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ABSTRACT

The conservative cascade scheme (CCS) combines a one-dimensional mass-conserving finite-volume method
with an efficient semi-Lagrangian scheme over the sphere. Major limitations of this scheme are a breakdown
in the polar region due to the coordinate singularity and a restriction to polar meridional Courant number Cu #
1. The proposed scheme is an extension of the CCS over the sphere for Cu . 1. This is achieved by isolating
a region near the pole where the CCS fails and applying a two-dimensional remapping based on the cell-
integrated semi-Lagrangian (CISL) scheme. The interface between these two schemes is the singular polar region
where the total mass is computed and redistributed in a conservative manner. The resulting scheme is applicable
to large polar Courant number and is tested using solid-body rotation and a deformational flow.

1. Introduction

Finite-volume-based semi-Lagrangian (SL) transport
schemes are gaining importance in meteorological mod-
eling (see, e.g., Lin and Rood 1996; Rasch 1998; Nair
and Machenhauer 2002; Nair et al. 2002; Zerroukat et
al. 2002). The main advantage of such ‘‘cell based’’
schemes is that they are formally conservative and stable
for large time steps, which are desirable properties for
global climate modeling. However, in spherical geom-
etry with an orthogonal longitude–latitude (l, u) grid
system, these schemes require special treatment. Polar
singularities restrict the time step in such a way that the
polar meridional Courant number Cu # 1; that is, the
Lagrangian pole should be within the first latitude circle
(see Lin and Rood 1996; Nair et al. 2002, 2003). Re-
cently, Nair and Machenhauer (2002) have extented the
cell-integrated semi-Lagrangian (CISL) scheme of
Machenhauer and Olk (1996) in spherical geometry for
Cu , 2. The scheme developed by Nair and Machen-
hauer (2002, hereafter referred to as NM02) employs a
fully two-dimensional (2D) remapping scheme that re-
quires storage of accumulated coefficients along the lat-
itude circles. Recently, Nair et al. (2002, hereafter re-
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ferred to as NSS02) have developed a ‘‘conservative
cascade scheme’’ (CCS) over the sphere based on a
cascade interpolation procedure (Purser and Leslie
1991; Nair et al. 1999). The CCS combines a conser-
vative finite-volume method and a computationally ef-
ficient SL scheme based on a dimensional splitting cas-
cade interpolation method.

In NSS02, the CCS is free from zonal Courant number
Cl restriction and is shown to be more efficient and less
memory intensive than the CISL scheme while main-
taining accuracy comparable to the CISL scheme
(NM02). However, a major limitation of the CCS for
global applications is the polar meridional Courant num-
ber restriction, Cu , 1 (NSS02). In this paper I present
a procedure to overcome the meridional Courant number
restriction of the CCS by combining the CCS with the
CISL scheme in polar regions. In section 2, I briefly
outline the CCS and CISL remappings and describe the
extension procedure. In section 3, numerical results are
presented, followed by concluding remarks in section 4.

2. Conservative SL schemes

To briefly describe the finite-volume-based conser-
vative SL transport scheme as presented in NM02 and
NSS02, consider the integral form of the mass-conti-
nuity equation in the absence of sources or sinks:

d
r dV 5 0, (1)Edt V(t)

where d/dt is the total (Lagrangian) derivative, r is the
density of the fluid, V(t) is an arbitrary reference volume
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(moving with the fluid), and dV is the volume element.
The quantity #V (t) r dV in (1) may be interpreted as the
mass of the fluid in the volume V(t) and is constant
along the flow trajectory. Integrating (1) along a tra-
jectory, over a time step Dt, yields the two-time-level
conservative SL scheme:

n11 nn11 nr V 5 r V , (2)

where the superscripts n and n 1 1, respectively, in-
dicate departure and arrival time levels, and is ther
cell- (volume) averaged density defined by

1
r 5 r dV.EV V

For backward trajectory conservative SL methods, a
departure cell is defined to be a Lagrangian (upstream)
cell and the corresponding arrival cell is a regular Eu-
lerian cell. Now, (2) predicts cell-averaged density
( n11) at a new (future) time level if the mass ( nV n)r r
in the Lagrangian cell is known. Thus, accurate com-
putation of the mass enclosed in the Lagrangian cell is
of fundamental importance and is accomplished by a
remapping process.

a. CCS and CISL remapping

Global conservative schemes in NM02 and NSS02
exploit the transformation from a (l, u) spherical do-
main to a Cartesian plane by introducing an independent
variable m 5 sinu such that m ∈ [21, 1] and l ∈ [0,
2p). In the (l, m) plane, Lagrangian cells are assumed
to be quadrilaterals and the corresponding Eulerian cells
are rectangles (see NSS02 for details). For the com-
putational procedure, the Lagrangian cells are further
approximated as polygons with sides parallel to either
the l- or m-coordinate axis.

