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A conservative 3-D discontinuous Galerkin (DG) baroclinic model has been developed in the NCAR
High-Order Method Modeling Environment (HOMME) to investigate global atmospheric flows. The
computational domain is a cubed-sphere free from coordinate singularities. The DG discretization uses
a high-order nodal basis set of orthogonal Lagrange-Legendre polynomials and fluxes of inter-element
boundaries are approximated with Lax-Friedrichs numerical flux. The vertical discretization follows
the 1-D vertical Lagrangian coordinates approach combined with the cell-integrated semi-Lagrangian
method to preserve conservative remapping. Time integration follows the third-order SSP-RK scheme.
To valid proposed 3-D DG model, the baroclinic instability test suite proposed by Jablonowski and
Williamson is investigated. Parallel performance is evaluated on IBM Blue Gene/L and IBM POWER5
p575 supercomputers.

1. INTRODUCTION

The future evolution of the Community Climate System Model (CCSM) into an Earth system model
will require a highly scalable and accurate flux-form formulation of atmospheric dynamics. Flux form is
required in order to conserve tracer species in the atmosphere and accurate numerical schemes are essen-
tial to ensure high-fidelity simulations capable of capturing the convective dynamics in the atmosphere
and their contribution to the global hydrological cycle. Scalable performance is necessary to exploit
the massively-parallel petascale systems that will dominate high-performance computing (HPC) for the
foreseeable future.

The High-Order Method Modeling Environment (HOMME) [5], developed by the Scientific Computing
Section at the National Center for Atmospheric Research (NCAR), is a vehicle to investigate using high-
order-element-based methods to build conservative and accurate dynamical cores. HOMME employs the
spectral element (SE) methods on a cubed-sphere tiled with quadrilateral elements, can be configured to
solve the shallow water or the dry/moist primitive equations, and has been shown to efficiently scale to
32,768 processors of an IBM Blue Gene/L (BG/L) system [16]. Nevertheless, a major disadvantage of the
SE atmospheric model is that it is not inherently conservative. For climate and atmospheric applications,
conservation of integral invariants such as mass and total energy is of significant importance. To resolve
these issues, we recently included the DG atmospheric models to support HOMME framework.

In this paper we discuss our extension of the HOMME framework to include a 3-D DG option as a
first step towards providing the atmospheric science community a new generation of atmospheric general
circulation models (AGCMs). The DG method [2], which is a hybrid technique combining the finite
element and finite volume methods, is inherently conservative and shares the same computational advan-
tages as the SE method such as scalability, high-order accuracy, spectral convergence, and thus is an ideal
candidate for climate modeling. The DG method is employed on a quadrilateral mesh of elements using
a high-order nodal basis set of orthogonal Lagrange-Legendre polynomials with Gauss-Lobatto-Legendre
(GLL) quadrature points. Time integration follows the strong stability-preserving Runge-Kutta (SSP-
RK) scheme of Gottlieb et al. [4]. The globe is based on the singularity-free cubed-sphere geometry
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introduced by [13]. Parallelism is effected through a hybrid MPI/OpenMP design and domain decompo-
sition through the space-filling curve approach described in [3]. Our work extends earlier efforts [3,10–12]
in several important ways: first, we develop a scalable conservative 3-D DG-based dynamical core based
on the hydrostatic primitive equations; second, we employ the vertical Lagrangian coordinate approach,
developed by Starr [15] and later generalized by Lin [8]; and finally, we apply the 1-D cell-integrated
semi-Lagrangian method [9] to preserve conservative remapping.

2. CONSERVATIVE DISCONTINUOUS GALERKIN MODEL

Inherently conservative numerical schemes are of fundamental importance in atmospheric and climate
modelings in order to pertain conservation properties such as mass and total energy. Toward this effort,
the 2-D DG shallow water model in the HOMME framework [10,11] has been recently extended to 3-D
DG baroclinic models [12]. Main features of DG baroclinic model are the vertical discretization and the
prognostic equations which are based on hyperbolic conservation laws where as the prognostic variables
are pressure thickness δp, covariant wind vectors (u1, u2), potential temperature Θ, and moisture q.

