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ABSTRACT

A conservative transport scheme based on the discontinuous Galerkin (DG) method has been developed
for the cubed sphere. Two different central projection methods, equidistant and equiangular, are employed
for mapping between the inscribed cube and the sphere. These mappings divide the spherical surface into
six identical subdomains, and the resulting grid is free from singularities. Two standard advection tests,
solid-body rotation and deformational flow, were performed to evaluate the DG scheme. Time integration
relies on a third-order total variation diminishing (TVD) Runge–Kutta scheme without a limiter. The
numerical solutions are accurate and neither exhibit shocks nor discontinuities at cube-face edges and
vertices. The numerical results are either comparable or better than a standard spectral element method. In
particular, it was found that the standard relative error metrics are significantly smaller for the equiangular
as opposed to the equidistant projection.

1. Introduction

Recent paradigm shifts in large-scale scientific com-
puting have motivated investigations into numerical
methods that are more suitable for distributed-memory
parallel computers. In atmospheric modeling, global
spectral methods have dominated for the past two de-
cades in weather and climate simulation. However,
global methods based upon the spherical harmonic ba-
sis functions require expensive nonlocal communica-
tion operations and thus have difficulty in exploiting
the full potential of current high-performance parallel
computers. In recent years, research has focused on
local methods such as spectral elements (e.g., Taylor et
al. 1997; Thomas and Loft 2002; Giraldo and Rosmond
2004; Fournier et al. 2004) and alternatives to the stan-
dard latitude–longitude grid in spherical geometry. Of
particular interest are geometries that are free from
singularites at the poles, such as the cubed sphere (Ron-
chi et al. 1996; Rančić et al. 1996) and geodesic grids
(Randall et al. 2002). Geometric flexibilty in combina-
tion with high-order numerics is also desirable in order
to support local grid refinement and adaptive solution
techniques. Indeed, these are the main advantages of

the discontinuous Galerkin (DG) method. In addition,
the DG scheme is both globally and locally conserva-
tive, making it an ideal candidate for atmospheric mod-
eling applications. Thus, in this paper, a discontinuous
Galerkin transport scheme is developed and applied to
the 2D mass continuity equation, expressed in general-
ized curvilinear coordinates on the cubed sphere.

The discontinuous Galerkin method is a type of fi-
nite-element method that permits discontinuities of the
numerical solution to exist at interelement interfaces.
The Riemann problem at an element interface is solved
using techniques found in the finite-volume literature.
The DG method was originally introduced by Reed and
Hill (1973) and later mathematically analyzed by Le-
saint and Raviart (1974) for the linear advection equa-
tion. In a series of papers, Cockburn and Shu (1989,
1998) developed a high-order accurate total variation
bounded Runge–Kutta discontinuous Galerkin
(RKDG) method for the solution of nonlinear systems
of conservation laws. They introduced Runge–Kutta
(RK) integration for the DG method combined with
slope limiters to control spurious oscillations. The re-
sulting scheme was shown to be formally high-order
accurate and nonlinearly stable. The DG method be-
came very popular in different branches of computa-
tional science after the introduction of RKDG. A com-
prehensive review of RKDG is given in Cockburn and
Shu (2001), and examples of applications can be found
in Cockburn et al. (2000).

Recently, Giraldo et al. (2002) developed a global
DG shallow water model using the constrained 3D
equations of motion in Cartesian coordinates and dem-
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onstrated its application on an icosahedral grid. How-
ever, the DG method on the sphere considered here is
significantly different from Giraldo et al. (2002). The
main differences include the issues of basic formula-
tion, spatial discretization, and time integration. Gi-
raldo et al. (2002) have used the 3D Cartesian equa-
tions to solve a 2D problem on the sphere. This formu-
lation not only increases the dimensionality of the
problem but also imposes an additional constraint on
the system of equations. We have employed a 2D for-
mulation in curvilinear coordinates (tensor form). Our
implementation of a DG scheme is on the cubed
sphere, and equiangular (central) projection results in a
much more uniform distribution of grid points. The DG
scheme in Giraldo et al. (2002) employs an icosahedral
grid and a nodal expansion for the spatial discretiza-
tion. We instead use a modal expansion, namely be-
cause it is straightforward to incorporate element-based
(adaptive) limiting and p refinement, in contrast with
the nodal expansion approach (Henderson 1999). We
use a third-order total variation diminishing (TVD)
Runge–Kutta scheme for time integration, whereas Gi-
raldo et al. (2002) apply a fourth-order non-TVD–RK
method and optionally use a filter to reduce oscilla-
tions. No filters or additional dissipation mechanisms of
any kind are applied during the time integration. We
adopt a TVD–RK scheme because this will help us to
develop a fully TVD approach for future work. A TVD
scheme preserves strong stability (Gottlieb et al. 2001),
implying that no new local minima or maxima will be
generated.

This paper is organized as follows: In section 2 we
describe the basic DG discretization in 1D, and the
extension to two dimensions is presented in section 3.
Section 4 describes the implementation of DG on the
cubed sphere. Numerical experiments are presented in
section 5, and these are followed by conclusions in sec-
tion 6.

2. DG in one dimension

To introduce the basic DG discretization and associ-
ated notation, consider the following initial value prob-
lem for a one-dimensional scalar conservation law:

�U

�t
�

�F �U�

�x
� 0 in � � �0, T�, �1�

with the initial condition

U0�x� � U�x, t � 0�, �x � �.

It is assumed that the spatial domain � is periodic and
partitioned into nonoverlapping elements (intervals)
Ij � [xj�1/2, xj�1/2], j � 1, . . . , Nj. Let �xj � xj�1/2 �
xj�1/2 be the width of an element and define the mid-
point of an interval to be xj � (xj�1/2 � xj�1/2)/2.

A weak formulation of the problem is obtained by

multiplying (1) by an arbitrary smooth test function
	(x) and integrating over an element Ij,

�
Ij

��U

�t
�

�F �U�

�x � ��x�dx � 0. �2�

Integrating the second term of (2) by parts yields

�
Ij

�U�x, t�

�t
��x�dx � �

Ij

F 
U�x, t��
���x�

�x
dx

� F 
U�xj�1�2, t�� ��xj�1�2
� �� F 
U�xj�1�2, t�� ��xj�1�2

� �� 0,

�3�

where 	(x�
j�1/2) and 	(x�

j�1/2) are the values of the func-
tion 	(x) at the end points xj�1/2 and xj�1/2 of the ele-
ment Ij, respectively.