A major difference between the 2D CCS and CISL
schemes is that the CCS sequentially applies one-di-
mensional (1D) remapping along the m and l directions,
whereas the CISL scheme uses a fully 2D remapping
strategy (NM02). The density distribution functions for
the CCS and the CISL scheme are quite different and
consistent with their respective remapping methods. The
CCS uses cell averages to construct a unique piecewise
parabolic polynomial (Colella and Woodward 1984) for
each dependent variable within a cell. The density dis-
tribution for the CCS in the l or m direction can be
generalized as follows:

1
2r(j) 5 r 1 h j 1 h 2 j , (3)1 21 212

where is the cell-averaged density, j ∈ [21/2, 1/2]r
is a normalized local variable, and h1 and h2 are coef-
ficients in the m or l direction, depending on the di-
rection of remapping.

However, the CISL scheme employs a quasi-bipara-
bolic function for the density distribution, defined by

1
2r(x, y) 5 r 1 ax 1 b 2 x 1 cy1 212

1
21 d 2 y , (4)1 212

where x, y ∈ [21/2, 1/2] are the normalized local var-
iables; a, b are the coefficients in the l or x direction;
and c, d are the coefficients in the m or y direction,
respectively (see NM02 for details).

In order to illustrate the extension process, we focus
on the north polar region of the sphere. It is straight-
forward to extend the algorithm to the south polar re-
gion.

b. Extension of the CCS for large Cu

The cascade interpolation procedure developed by
Nair et al. (1999), on the sphere for nonconservative
SL schemes, is free from Courant number limitations.
In this algorithm, data is transferred from Eulerian
points to Lagrangian points through a well-defined in-
termediate grid system by means of two 1D interpola-
tions. However, the conservative version of cascade in-
terpolation (NSS02) employs Lagrangian cells rather
than Lagrangian points, thus imposing additional con-
straints and making it less flexible. For the CCS, mass
from Eulerian cells is transferred to Lagrangian cells
through an intermediate cell system. In NSS02, inter-
mediate cells are defined by the intersection of Lagrang-
ian latitudes and Eulerian longitudes (see Fig. 1 of
NSS02). The area (length) of the cells (Eulerian, inter-
mediate, or Lagrangian) involved in the cascade cycle
play an important role in both local and global mass
conservation.

For stability, the Lagrangian cells must be well de-
fined. In other words, the cell walls should not intersect
within a single time step (Lin and Rood 1996; NM02).
In the polar region, (l, m) coordinates induce severe
cell deformation. Even with a small meridional Courant
number Cu, Lagrangian cells in these regions are de-
formed. In particular, the Lagrangian cell containing the
Eulerian pole point is not well defined (NM02). Two
schematic figures are used to illustrate this situation.

Figure 1a shows the north polar region in spherical
(l, u) coordinates projected onto a polar tangent plane.
The dashed circles and straight lines represent Eulerian
latitudes and longitudes, respectively. The correspond-
ing Lagrangian latitudes and longitudes are depicted as
ellipses and solid smooth curves, respectively. The Eu-
lerian pole is shown as an open square and the corre-
sponding Lagrangian pole is shown as a solid square.
Solid circles in both Figs. 1a and 1b represent Lagrang-
ian points. Figure 1b is the schematic illustration of Fig.
1a in the (l, m) plane, where Eulerian latitudes and
longitudes are shown as dashed straight lines. In Fig.
1b, the line m 5 1 corresponds to the Eulerian pole
point, and the Lagrangian latitudes are denoted by solid
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FIG. 1. (a) Schematic of Eulerian and Lagrangian cells over the
polar regions in (l, u) coordinates, as projected onto a polar tangent
plane. The dashed lines show the Eulerian latitudes and longitudes.
Corresponding Lagrangian latitudes and longitudes are denoted by
ellipses and solid curves, respectively. The Lagrangian pole point is
marked by a solid square, the corresponding Eulerian pole is marked
by an open square, and solid circles represent the Lagrangian points.
(b) Same as (a), but the Eulerian and Lagrangian lines (points) are
mapped onto the (l, m) plane. The line m 5 1 is the pole line cor-
responding to the Eulerian pole point in (a). The solid curve G defines
the north boundary for the CCS. The polar singular region (see text)
is depicted as the hatched region. The CISL scheme is applied in the
shaded region bounded by closed curves.

curves. Lagrangian cells in the CCS and the CISL
scheme are constructed by joining the Lagrangian points
as the corner points of a rectangle. However, this ap-
proach is impractical or too crude for certain polar La-
grangian cells in the (l, m) plane. This is schematically
illustrated in Fig. 1b, where the hatched area represents
a region in which Lagrangian points close to the Eu-
lerian pole line m 5 1 fail to form a Lagrangian cell.