2.1. Hydrostatic primitive equations on the cubed-sphere
The hydrostatic primitive equations in curvilinear coordinates employ the cubed-sphere geometry fol-

lowed by [10,11]. A sphere is decomposed into ‘6 identical regions’ by an equiangular central projection of
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Figure 1. Cubed-sphere geometry for Nelem = 6 × 5 × 5 DG elements (left). Logical orientation of cube
faces in HOMME (right).

the faces of an inscribed cube as displayed in Figure 1. This results in a nonorthogonal curvilinear (x1, x2)
coordinate system free of singularities for each face of the cubed-sphere, such that x1, x2 ∈ [−π/4, π/4].
Each face of the cubed-sphere is partitioned into Ne × Ne rectangular non-overlapping elements (total
number of element, Nelem = 6 × N2

e ). The elements are further mapped onto the reference element
bounded by [−1, 1] ⊗ [−1, 1] which has Nv × Nv (or Np × Np) GLL grid points. Note that Nv and Np

denote the number of velocity and pressure points, respectively. The associated metric tensor, i.e., Gij ,
in terms of longitude-latitude (λ, θ) is defined as follows:

Gij = ATA; A =

[

R cos θ ∂λ/∂x1 R cos θ ∂λ/∂x2

R ∂θ/∂x1 R ∂θ/∂x2

]

. (1)

The matrix A is used for transforming spherical velocity (u, v) to the ‘covariant’ (u1, u2) and ‘contravari-
ant’

(

u1, u2
)

‘cubed-sphere’ velocity such that:
[

u
v

]

= A

[

u1

u2

]

; ui = Gijuj ; ui = Giju
j ; Gij = (Gij)

−1. (2)

The hydrostatic primitive equations, consisting of the momentum, mass continuity, thermodynamic,
and moisture transport equations, can be expressed as a conservative form in curvilinear coordinates.

∂u1

∂t
+ ∇c · ~E1 =

√
Gu2 (f + ζ) − RT

∂

∂x1
(ln p) , (3)
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∂u2

∂t
+ ∇c · ~E2 = −

√
Gu1 (f + ζ) − RT

∂

∂x2
(ln p) , (4)

∂

∂t
(∆p) + ∇c ·

(

Uj∆p
)

= 0, (5)

∂

∂t
(Θ∆p) + ∇c ·

(

UjΘ∆p
)

= 0, (6)

∂

∂t
(q∆p) + ∇c ·

(

Ujq∆p
)

= 0, (7)

where

∇c ≡
(

∂

∂x1
,

∂

∂x2

)

, ~E1 = (E, 0) , ~E2 = (0, E) , E = Φ +
1

2

(

u1u
1 + u2u

2
)

,

Uj =
(

u1, u2
)

, ∆p =
√

Gδp, Θ = T (p0/p)
κ

, κ = R/Cp, (8)

where E is the energy term, ζ is the relative vorticity, Φ = gh is the geopotential height and f is the
Coriolis parameter.

2.2. Vertical discretization
The vertical discretization follows the 1-D vertical Lagrangian coordinates of Starr [15] based on an

‘evolve and remap’ approach developed by Lin [8]. A terrain following Lagrangian vertical coordinate, as
shown in Figure 2 (left), can be constructed by treating any reference Eulerian coordinate as a material
surface. The Lagrangian surface are subject to deform in the vertical direction during the integration,
and need to be re-mapped onto a reference coordinate at regular intervals of time. By virtue of this
approach, the hydrostatic atmosphere is vertically subdivided into a finite number of pressure intervals
or pressure thicknesses. Moreover, the vertical coordinates and advection terms are absent thanks to the
Lagrangian framework.
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Figure 2. Lagrangian vertical coordinates system (left). The 3-D grid structure for the DG baroclinic
model (right).

The entire 3-D system can be treated as a vertically stacked shallow water 2-D DG models, as demon-
strated in Figure 2 (right), where the vertical levels are coupled only by the discretized hydrostatic
relation. Therefore, vertical structures involve no parallel communications. Following Lin [8], at every
time step δp is predicted at model levels and used to determine pressure at Lagrangian surfaces by sum-
ming the pressure thickness from top (p∞) to bottom (ps), p` = p∞ +