At an interface between elements (e.g., the points
xj�1/2), the flux function F is not uniquely defined, and
a suitable numerical flux must be determined according
to the classical finite-volume method. For example, the
nonlinear flux function F [U(xj�1/2, t)] is replaced by a
numerical flux F̂(U)j�1/2(t) that depends on two values,
the left and right limits of the discontinuous function U
evaluated at the interface xj�1/2 such that

F̂ �U�j�1�2�t� � F̂ 
U�xj�1�2
� , t�, U�xj�1�2

� , t��. �4�

A variety of numerical fluxes are available to approxi-
mate the solution of the resulting Riemann problem
(see Cockburn and Shu 2001). However, the Lax–
Friedrichs numerical flux was chosen for the present
study because of its simplicity:

F̂ �a, b� �
1
2

F �a� � F �b� � ��b � a��, �5�

where  is specified as the upper bound on |F�(U) | for
a scalar problem.

a. Space discretization

Let Vk
h be a finite dimensional space such that Vk

h �
{p:p | Ij

� �k(Ij)} where �k(Ij) is the space of polynomials
in Ij of degree at most k, �j � 1, . . . , Nj. The algorithm
for solving (3) involves finding an approximate solution
Uh(x, t) � U(x, t), for each time t � (0, �), such that the
test function 	h � 	 belongs to Vk

h. In a Galerkin finite-
element method, the test functions and the solution
both come from the same space.

For the approximate solution Uh(x, t), the DG space
discretization based on the weak formulation (3) is
written as follows:

�
Ij

�Uh�x, t�

�t
�h�x�dx � �

Ij

F 
Uh�x, t��
��h�x�

�x
dx

� 
F̂ �Uh�j�1�2�t� �h�xj�1�2
� �

� F̂ �Uh�j�1�2�t� �h�xj�1�2
� ��, �6�

where 	h � Vk
h, �Ij, j � 1, . . . , Nj.
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A high-order Gaussian quadrature rule is applied to
evaluate the integral on the right-hand side of (6) and
the numerical flux term is computed according to (5). A
local coordinate variable � is defined by an affine trans-
formation mapping an element Ij onto [�1,1],

� �
2�x � xj�

�xj
⇒ dx �

�xj

2
d�,

�

�x
�

2
�xj

�

��
. �7�

The natural choice for the set of basis functions span-
ning the space Vk

h are the Legendre polynomials, B �
{P�(�), � � 0, 1, . . . , k}. A major advantage of this
choice is that the computations associated with (6) are
greatly simplified by the L2 orthogonality properties of
Legendre polynomials. The approximate solution in el-
ement Ij is denoted Uj(�, t), and is expressed in terms of
the variable �,

Uj��, t� � �
��0

k

Uj
��t� P���� for � � 
�1, 1�. �8�

The orthogonality of P�(�) implies that

�
�1

1

P���� Pm��� d� �
2

2� � 1
	�m, �9�

and the expansion coefficients (or degrees of freedom)
U�

j in (8) are given by

Uj
��t� �

2� � 1
2 �

�1

1

Uj��, t� P���� d� � � 0, 1, . . . , k.

�10�

To obtain a simplified form for (6), replace 	h and Uh

in (6) by P�(�) and apply the summation in (8). Next, by
employing the transformation (7), the relations P�(1) �
1, P�(�1) � (�1)�, and (9), it follows that

d

dt
Uj

��t� �
2� � 1

�xj
��

�1

1

F 
Uj��, t��
�P����

��
d�

� �F̂ 
Uj�1���t� � ��1��F̂ 
Uj��1���t���.

�11�

The initial values of U�
j (t � 0) are obtained by project-

ing the initial condition U0[x(�)] onto Vk
h using (10).

The basis considered above is often referred to as a
modal basis. In this case, there is a hierarchy of
modes—starting with the constant mode, proceeding
with the linear, the quadratic, and the cubic up to the
kth mode. The kth mode represents the polynomial of
maximum degree k in B. Such a basis can easily acco-
modate hierarchial p refinement by increasing the or-
der of the polynomial. Moreover, element-wise adap-
tive limiting (Biswas et al. 1994) can be easily incorpo-
rated for the DG method based on a modal basis. An
alternative choice is a nodal basis, which is widely used
in spectral element (SE) methods. This basis set is con-

structed utilizing the Lagrangian interpolants of degree
k on a Gauss–Lobatto–Legendre (GLL) grid. Giraldo
et al. (2002) have used a nodal basis for their DG
method. However, the choice of a nodal basis makes
the DG method less flexible as far as adaptive limiting
and p refinement are concerned. The relative merits of
these two approaches are discussed in Karniadakis and
Sherwin (1999) and Henderson (1999).

b. Time integration

The semidiscretized Eq. (11) is an ordinary differen-
tial equation (ODE) that can be written in the more
compact form

d

dt
U � L�U� in �0, T�. �12�

A number of time integrators are available for solving
(12). A TVD–RK scheme can remove oscillations due
to time discretization. For the present study we adopt a
third-order TVD–RK scheme (Shu 1988; Gottlieb et al.
2001) as follows:

U�1� � Un � �tL�Un�,

U�2� �
3
4

Un �
1
4

U�1� �
1
4

�tL�U�1��,

Un�1 �
1
3

Un �
2
3

U�2� �
2
3

�tL�U�2��,

�13�

where the superscripts n and n � 1 denote time levels t
and t � �t, respectively. The above scheme is suitable
when the solution is smooth. However, if the solution
contains strong shocks or discontinuities, oscillations
that lead to nonlinear instabilities will appear. A TVD–
RK time-integration scheme cannot alone control such
undesirable effects, and a slope limiter is required after
each step of the RK time integration (13). Minmod-
type limiters (Cockburn and Shu 1989) and moment-
based limiters (Biswas et al. 1994) are typically used to
control these oscillations. Slope-limiting algorithms
have been developed for finite-volume applications and
these could be extended to DG methods. Limiters and
filters have not been applied in the present study.

The Courant number for the DG scheme is estimated
to be 1/(2k � 1), where k is the degree of the polyno-
mial; however, no theoretical proof exists when k � 1
(see Cockburn and Shu 1989).