Moreover, in the (l, m) plane, the cell that includes the
Eulerian pole (singular point) is located in this region
and it is not well defined. In NM02, such a region is
referred to as the ‘‘polar singular belt (region)’’—this
terminology is used henceforth. The usual remapping
process of CISL or CSS fails in such regions.

A cost-effective way to avoid this problem is de-
scribed in NM02 and NSS02. This involves introducing
additional points along the polar Lagrangian cell walls
(in the m direction) and redistributing mass in an array
of cells located in the polar singular belt (see NM02 for
details). The CISL approach in NM02 accurately sim-
ulated cross-polar advection for Cu , 2, and we extend
this idea for the CCS when Cu . 1. Here, we treat the
polar singular belt as the interface zone when combining
the CCS and the CISL scheme. The resulting scheme
is referred to as the extended CCS.

c. Computational procedure

When the meridional Courant number is large (Cu k
1), it is possible that not all the Lagrangian latitudes
(around the Lagrangian pole) intersect with Eulerian
longitudes (see Fig. 1a). This may adversely affect the
generation of intermediate cells (NSS02) and may cause
a breakdown of the conservative cascade process in po-
lar regions. In order to proceed with cascade remapping,
we isolate a region over the pole where intermediate
cell generation is not obvious. In Figs. 1a and 1b such
a region is shown as a closed region bounded by the
curve G. The total mass (MCCS) enclosed by G is deter-
mined from the first phase of remapping in the m di-
rection. The CISL scheme with 2D remapping is then
used to compute the total mass (MCISL) in the shaded
region (Fig. 1b), within the region bounded by G. Note
that the CISL scheme accurately estimates the mass en-
closed in individual Lagrangian cells in the closed re-
gion (NM02). The total mass enclosed (MSB) in the polar
singular belt (hatched region in Fig. 1b) is simply the
difference in masses, that is, MSB 5 MCCS 2 MCISL. The
computed total mass in the polar singular belt is then
redistributed to the constituent cells by an efficient re-
distribution scheme suggested by NM02. This redistri-
bution scheme is locally approximate but constrained
in such a way that the total mass in the singular belt is
conserved.

The location of the Lagrangian latitude that defines
the northernmost boundary (the curve G in Figs. 1a,b)
of the cascade process can be easily identified. It is the
first Lagrangian latitude (in Fig. 1a, from the Lagrangian
pole), that inscribes the Eulerian pole. In addition, the
next Lagrangian latitude, within the region bounded by
G, serves as the exterior boundary of a region where
the CISL scheme is applied. Consequently, the polar
singular belt acts as an interface between the regions
where the CCS and the CISL scheme are applied. When
Cu # 1, the region bounded by G is just the polar sin-
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FIG. 2. Orthographic projection for the offset (a 5 p/2 2 0.05) solid-body rotation of a cosine
bell approaching the North Pole at time step 8 (top left), crossing over the North Pole at time
step 10 (top right), over the South Pole at time step 27 (bottom left), and over the equator at time
step 36 (bottom right, initial position). The polar meridional Courant number is Cu ø 3.6. The
CCS combined with the CISL scheme is used for the numerical integration, and the exact solutions
are shown as dashed contours.

gular belt (NSS02), implying that the CISL scheme is
only needed when Cu . 1.

The cascade process begins by fitting the density dis-
tribution function (3) along the m direction for every
Eulerian cell. Because density distributions for both
schemes are based on parabolic functions, the coeffi-
cients used for the CCS in the m direction can be shared
with those of the CISL scheme. The coefficients of the
parabolas h1, h2 in (3) during the first phase of the
cascade can be used for the polar CISL density distri-
bution functions (4) such that c 5 h1 and d 5 h2. How-
ever, for the CISL scheme, the coefficients along the l
direction, a, b in (4) are computed independently
(NM02).

3. Numerical tests

We consider two numerical experiments to test the
extended CCS. In order to demonstrate the robustness

of the scheme, the numerical experiments are set for
large Courant numbers. However, for practical appli-
cation the choice of time step (Courant number) is dic-
tated by physical process, stability, accuracy, and effi-
ciency considerations. The numerical tests are solid-
body rotation of a cosine bell (Williamson et al. 1992)
and nonsmooth deformational flow (Doswell 1984;
NSS02) over the sphere. Exact trajectories are employed
for both tests. For the solid-body rotation test, the ori-
entation of the flow is chosen to be in the pole-to-pole
direction. The value of the flow parameter a is set to
p/2 or p/2 2 0.05 (Williamson et al. 1992). When a
5 p/2 2 0.05, cross-polar advection can be simulated
with slight off-centering of the cosine bell with respect
to the poles, making the test more challenging. The
computational domain consists of 128 3 64 grid cells
spanning the surface of the sphere (see NSS02 for de-
tails). Angular velocity of the solid-body rotation v is
either 2p/36 or 2p/72 radians per time step so that 36
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FIG. 3. Time series of l1, l2, and l` errors for the solid-body rotation
problem when the flow is along the pole-to-pole direction; 36 time
steps are required for one revolution.