∑`
k=1 δpk. The geopotential height

at interfaces is obtained by using the hydrostatic relation, i.e., ∆Φ = −CpΘ∆Π where Π = (p/p0)
κ
, and

summing the geopotential height from bottom (Φs) to top, Φ` = Φs +
∑`

k=1 ∆Φk. For the baroclinic
model, the velocity fields (u1, u2), the moisture q, and total energy (ΓE) are remapped onto the reference
Eulerian coordinates using the 1-D conservative cell integrated semi-Lagrangian (CISL) method of Nair
and Machenhauer [9]. The temperature field Θ is retrieved from the remapped total energy ΓE .
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2.3. DG discretization
The flux form of DG discretization can be formulated such that

∂

∂t
U + ∇c · ~F (U) = S (U) , (9)

where U =
[

u1, u2,
√

Gδp, Θ, q
]T

denotes prognostic variables, ~F (U) is flux function, and S (U) is source

term. The corresponding weak Galerkin formulation of 3-D DG model can be written such that

∂

∂t

∫

Ωk

Uh · ~ϕh dΩk =

∫

Ωk

~F (Uh) · ∇c~ϕh dΩk −
∮

∂Ωk

(

~F (Uh) · ~n
)

· ~ϕh ds +

∫

Ωk

S (Uh) · ~ϕh dΩk, (10)

where the jump discontinuity at an element boundary requires the solution of a Riemann problem where
the flux term ~F (Uh) · ~n can be approximated by a Lax-Friedrichs numerical flux as shown in [11]. The
resulting DG discretization leads to following ordinary differential equation (ODE):

dUh

dt
= L (Uh) , Uh ∈ (0, T )× Ωk. (11)

The above ODE can be solved by explicit time integration strategy such as the third-order Strong Stability
Preserving Runge-Kutta (SSP-RK) scheme by Gottlib et al. [4].

U
(1)
h = U

(n)
h + ∆tL

(

U
(n)
h

)

, (12)

U
(2)
h =

3

4
U

(n)
h +

1

4
U

(1)
h +

1

4
∆tL

(

U
(1)
h

)

, (13)

U
(n+1)
h =

1

3
U

(n)
h +

2

3
U

(2)
h +

2

3
∆tL

(

U
(2)
h

)

. (14)

3. NUMERICAL TEST

The baroclinic instability test proposed by Jablonowski and Williamson [6,7] is used to assess the
evolution of an idealized baroclinic wave in the Northern Hemisphere. The baroclinic waves are triggered
when overlaying the steady-state initial conditions with the zonal wind perturbation where as the initial
conditions are given as quasi-realistic analytic expressions in [6,7]. Numerical computations are performed
for the conservative 3-D DG model with 9th order polynomials (i.e., Nv = Np = 10), horizontal resolution
of 26 Lagrangian surfaces (i.e., Nlev = 26 where Nlev denotes the number of vertical levels) and total
number of elements Nelem = 216. This case has 561,600 total degrees of freedoms (d.o.f). A Boyd-
Vandeven filter in [1] is used for spatial filtering. Figure 3 demonstrates the triggering baroclinic waves
and corresponding surface pressure Ps and temperature field T at 850 hPa from day 6 to day 10 . At
day 6 the surface pressure shows few weak high and low pressure contours which leads to growth of
very small-amplitude waves in the temperature field. At day 8 the baroclinic instability waves in surface
pressure are well developed and the temperature waves can clearly be noticed. At day 10 the strong
baroclinic pressure waves lead to two waves in the temperature field that have almost peaked and are
beginning to wrap around the trailing fronts.

4. PARALLEL IMPLEMENTATION

The parallel implementation of HOMME is based on a hybrid MPI/OpenMP approach and domain
decomposition is applied through Hilbert space-filling curve approach, Sagan [14] and Dennis et al. [3].
The approach generates best partitions when Ne = 2`3m5n, where `, m, and n are integers. The first
step to partitioning the computing grid involves the mapping of the 2-D surface of the cubed-sphere into
a linear array. Figure 4 illustrates the Hilbert space-filling curve and elements when Nelem = 24. Then
the second step involves partitioning the linear array into P contiguous groups, where P is the number of
MPI tasks. The space-filling curve partitioning creates contiguous groups of elements and load-balances.

To perform parallel computing experiments, we uses the IBM Blue Gene/L (BG/L) and IBM POWER5
p575 systems at NCAR. The configuration of these systems is summarized in Table 1. A Message Passing
Interface (MPI) job for IBM BG/L machine can be run in coprocessor mode (i.e., a single MPI task
runs on each compute node) or in virtual-node mode (i.e., two MPI tasks are run on each compute
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Figure 3. Evolution of the baroclinic wave from integration day 6 to day 10: Surface pressure Ps [hPa]
(top) and Temperature field [K] at 850 hPa (bottom).