3. DG in two dimensions

Now consider the following 2D scalar conservation
law:

�U

�t
� 
 · F�U� � 0, in � � �0, T�, �14�

for all (x, y) � �. Here, � � (�/�x, �/�y) is the 2D
gradient operator. The flux function is F � (F, G) and
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U � U(x, y, t). The initial condition for the problem is
U0(x, y) � U(x, y, t � 0), and the rectangular domain �
is periodic in both the x and y directions. Following the
derivation of the previous section, extension of the 1D
discretization to 2D is straightforward.

The domain � is partitioned into Nx � Ny rectangu-
lar nonoverlapping elements �ij such that

�ij � ��x, y� |x � 
xi�1�2, xi�1�2�, y � 
yj�1�2, yj�1�2��,

�15�

for i � 1, 2, . . . , Nx; j � 1, 2, . . . , Ny.
The size of an element �ij is determined by �xi �

(xi�1/2 � xi�1/2) and �yj � (yj�1/2 � yj�1/2) in the x and
y directions, respectively. Consider an element �ij in
the partition of � and an approximate solution Uh � Vk

h.
Multiplication of (14) by a test function 	h(x, y) � Vk

h

and integration over the element �ij results in a weak
Galerkin formulation of the problem, analogous to (3):

�

�t��ij

Uh�x, y, t� �h�x, y� d�

� �
�ij

F
Uh�x, y, t�� · 
��x, y� d�

� �
��ij

F
Uh�x, y, t�� · n �h�x, y�ds � 0, �16�

where n is the outward-facing unit normal vector on the
element boundary ��ij. The analytic flux F(Uh) • n in
(16) is replaced by a specific numerical flux F̂(U�

h , U�
h )

such as the Lax–Friedrichs flux (5). The numerical flux
resolves the discontinuity along the element edges and
provides the only mechanism by which adjacent ele-
ments interact.

A set of local orthogonal basis function B and local
variables (�, �) for each element are chosen as in the 1D
case

� �
2�x � xi�

�xi
, � �

2�y � yj�

�yj
, �17�

where xi � (xi�1/2 � xi�1/2)/2, yj � (yj�1/2 � yj�1/2)/2.
The transformation (17) maps �ij onto the reference
element �̃ij � 
�1, 1] � 
�1, 1]. In the (�, �) coordinate
system, the test function is chosen to be a tensor prod-
uct of the Legendre polynomials P�(�) Pm(�), and the
approximate solution Uij (�, �, t) is expanded in terms
of the basis functions in B,

Uij��, �, t� � �
��0

k

�
m�0

k

Ûij�m�t� P���� Pm��� for

�1 � �, � � 1, �18�

where Ûij�m(t) is given by

Ûij�m�t� �
�2� � 1��2m � 1�

4 �
�1

1 �
�1

1

U��, �, t� P����

Pm��� d� d�. �19�

The weak formulation (16) is simplified by mapping
the integrals onto �̃ij using the transformation (17) and
exploiting the properties of Legendre polynomials. The
computational formulation is analogous to (11) and is
written as follows:

d

dt
Ûij�m�t� �

�2� � 1��2m � 1�
2�xi�yj


IQ � IF � IG�, �20�

where

IQ � �
�1

1 �
�1

1 ��yjF 
U��, �, t��
�P����

��
Pm���

� �xiG
U��, �, t��P����
�Pm���

�� �d�d�, �21�

IF � ��yj�
�1

1

�F̂ 
U�1, ����t� � ��1��

F̂ 
U��1, ����t�� Pm��� d�, �22�

IG � ��xi�
�1

1

�Ĝ
U��, 1���t� � ��1�m

Ĝ
U��, � 1���t�� P���� d�. �23�

Here, IQ is the surface integral for the gradient term in
(16), and IF and IG are boundary flux integrals in the x
and y directions, respectively. These integrals are evalu-
ated with a high-order accurate GLL quadrature rule; F̂
and Ĝ are numerical fluxes (4) at the element inter-
faces. The ODE (20) is then solved by the procedure
given in (13).

According to the analysis performed in Cockburn
and Shu (1989), a quadrature rule for the edges of the
element (flux integrals IF and IG), must be exact for
polynomials of degree 2k � 1, and the quadrature rule
for the interior of the elements (IQ) must be exact for
polynomials of degree 2k, if the highest degree of the
Legendre polynomials in B is k. Because we use a GLL
grid, it is convenient to use a GLL quadrature rule that
is accurate for polynomials of degree 2k � 1. This
choice may not be as efficient as using Gauss–Legendre
quadrature, where fewer quadrature points are needed
to gain the same accuracy. However, the choice of
Gauss–Legendre quadrature needs further scaling to fit
into the reference element [�1, �1] � [�1, �1].

4. Application of the DG method on the cubed
sphere

a. Cubed-sphere geometry

Sadourny (1972) originally introduced the quasi-
uniform spherical grid to avoid the pole problems as-
sociated with conventional spherical grids. However,
his contribution remained dormant for many years. In
the past decade, the approach has been recognized as a
powerful tool for global modeling (e.g., Ronchi et al.
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1996; Rančić et al. 1996; McGregor 1996; Taylor et al.
1997). The notational conventions adopted by Rančić
et al. (1996) and Thomas and Loft (2002) are employed
to elucidate the cubed-sphere geometry (also known as
the spherical cube, or expanded spherical cube). Here a
sphere is decomposed into six identical regions, ob-
tained by central projection of the faces of the inscribed
cube onto the spherical surface. Each of the six local
coordinate systems is free of singularites and employs
the identical metric terms, thus creating a nonorthogo-
nal curvilinear coordinate system on the sphere.

Consider the cube with sides of length 2a inscribed
into a sphere of radius R such that the eight vertices of
the cube exactly touch the sphere and a � R/�3. The
cube is oriented in such a way that the 3D absolute
Cartesian coordinate axes (X, Y, Z) are normal to the
faces (see Fig. 1). Let (x, y) be the local Cartesian co-
ordinates centered on the surface of the cube face such
that x, y � 
�a, �a] and (�, �) denotes spherical longi-
tude and latitude coordinates, where

X � R cos cos�

Y � R sin cos�

Z � R sin�
� . �24�

Lateral faces (panels) are identified by Pn, n � 1, . . . ,
4, whereas the top and bottom faces are P5 and P6,
respectively. Figure 2 illustrates schematically the ori-
entation of the different cube faces and their local con-

nectivity. Let P1 be the cube face with X as the normal
direction and consider the first positive octant of the
cube; then from Fig. 1 the following trigonometric re-
lations hold:

sin� �
Z

R
� Z, tan �

x

a
�

Y

X
and

Y

Z
�

x

y
,

r2 � a2 � x2 � y2.