FIG. 4. Numerical solution of the nonsmooth deformational flow problem at t 5 2.5 units (32
time steps), projected onto a plane tangent to the vortex center. The extended CCS with monotonic
filter and with exact trajectories is used for the numerical integration.

or 72 time steps are required for one complete revolution
over the sphere. The corresponding polar meridional
Courant number are Cu ø 3.6 and Cu ø 1.78, respec-
tively.

The results for solid-body rotation of a cosine bell
for the offset polar flow (a 5 p/2 2 0.05) are shown
in Fig. 2 (contour values vary from 0.1 to 0.9). The top
panels show the cosine bell approaching (left) and leav-
ing (right) the north pole at time steps 8 and 10, re-

spectively. The bottom panels show the cosine bell at
time step 27 over the South Pole (left) and returning to
the initial position at time step 36 (after one complete
revolution). The initial solution is displayed in the bot-
tom right panel using dashed contours. There is a slight
distortion at the center of the bell when it crosses the
poles. Note that no filter has been applied in either of
the CCS/CISL schemes to suppress the noise generated
at the poles. Figure 3 shows the time series of l1, l2,
and l` normalized errors for polar advection (a 5
p/2). Oscillations in the plots are severe when the bell
crosses the North and South Poles at time steps 9 and
27, respectively. The plots become relatively smooth
when the bell moves away from poles, particularly for
l`.

We have compared the normalized errors of the ex-
tended CCS with those of the CISL scheme in NM02.
For this experiment, 72 times steps are used for the
offset polar flow to complete one revolution. The l1, l2,
and l` errors for the extended CCS are, respectively,
0.038, 0.034, and 0.057, and the corresponding error
values for CISL scheme are 0.041, 0.037, and 0.051.
This indicates the extension process of CCS does not
significantly impact the accuracy.

For the nonsmooth deformational flow, we chose the
same test parameters in NSS02, except for the duration
of the numerical integration. The initial and exact so-
lutions after 2.5 time units are shown in Figs. 5a and
5b of NSS02 and are not given here. The number of
time steps required for simulating the nonsmooth vortex
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for the present experiment is 32. This corresponds to
maximum zonal and meridional Courant numbers Cl ø
32 and Cu ø 1.6, respectively. A monotonic version of
the extended CCS was used for the integration. Figure
4 shows the numerical solution as projected onto a plane
tangent to the vortex center. The numerical solution dis-
played in Fig. 4 is similar to Fig. 6 of NSS02. It shows
that the extended CCS is capable of accurately handling
even quasi-continuous solutions.

4. Summary and conclusions

The conservative cascade scheme (CCS) developed
by Nair et al. (2002) combines mass-conservative finite-
volume advection with a backward trajectory semi-La-
grangian method in a computationally efficient cascade
interpolation framework. However, in conventional
spherical geometry, the CCS is applicable only when
the polar meridional Courant number is Cu # 1. In order
to apply the CCS without this restriction on the sphere,
polar regions where the CCS fails are isolated. A 2D
remapping scheme, CISL (Nair and Machenhauer
2002), is applied within the isolated polar region when
Cu . 1. The interface between CCS and CISL is de-
signed to be the polar singular region, where certain
Lagrangian cells are either deformed or not well defined.
Total mass in the polar singular region is computed and
redistributed to the individual Lagrangian cells by a
simple scheme developed by Nair and Machenhauer
(2002). This scheme is a local approximation but is
constrained to be conservative. The resulting extended
CCS scheme was tested for solid-body rotation and de-
formational flow using large Courant numbers. The test
results show that the extended CCS is accurate for cross-
polar advection. Monotonic options of CCS/CISL may
be used for producing monotonic solutions.

The execution time of the CCS on the sphere is almost
half that of the CISL scheme (Nair et al. 2002). Because
the CISL scheme is only applied over a small region
on the sphere, the overall computational efficiency of
the extended CCS is not seriously affected. For realistic
3D applications such as a climate model (Williamson
et al. 1998), the extended CCS may be suitable because

it is conservative, efficient, and free from the polar me-
ridional Courant number limitations.
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