End

Start

Figure 4. A mapping of a Hilbert space-filling curve for Nelem = 24 cubed-sphere grid.

node). On the other hand, 4 to 8 MPI tasks on each compute node are performed for IBM POWER5
machine. To determine sustained MFLOPS per processor, the number of floating-point operations per
time step was measured for the main DG time stepping loop using hardware performance counters for
IBM supercomputer.

• IBM Blue Gene/L system uses libmpihpm library and its link and code examples are given as
follows:
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Resource IBM Blue Gene/L IBM POWER5 p575
Clock cycle 0.7GHz 1.9GHz

Memory/proc 0.25GB 2.0GB
Total Processors 2048 624

Operating System MK Linux AIX 5.3
Compilers IBM BGL XL IBM AIX XL

Table 1
Comparison of IBM Blue Gene/L and IBM POWER5 p575 systems.

add -L$(BGL_LIBRARY_PATH) -lmpihpm_f -lbgl_perfctr.rts

...

call trace_start()

call dg3d_advance()

call trace_stop()

...

• IBM POWER5 p575 system uses libhpm library in HPM Toolkit and its link and code examples
are given as follows:

add -L$(HPM_LIBRARY_PATH) -lhpm -lpmapi -lm

...

#include "f_hpm.h"

...

call f_hpminit(taskid,’dg3d’)

call f_hpmstart(5,’dg3d advance’)

call dg3d_advance()

call f_hpmstop(5)

call f_hpm_terminate(taskid)

...

Note that all writing and printing functions are turned off during performance evaluations. Figure 5
demonstrates IBM Blue Gene/L machine sustains between 253 to 266 MFLOPS per processor with
coprocessor mode and sustains between 238 to 261 MFLOPS per processor with virtual-node mode
where as IBM POWER5 machine sustains between 715 to 732 MFLOPS per processor with 4 tasks
per node mode, sustains between 706 to 731 MFLOPS per processor with 6 tasks per node mode, and
sustains between 532 to 561 MFLOPS per processor with 8 tasks per node mode. Table 2 summaries
the percentage of peak performance for strong scaling results for IBM Blue Gene/L and IBM POWER5
systems. IBM Blue Gene/L sustains 9.5% and 9.3% of peak performance for coprocessor and virtual-node
modes, respectively. However, IBM POWER5 sustains 9.6% of peak performance for 4 and 6 tasks per
node mode where as it sustains 7.4% of peak performance for 8 tasks per node mode. Note that the
processors for IBM POWER5 system are grouped maximum 8 per node so that performance drops occur
when full (i.e., 8) tasks per node have been used.

5. CONCLUSION

A conservative 3-D DG baroclinic model has been developed in the NCAR HOMME framework. The
3-D DG model is formulated in conservative flux form. The computational domain is the singularity-free
cubed-sphere geometry. The DG discretization uses high-order nodal basis set of Lagrange-Legendre
polynomials and fluxes of inter-element boundaries are approximated with Lax-Friedrichs numerical flux.
The vertical discretization follows the 1-D vertical Lagrangian coordinates approach. Time integration
follows the third-order SSP-RK scheme. To validate proposed 3-D DG model, the baroclinic instability
test suite proposed by Jablonowski and Williamson is investigated. Currently, 3-D DG model performs
successfully upto 10-day simulation. Parallel experiments are tested on IBM Blue Gene/L and IBM
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Figure 5. Parallel performance (i.e., strong scaling) results on IBM BG/L and IBM POWER5 p575
systems.

Resource Sustained MFLOPS % of Peak Performance
POWER5: 4 tasks/node 732 9.6
POWER5: 6 tasks/node 731 9.6
POWER5: 8 tasks/node 561 7.4
BG/L: 1 task/node (CO) 266 9.5
BG/L: 2 tasks/node (VN) 261 9.3

Table 2
Summary of strong scaling results for IBM Blue Gene/L and IBM POWER5 p575 systems.

POWER5 p575 supercomputers. Conservative 3-D DG baroclinic model sustains 9.5% peak performance
for IBM Blue Gene/L’s coprocessor mode and sustains 9.6% peak performance for IBM POWER5’s 4
and 6 tasks per node modes.
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