From the above relations and (24), it is clear that

x � a tan

y � a tan� sec
�. �25�

Equation (25) is the basic gnomonic transformation be-
tween the cube and its circumscribing sphere. The
transformation laws on the remaining five faces are ob-
tained by rotating the sphere. Further details may be
found in appendix A.

It is now possible to compute the metric tensor and
corresponding quantities using (25). Let (x, y) be the
local Cartesian coordinates defined on a cube face such
that r is the corresponding position vector on the sur-
face of the sphere. The covariant base vectors of the
transformation between cube face and spherical surface
are defined by

a1 �
�r
�x

, a2 �
�r
�y

. �26�

The components of a covariant vector are given by u1 �
v · a1, u2 � v · a2, and the corresponding contravariant
components are expressed as

FIG. 1. Schematic illustration of gnomonic (central) mapping
between sphere with radius R and the inscribed cube with side of
length 2a. Note that only one-eighth of the cube is shown in the
figure. A point on the cube face P1 is marked by a solid square
with local Cartesian coordinates (x, y), and the corresponding
point on the sphere is marked by a solid circle with absolute
Cartesian coordinates (X, Y, Z). The spherical polar coordinates,
longitude and latitude, are � and �, respectively; r is the radial
distance from the center to any point (x, y) on the cube face.

FIG. 2. Schematic for the relative positions of six cube faces
(panels Pn, n � 1, . . . , 6), and their local connectivity.
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v � u1a1 � u2a2. �27�

The metric tensor for the above transformation is

gij � ai · aj ��g11 g12

g21 g22
��

R2

r4 �a2 � y2 � xy

� xy a2 � x2�,

�28�

where i, j � {1, 2}. �he covariant and contravariant
vectors are related through the metric tensor gij, such
that ui � gij uj and ui � gij uj, where

gij � �gij�
�1 ��g11 g12

g21 g22��
1
g� g22 � g12

� g21 g11
�
�29�

and g � det(gij). The Jacobian of the transformation is
�g � R2a/r3. Note that the identical metric tensor gij is
used on all the cube faces, irrespective of the local
transformations (25). Appendix B derives the metric
tensor (28) and its properties.

Two different central projections are considered in
order to formulate (14) on the cubed sphere, employing
the local Cartesian coordinates (x, y) (Sadourny 1972)
and the equiangular (central) coordinates (, �) (Ron-
chi et al. 1996; Thomas and Loft 2002). In addition,
Rančić et al. (1996) developed an orthogonal curvilin-
ear coordinate system based on conformal mapping.

b. Conservative transport on the cubed sphere

The continuity equation in flux form, on the sphere,
is written as follows:

��

�t
� div��v� � 0, �30�

where � is the advecting field and v � v(�, �) is the
horizontal wind vector. Here, (30) is a particular case of
the general form (14). In curvilinear coordinates, (30)
can be written as (Sadourny 1972)

�

�t
��g�� �

�

�x
��gu1�� �

�

�y
��gu2�� � 0, �31�

where (x, y) are considered to be contravariant inde-
pendent variables. Usually, the velocity field v � (u,  )
is given on the surface of the sphere; however, contra-
variant components of the velocity field are needed in
(31).

The spherical velocity (u,  ) is written in terms of (u1,
u2) using (27) as follows:

A�u1

u2���u

��, A�1�u

����u1

u2�, �32�

where A is given by gij � AT A, and A and A�1 are
interpreted as the “cube-to-sphere·” and “sphere-to-
cube” transformation matrices. However, the elements

of the matrix A depend on the central projection
method, local transformation laws, and local coordi-
nates. Appendix B provides further details of the local
transformations between cube faces and the sphere as
well as the conversion of vector quantities to contra-
variant and covariant components.

1) EQUIDISTANT CENTRAL PROJECTION

Equation (31) can be discretized in the local Carte-
sian space on each cube face, where the independent
variables are x, y � [�a, �a]. For an equidistant pro-
jection, �x � �y is constant and the metric tensor is
given by (28). In this case, the transformation matrix A
in (32) is defined to be

A � �R cos�x R cos�y

R�x R�y
� · �33�

Note that the same A is employed on each of the lateral
faces Pn, n � 1, . . . , 4. However, it is different on faces
P5 and P6. Expressions for the elements of the matrix A
are given in appendix B.

2) EQUIANGULAR CENTRAL PROJECTION

An alternative formulation of (31) is based on an
equiangular projection employing the central angles (,
�) as independent variables rather than the local Car-
tesian coordinates (x, y). These two coordinate systems
are related through

x � a tan�, y � a tan� �, � � 
���4, ��4�. �34�

In this case x and y in (31) are replaced by  and �, and
the metric tensor of the transformation is

gij �
R2

�4 cos2� cos2�
� 1 � tan2� � tan� tan�

� tan� tan� 1 � tan2�
�,

�35�

where !2 � 1 � tan2  � tan2 �. The transformation
matrix and Jacobian are detailed in appendix C. Rančić
et al. (1996) showed that the equiangular projection
results in a more uniformly spaced grid compared to the
equidistant projection and is more suitable for finite-
difference approximations.

In addition to the equidistant and equiangular pro-
jections, we also consider a combination of these two
projection methods. Here, the equiangular values of (,
�) are employed through (34) to obtain the indepen-
dent variables (x, y). The metric terms for this case are
the same as those considered for the equidistant for-
mulation; however, �x " �y.

3) TREATMENT OF VECTORS ALONG THE
CUBE-FACE EDGES

The treatment of vector quantities such as flux terms
requires special attention along cube edges, because the
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contiguous faces of the cube employ different local co-
ordinate systems. Consider two adjoining elements
separated by a cube edge and belonging to the cube
faces Pn and Pl, such that n, l � {1, . . . , 6} and n " l. Let
(F�

n ,G�
n ) and (F�

l ,G�
l ) be the left and right vectors lo-

cated at a common point (a GLL point) but having two
different local coordinate systems. In the case of flux
vectors, the notation F� � F(U�) and G� � G(U�) is
consistent with section 3. To compute the flux using (5)
in the x direction, on the edge of Pn, both the left and
right components F�

n and F�
n are required. The right

component F�
n is computed from (F�

l ,G�
l ) by the pro-

cedure described below.
First, transform (F�

l ,G�
l ) defined on Pl into the cor-

responding spherical components (F�
s ,G�

s ) by applying
the matrix Al. Next, transform (F�

s ,G�
s ) into (F�

n ,G�
n )

defined on Pn by applying the matrix A�1
n . The dual

transformations based on (32) are summarized below:

Al�Fl
�

Gl
����Fs

�

Gs
��, An

� 1�Fs
�

Gs
����Fn

�

Gn
��

⇒ An
� 1Al�Fl

�

Gl
����Fn

�

Gn
�� · �36�

The required numerical flux along the x direction,
F̂(U�, U�), is computed according to (5). This proce-
dure may be extended to any cube-face edge for com-
puting vector quantities. Metric terms, transformation
matrices, and dual transformation matrices A�1

n Al may
be precomputed.

