSLc can be further improved by introducing additional cell arrays around the pole as described in
[25,26]. At present, the FSLc scheme is restricted to meridional polar Courant number Ch 6 1 and is free

from zonal Courant number Ck restriction. The major difficulty in using finite-volume based methods for

the conventional ðk; hÞ grid system (or the equivalent ðk; lÞ grid), is related to the remapping of cells which

deform. Mass redistribution methods such as the one used here, may be an easy and cost-effective way to

avoid this problem. However, they do not guarantee local mass conservation for the polar regions. A

comprehensive polar remapping strategy (free from Ch, Ck restriction) is under development.
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