5. Numerical experiments

The flux form continuity Eq. (31) can be written in
the computational form considered in section 3, with U
� �g� and the fluxes F(U) � �gu1� and G(U) �
�gu2�. Independent variables (contravariant) are ei-
ther (x, y) or (, �). Two standard advection tests, solid-
body rotation and deformational flow, were performed
to evaluate the DG scheme.

a. Solid-body rotation of a cosine bell

The “cosine bell” problem proposed by Williamson
et al. (1992) is often employed to test global advection
schemes. The initial scalar field is defined as follows:

��, �� � ��h0�2�
1 � cos��rd�r0�� if rd � r0

0 if rd � r0,
�37�

where rd is the great-circle distance between (�, �) and
the bell center. The bell of radius r0 � R/3 is initially
centered at (3#/2, 0) corresponding to the central point
of P4 on the cube (see Fig. 2). The maximum height of
the cosine bell is h0 � 1000 m; R � 6.37122 � 106 m is

the earth’s radius; and velocity components of the ad-
vecting wind field are

u � u0�cos�0 cos� � sin�0 cos sin��,

� � �u0 sin�0 sin,

where u0 � 2# R/(12 days), and 0 is the angle between
the axis of solid-body rotation and the polar axis of the
spherical coordinate system (Williamson et al. 1992).
When the value of 0 is equal to zero or #/2, the flow
direction is along the equator or in the north–south
(meridional) direction, respectively. For the cubed
sphere, flow along the northeast direction (0 � #/4) is
more challenging, because the cosine-bell pattern
passes over four vertices and two edges of the cube to
complete revolution.

b. Deformational flow

For the deformational flow test, an idealized cyclo-
genesis problem (Doswell 1984) is simulated in spheri-
cal geometry (Nair et al. 1999). The test is also de-
scribed in Nair and Machenhauer (2002) and Nair et al.
(2003). Two steady vortices are generated on the
sphere such that the vortex centers are located near the
two vertices of the cube.

The normalized tangential velocity of the vortex field
on a unit sphere is given by

Vt �
3�2

2
sech2���� tanh����,

where !� � !�0 cos�� is the radial distance of the vortex.
The exact solution at time t is

���, ��, t� � 1 � tanh���

�
sin�� � ��t��, �38�

where (��, ��) are the rotated spherical coordinates with
poles at the vortex centers, and $ is a parameter defin-
ing the characteristic width (Nair et al. 1999). The an-
gular velocity %� is specified as

������ � �0 if �� � 0

Vt��� if �� � 0.
�39�

Velocity components on the unit sphere are defined as

u � ���sin�0 cos� � cos�0 cos� � 0� sin��,

� � �� cos�0 sin� � 0�,

where (�0, �0) is the north pole of the rotated spherical
coordinate system (��, ��). For the present study, the
parameters chosen are (�0, �0) � (# � 0.8, #/4.8), !�0 �
3, and $ � 5. Two symmetric vortices are generated
near two diametrically opposite cubed-sphere vertices.
These vortex centers are located approximately at the
top-right corner of P4 and the bottom-right corner of P2
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in Fig. 2. Thus, the deforming fields around the vortex
centers are supported by three contiguous local do-
mains.

c. Results

The above tests were performed using grid resolu-
tions defined by M � Ng � Ng, where M is the number
of elements with Ng � Ng GLL points in an element.
However, results are only reported for two grid resolu-
tions, a “low order” grid with M � 2400, Ng � 4, and a
“high order” grid with M � 96, Ng � 16. The latter grid
(96 � 16 � 16) was used for comparing our results with
the SE method (Thomas and Loft 2002).

First consider advection of the cosine bell along the
northeast direction on the low-order grid (2400 � 4 �
4) in order to compare equidistant (x, y) (case A) and
equiangular (, �) (case C) central projections. In ad-
dition, a combination of these two projections (case B)

was examined. Here, the independent variables (x, y)
are generated with the equiangular values of  and � in
the interval [�#/4, #/4], employing (34).

Figure 3 illustrates the time evolution of the standard
�1, �2 and �& relative errors during one complete revo-
lution (12 days) of the cosine bell in the northeast di-
rection (Williamson et al. 1992). A low-order grid (2400
� 4 � 4) with third-order explicit Runge–Kutta inte-
grator (13) is applied for 2880 time steps (�t � 6 min)
to complete one revolution. The top-to-bottom panels
in Fig. 3 are the error plots for the central projections in
cases A, B, and C. It is clear that the equiangular pro-
jection (case C) results in smaller errors. In particular,
the �& error is significantly reduced. Case B exhibits
smaller error norms than case A. Equiangular projec-
tion (case C) results in a more uniform distribution of
GLL points on the cubed sphere (Rančić et al.1996)
and error metrics in case C are far superior. Hereafter,
experiments using the equiangular projection are re-
ported.

The left panel in Fig. 4 shows the cosine bell after one
revolution in the northeast direction after returning to
the initial position. Note in this case that the data were
bilinearly interpolated from the source grid consisting
of six identical subdomains onto a 128 � 65 latitude–
longitude grid, for orthographic visualization. Contours
are plotted with uniform interval of 100 m. The numeri-
cal solution with DG is visibly indistinguishable from
the analytic solution (plotted as dashed contours). The
right panel in Fig. 4 displays the numerical solution
centered at the first vertex away from the initial posi-
tion. The cosine bell smoothly crosses over the corner
point and does not exhibit any shocks or discontinuities
while passing over cube-face edges.

Figure 5 is a 3D plot of the cosine bell after one
complete revolution along the northeast, north–south
(0 � #/2) and equatorial (0 � 0) directions. The ref-
erence (initial) solution is shown (top-left panel). Here,
the DG solution is plotted at the corner points of ele-

FIG. 3. Time traces of normalized �1, �2 and �& errors for the
cosine-bell advection problem in the northeast direction, with dif-
ferent central projections from cube to sphere. (top) The errors
plots for the equidistant projection (case A) and the equivalent
for the equiangular projections for (middle) case B and (bottom)
case C.

FIG. 4. Results on an orthographic projection for solid-body
rotation of a cosine bell after one revolution (12 days) along the
northeast direction. Contours are plotted with a uniform interval
of 100 m. (right) The position of the cosine bell when its center
reaches a corner point of the cubed sphere. Note that every tile
shown on the cubed sphere consists of 4 elements, and 2400 ele-
ments span the surface of the sphere.
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ments extracted from the panel P4, where the cosine
bell is initially centered. Note that the numerical solu-
tion is plotted without any postprocessing interpola-
tions. Figure 6 shows the difference field (DG versus
exact solution) for the three different flow orientations
in Fig. 5. The maximum difference (nonnormalized) is
less than 1%. The basic structure of the solution (phase
and amplitude) does not change depending on the flow
orientation (no directional bias).

Next, the DG results are compared with the SE
method described in Thomas and Loft (2002) for the 96
� 16 � 16 grid, using equiangular central projection.
The duration of the integration is 12 days (one revolu-
tion around the sphere along the northeast direction).
Time integration for the DG method was performed
using a third-order TVD Runge–Kutta scheme with a
time step �t � 30 s. Neither limiters nor spatial filters
were employed for the DG integration. For the SE
model (Thomas and Loft 2002) the same time-
integration scheme was used; however, even with a
TVD time integrator a filter was found to be essential
to stabilize the integration. A Boyd–Vandeven filter
was applied every 20 min for the SE method. Figure 7a
illustrates the time evolution of �1, �2 and �& errors for

→

FIG. 6. The height difference field (numerical minus exact so-
lution) of the cosine bell as shown in Fig. 5, when the flow orien-
tation is along the (bottom) equatorial, (middle) north–south, and
(top) northeast directions.

FIG. 5. Results for solid-body rotation of a cosine bell after one
revolution (12 days) along the (top right) northeast, (bottom left)
north–south, and (bottom right) equatorial directions. (top left)
The initial (reference) solution. Corner values of the elements on
the cube face P4 (see Fig. 2) are used for plotting the height field,
with initial maximum value 1000 units.
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the DG (top panel) and SE (bottom panel) discretiza-
tions. The DG solution exhibits smaller error growth
rates when compared to the SE solutions. However, the
�& error for the DG scheme appears to be more oscil-
latory than the SE scheme. Figure 7b shows SE results
with an explicit second-order leapfrog scheme (�t � 30
s), and a Boyd–Vandeven filter was applied every 20
min. The error norms for this case are much smaller
than the results obtained in a similar study by Taylor et

al. (1997), who used a combination of equidistant and
equiangular projections. This again shows the advan-
tage of using an equiangular projection.

Convergence of the DG scheme is displayed in Figs.
8a and 8b, for the cosine-bell problem. We have used
h-refinement (i.e., keeping the degree of the polyno-
mial fixed and increasing the number of elements) and
p-refinement (i.e., increasing the degree of the polyno-
mial for a fixed total number of elements) convergence
tests, as is typically used in high-order methods. Total
number of elements on the cubed sphere can be ex-
pressed as M � 6 Ne � Ne, where Ne is the number of
elements in x or y direction on any cube face. Figure 8a

FIG. 7. (a) Time traces of normalized �1, �2 and �& errors of the
cosine bell advection problem along the northeast direction. (top)
The results with a discontinuous Galerkin method (DGM), and
(bottom) the results with a spectral element method (SEM). For
both methods, a third-order TVD Runge–Kutta method is used,
and the domain consists of 96 elements, each with 16 � 16 Gauss–
Lobatto–Legendre points. (b) Same as in (a), but for the SEM.
Time integration for this case is a second-order leapfrog scheme
combined with a Boyd–Vandeven filter.

FIG. 8. (a) Convergence of DG scheme for the cosine-bell prob-
lem with different values of the degree N of Legendre polynomi-
als. Normalized errors (�1, �2 and �&) are computed after one
complete revolution of the cosine bell along the northeast direc-
tion of the cubed sphere. (b) Convergence of DG scheme for the
cosine-bell problem as function of number of elements (N � Ne),
for the Legendre polynomials of degree N � 1, 2, and 4. Here, Ne

is the number of elements used in the x of y direction on any cube
face, and the total number of elements on the cubed sphere is
given by M � 6 � N2

e.

APRIL 2005 N A I R E T A L . 823



shows a p-refinement convergence for Ne � 3 (or M �
54) and the degree of the Legendre polynomial N varies
from 4 to 32. The �2 error shown in Fig. 8a compares
that of Fig. 6 (for the cosine-bell problem) in Giraldo et
al. (2002). A strict comparison with Giraldo et al.
(2002) is not possible because of the disparity of the
grid systems used. However, with a fewer number of
elements (M � 54), we observe the same error levels
reported in Giraldo et al. (2002) with M � 60. Figure 8b
shows h-refinement convergence for N � 1, 2, and 4,
and number of elements as a function of N � Ne. For
example, when N � 4, Ne � 3, 6, 12, and 24 and cor-
responding total number of elements on the cubed
sphere are 54, 216, 864, and 3456, respectively.

Normalized global mass (integral invariant) was com-
puted as a function of time using Eq. (135) of William-
son et al. (1992), and the result is shown in Fig. 9. The
normalized mass is conserved to the machine precision
as expected and is found to be independent of the par-
ticular grid resolution used (i.e., M or N).

Deformational flow results are presented in Fig. 10.
The top-left and right panels show the initial and exact
solutions at 6 days. The numerical solution on a 2400 �
4 � 4 grid is shown in the bottom-left panel. For the
TVD Runge–Kutta integrator (13), 1440 � �t � 6 min
time steps (equivalent to 6 days) were used to simulate
the vortices. For the vortices in Fig. 10, contours vary
from 0.5 to 1.5, with a central value 1.0 displayed as a
thick line. The numerical solution is visibly identical to
the exact solution. The evolution of the vortices (at
diametrically opposite vertices of the cubed sphere)
have been well simulated by the DG scheme, even at
the corners (consisting of three subdomains). The bot-
tom-right panel shows the difference field with contour
values 1 � 10�6 (thick contours) and �1 � 10�6 (thin
contours) and do not exhibit any bias along the edges.
Figures 11a and 11b, respectively, show the p- and h-
type convergence for the vortex problem. Global mass

error for all the experiments was computed and found
to be on the order of machine precision (plots are not
shown) and independent of the central projection and
grid type (resolution).

6. Summary and conclusions

We have proposed a conservative transport scheme
based on the discontinuous Galerkin (DG) method on
the cubed sphere. Two different central projection
methods, equidistant and equiangular, were employed
to map between the inscribed cube and the sphere.
These mappings divide the spherical surface into six
identical subdomains and are free from singularities.
Two standard advection tests, solid-body rotation and
deformational flow, were performed to evaluate the
DG scheme. A third-order explicit total variation di-
minishing Runge–Kutta scheme was employed for time
integration without application of a filter or limiter to
control spurious oscillations. A cosine bell was utilized
to evaluate the performance of the DG scheme for ad-
vection. The standard �1, �2 and �& relative error met-
rics are found to be smaller for the equiangular projec-
tion compared to the equidistant projection. The cosine
bell passes smoothly over the vertices and edges, while
maintaining high-order accuracy. Our results were
compared against a standard spectral element (SE)
method employing equiangular central projection

FIG. 9. Time traces of total normalized mass error for the co-
sine-bell problem for one complete revolution. Note that the total
mass is conserved to machine precision (double-precision arith-
metic) and is independent of the number of elements used and
polynomial degree.

FIG. 10. (top left) The initial flow field, and (top right) the exact
solution (at t � 6 days). The vortex center is located near a vertex
of the cubed sphere. (bottom left) Numerical solutions are pro-
duced by the DG scheme (see text). (bottom right) The difference
field (numerical minus exact). The contour values are 1 � 10�6

(thick) and �1 � 10�6 (thin).
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(Thomas and Loft 2002). Both simulations employed a
96 � 16 � 16 grid and a third-order TVD Runge–Kutta
time-integration scheme. However, a filter is necessary
for the SE method to control spurious oscillations.
Time series of the standard error metrics grew more
slowly in the case of the DG scheme. In particular, the
error metrics for the SE method (Thomas and Loft
2002) employing a second-order leapfrog scheme were
found to be significantly smaller than those reported by
Taylor et al. (1997) for the same experiment. This again
shows that on the cubed sphere with the same number
of grid points, an equiangular projection is more accu-
rate than an equidistant projection.

A deformational flow test that generates vortices
near two diametrically opposite vertices of the cubed
sphere was used to evaluate the robustness of the DG
scheme. Numerical solutions in this case were found to
be very accurate, including near the vortex centers and
edges of the cube. The numerical solution on the cubed
sphere demonstrates excellent convergence properties
for the scalar advection problem and achieves the ac-
curacy using fewer degrees of freedom than the recent
study by Giraldo et al. (2002). A flux form shallow
water model on the cubed sphere based on the DG
method is under development. Implementation of
monotonic limiters in the DG scheme is also under de-
velopment, and we plan to report these results in the
near future.
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APPENDIX A

Transformation Laws for the Six Cube Faces

Let (��, ��) be a rotated spherical coordinate system
having the north pole at (�0, �0) with respect to the
regular (�, �) coordinate system. Local Cartesian coor-
dinates (x, y) defined on the six faces of the cube can be
expressed in terms of (�, �) by rotating the sphere for
different values of (�0, �0). The following spherical
trigonometric equations (Nair et al. 1999) may be em-
ployed for projecting each face of the cube:

tan� �
sin� � 0�

sin�0 cos� � 0� � cos�0 tan�
, �A1�

sin�� � sin� sin�0 � cos�0 cos� � 0�. �A2�

←

FIG. 11. (a) Same as in Fig. 8a but for the vortex (deformational
flow) problem. Normalized errors �1 and �2 are used for the con-
vergence study. (b) Same as in Fig. 8b but for the vortex (defor-
mational flow) problem. (top) The convergence of the DG
scheme for normalized �1 error, and (bottom) the �2 error.
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• On P1: set (�0, �0) � (0, #/2); (A1) and (A2) imply
that �� � �, �� � �. Now (x, y) are defined as

x � a tan� � a tan,

y � a tan�� sec� � a tan� sec
�. �A3�

The absolute Cartesian coordinates and (x, y) are
related through

�X, Y, Z� �
R

r
�a, x, y�, �x, y� � a�Y

X
,

Z

X�.

• On P2: set (�0, �0) � (#/2, #/2) ⇒ �� � � � #/2,
�� � �,

x � a tan� � ��2� � �a cot

y � a tan� sec� � ��2� � a tan� csc
�,

�A4�

�X, Y, Z� �
R

r
��x, a, y�, �x, y� � ��X

Y
,
Z

Y�.

• On P3: set (�0, �0) � (#, #/2) ⇒ �� � � � #, ��� �,

x � a tan� � �� � a tan,

y � a tan� sec� � �� � �a tan� sec
�,

�A5�

�X, Y, Z� �
R

r
��a, � x, y�, �x, y� � a�Y

X
,
�Z

X �.

• On P4: set (�0, �0) � (3#/2, #/2) ⇒ �� � � � 3#/2,
�� � �,

x � a tan� � 3��2� � �a cot,

y � a tan� sec� � 3��2� � �a tan� csc
�,

�A6�

�X, Y, Z� �
R

r
�x, � a, y�, �x, y� � a��X

Y
,
�Z

Y �.

• On P5 (top panel): set (�0, �0) � (#, 0), from (A1) and
(A2);

tan� �
sin� � ��

�tan�
� sin cot�,

sin�� � cos� cos� � �� � �cos cos�.

x � a tan� � a sin cot�

y � a tan�� sec�

� a
sin��

cos��
�1 � tan2�;

�choose
�1 � tan2�

cos��
�

1
�sin�

�
� a

� cos cos�

sin�
� �a cos cot�.

To summarize for P5,

x � a sin cot�

y � �a cos cot�, � � 
��4, ��2��. �A7�

�X, Y, Z� �
R

r
��y, x, a�, �x, y� � a�Y

Z
,
�X

Z �.

• On P6 (bottom panel): set (�0, �0) � (2#, 0), from
(A1) and (A2);

tan� �
sin� � 2��

� tan�
� � sin cot�,

sin�� � cos� cos� � 2�� � cos cos�.

x � a tan� � �a sin cot�

y � a tan�� sec�

� a
sin��

cos��
�1 � tan2�,

�choose
�1 � tan2�

cos��
�

1
� sin�

�
� a

cos cos�

� sin�
� �a cos cot�.

To summarize for P6,

x � �a sin cot�,

y � �a cos cot�, ��
���2, � ��4��,

�A8�

�X, Y, Z� �
R

r
�y, x, � a�, �x, y� � a��Y

Z
,
�X

Z �.

APPENDIX B

Transformations of Vectors between Cube and
Sphere Surfaces

Let (x, y) be arbitrary Cartesian independent vari-
ables on a cube face and r be the corresponding posi-
tion vector on the sphere. In absolute Cartesian coor-
dinates, denote r � (X, Y, Z) such that dr � (dX, dY,
dZ). The basis vectors (26) for the transformations are
a1 � rx, a2 � ry. On any cube face, the equations (X, Y,
Z) � [X (x, y), Y(x, y), Z(x, y)] in appendix A can be
utilized to derive the explicit form of the metric tensor
gij, i, j � {1, 2},

gij � ai · aj � �rx · rx rx · ry

ry · rx ry · ry
�

�
R2

r4 �a2 � y2 �x y

�x y a2 � x2�, �B1�

where rx � (Xx, Yx, Zx) and ry � (Xy, Yy, Zy) are
obtained by direct differentiation. It can be verified
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that tensor (B1) is the same for all local transforma-
tions.

Spherical coordinates (�, �) are emphasized in this
development rather than the absolute Cartesian coor-
dinates. For any horizontal vector r on the sphere, we
have the following differential form

dr � i R cos� d � j R d�, �B2�

where the vector is decomposed into the east (�) and
the north (�) directions (Dutton 1986). Then basis vec-
tors can be expressed as

a1 � rx � i R cos�
d

dx
� j R

d�

dx
, �B3�

a2 � ry � i R cos�
d

dy
� j R

d�

dy
. �B4�

The horizontal wind vector v � i u � j  is expressed in
terms of contravariant components (27) as

v � u1a1 � u2a2

i u � j � � i R�u1 cos�
d

dx
� u2 cos�

d

dy�
� j R�u1

d�

dx
� u2

d�

dy�,

or in the following matrix form:

�u

��� A�u1

u2�, �B5�

where

A � �R cos�x R cos�y

R�x R�y
�. �B6�

The basis vectors in (B3) and (B4) could be used to
derive the tensor gij as given in (B1). The metric tensor
gij may be expressed in terms of the matrix A:

gij ��rx · rx rx · ry

ry · rx ry · ry
�

� R2� cos2� x
2 � �x

2 cos2� xy � �x�y

cos2� xy � �x�y cos2� y
2 � �x

2 �
� AT A. �B7�

The covariant and contravariant vectors are related
through the metric tensor gij and its inverse gij, such that
ui � giju

j and ui � gijuj:

gij � �gij�
�1 ��g11 g12

g21 g22��
1
g� g22 �g12

�g21 g11
�

� A�1A�T, �B8�

where g � det(gij), and the Jacobian of the transforma-
tion is �g � |a1 � a2 |. To summarize, the transforma-

tions between covariant and contravariant components
of v are

�u1

u2
���g11 g12

g21 g22
��u1

u2�, and

�u1

u2���g11 g12

g21 g22��u1

u2
�. �B9�

The explicit form of the matrix A in (B6) is the same
on lateral faces P1 to P4, but different for P5 (top) and
P6 (bottom) panels.; A and A�1 can be derived as fol-
lows. On P1 to P4, using the basic form (25),

x �
1
a

cos2, y � 0, �x � �
1
a

sin� sin cos� cos,

�y �
1
a

cos2� cos,

A �
R cos� cos

a � cos 0

�sin� sin cos�
�,

A�1 �
a sec� sec

R � sec 0

tan� tan sec�
�. �B10�

On P5, using (A7),

x �
1
a

cos tan�, y �
1
a

sin tan�,

�x �
�1
a

sin sin2�, �y �
1
a

cos sin2�,

A �
R sin�

a � cos sin

�sin� sin sin� cos
�,

A�1 �
a

R sin2�
�sin� cos �sin

sin� sin cos
�. �B11�

On P6, using (A8),

x �
�1
a

cos tan�, y �
1
a

sin tan�,

�x �
1
a

sin sin2�, �y �
1
a

cos sin2�,

A �
R sin�

a � �cos sin

sin� sin sin� cos
�,

A�1 �
a

R sin2�
��sin� cos sin

sin� sin cos
�. �B12�

APPENDIX C

Equiangular Formulation between Cube and
Sphere Surfaces

An alternative formulation of (31) is possible when
the central angels , � � [�#/4, #/4] are independent
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variables instead of local Cartesian coordinates (x, y)
on the cube faces. These central projections are related
through

x � a tan�, y � a tan�. �C1�

For an equiangular projection, the basis vectors a1 � r
and a2 � r� may be written as

r� �
a

cos2�
rx, r� �

a

cos2�
ry, �C2�

where rx and ry are as defined in (B3) and (B4), respec-
tively. Furthermore, the metric tensor can be derived as
in the case of (B7),

gij ��r� · r� r� · r�

r� · r� r� · r�
�

�
R2

�4 cos2� cos2�� 1 � tan2� �tan� tan�

�tan� tan� 1 � tan2�
�

� ÃTÃ, �C3�

where !2 � 1 � tan2 � tan2� and the Jacobian of the
transformation and the matrix Ã are, respectively,

�g � 
det�gij��
1�2 �

R2

�3 cos2� cos2�
, and

Ã � �R cos�� R cos��

R�� R��
�. �C4�

Note that for the equiangular projection, the metric
tensor and other parameters defined above are inde-
pendent of the constant a. The explicit form of Ã in
(C4) and its inverse Ã�1 are needed for the transfor-
mation between cube faces and the sphere, and these
are easily derived using the following relations and Eqs.
(B10)–(B12):

Ã � A�a�cos2� 0

0 a�cos2�
�,

Ã�1 �
1
a�cos2� 0

0 cos2�
�A�1. �C5�

An alternative form of (C3) in terms of a, x, and y is

gij �
a2�1 � x2��1 � y2�

r4 �a2 � x2 �xy

�xy a2 � y2�. �C6�
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