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SUMMARY

A simpler, more efficient, and more robust form of cascade interpolation is proposed, It significantly reduces
the considerable overhead required to determine the mesh points of the intermediate mesh, without degrading
accuracy. A simple improvement of an existing monotonic filter is also proposed to address a deficiency and
enhance robustness, These ideas are demonstrated using two standard test-problems.
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1. INTRODUCTION

At every time-step of a semi-Lagrangian advection-scheme employing backward
(forward) trajectories, the advected fields need to be evaluated at the upstream (down-
stream) points via interpolation of the known surrounding grid-point values. A typical
tensor-product interpolation in three dimensions (3-D), based on a one-dimensional (1-D)
interpolator, requires O (p>) operations per grid point per field, where p is the formal order
of accuracy of the interpolator {p = 4 for cubics). A high-order interpolation formally im-
proves the accuracy of the advection scheme but unfortunately engenders additional com-
putational expense. Purser and Leslie (1991), hereinafter referred to as PLO1, proposed an
alternative scheme termed ‘cascade’ interpolation. Their technique employs a sequence of
1-D interpolations for the multi-dimensional interpolation-problem associated with semi-
Lagrangian advection, thereby reducing the cost of using high-order interpolation schemes
in 2-D and 3-D to O(p) operations per grid point per field—a significant saving.

The first step in applying cascade interpolation is to generate an intermediate mesh
defined by the intersection of the regular Eulerian and the curvilinear Lagrangian meshes.
Values are then transferred from the Eulertan mesh to the intermediate mesh by 1-D in-
terpolation. The final step is to interpolate values defined on the intermediate mesh to
the target points of the Lagrangian mesh, again using 1-D interpolation. Cascade interpo-
lation can also be used for semi-Lagrangian advection with forward trajectories (Purser
and Leslie 1994), for which conventional interpolation techniques are difficult and ex-
pensive, by simply reversing the order of the sequence of 1-D interpolations. Further-
more, Leslie and Purser (1993) and Randi€ (1995) have shown that 1-D mass-conserving
monotonic remapping algorithms can also be incorporated within a cascade interpola-
tion framework. Sun and Yeh (1997), hereinafter referred to as SY97, have also proposed
a semi-Lagrangian advection-scheme using forward trajectories. The interpolation proce-
dure used, ingeniously termed the ‘internet’ procedure, is a variant of cascade interpolation,
“and 1t i1s combined with the monotonic filter of Sun et al. (1996), hereinafter referred to as
SYS96.

As noted by PL.91, generation of the intermediate mesh represents a significant over-
head of cascade interpolation. The purposes of the present work are to propose a simpler
and more efficient form of cascade mterpolation that significantly reduces this overhead
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without degrading accuracy, to propose a simple and robust improvement of the SYS96
monotonic filter, and to clarify some points raised in SY97.

2. CASCADE INTERPOLATION

For the traditional semi-Lagrangian advection-problem employing backward trajec-
tories, function values defined at the points of a regular uniform Eulerian mesh need to
be transferred by polynomial interpolation to the corresponding points of the Lagrangian
mesh, i.e. the curvilinear mesh defined by the upstream positions. For semi-Lagrangian
advection employing forward trajectories, the data transfer is in the opposite sense, viz.
from the Lagrangian mesh (defined by the arrival points) to the Eulerian ones (defined by
the departure points). In both cases, a cascade scheme performs this grid-to-grid transfer
through an intermediate mesh by means of 1-D interpolation. In what follows, the algo-
rithm is presented in terms of backward frajectories, but the development is stmilar for
forward trajectories. |

Consider the 2-D advection of a passive scalar i, on a rectangular Cartesian domain.

Thus
dy oy ayr Y
= — e ==} 1
de 8:+H8.x+vay ’ 1

where u and v are the components of velocity in the x and y directions respectively. Let
(x;, y;).i=1,...,myj=1, ..., ndefine the Eulerian meshpoints of the computational
domain % (see Fig. 1(a) for a schematic illustration). Assume that for every mesh point
(x;, y;) in 9 at time ¢ 4 At there exists a unique Lagrangian point (x;;, y;;) at time £ in 9,
and that its position (Fig. 1(c)) is determined by the upstream trajectory of the flow. That
is, a fluid particle that arrives at the point (x;, y;) at time ¢ + Az, departed from the point
(xi;, yi;) at time ¢, The arrival point (x;, y;) and the departure point (x;;, y;;) satisfy

(e, ¥) — gy i) = (a5, Bij), (2)

where (o;;, B;;) is the vector displacement determined by the numenical approximation
(Robert 1981; Staniforth and C6té 1991) of

(dx dyy
(“&;: "é;) — (H, U)* (3)

Let (X, Y) denote the curvilinear Lagrangian coordinate-system correspondmg to the
Eulerian (x, v) coordinate-system (Fig. 1(a)). A y-line of the regular Eulerian mesh is a
straight line defined by x = x;, whereas the associated mapped Lagrangian Y-curve (or
simply Y-curve) is a curve corresponding to the mapped y-line that joins the upstream
POiﬂtS (-xilt yiti)i (—xiﬂ;; ny)a s 0y (xirzs yin)-

A key component of the cascade-interpolation technique is the generation of a well-
defined intermediate mesh. An intermediate mesh can be constructed as the intersection of
Y -curves with x-lines or as the intersection of X-curves with y-lines. Ideas are arbitrarily
fixed here on the former: i.e., an intermediate mesh 1s constructed such that the x-lines
definedby y =y, j=1,..., nintersectthe ¥-curves ¥;, i = 1, ..., m. This is schemat-
ically illustrated in Fig. 1(c) for a specific Y -curve ¥;, where the points of intersection are
denoted by “x’.
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Figure 1. Schematics for cascade interpolation. Eulerian mesh-points denoted by ‘c’, Lagrangian mesh-points

by ‘#’, and intermed:iate mesh-intersections by *x’: (a} Lagrangian {thick lines) and Eulerian (thin lines) meshes;

(by) various intersections of Lagrangian ¥ -curves with the Eulerian x-line defined by y = y; (symbol ‘@’ represents

the mid-point of the line segment of Y, for which y == y;); (c} a specific Lagrangian Y-curve ¥; that intersects the

standard Eulerian x-line defined by y = y; (dashed line} at an intermediate mesh-point (x’, y;) (dotted lines denote
backward trajectories).

(a) Determination of mesh intersection points via linear interpolation

The simplest way of determining an intermediate mesh is by using linear interpola-
tion to determine the points of intersection of each Y -curve with x-lines. This corresponds
to an important simplification of both the PL91 and the SY97 algorithms, and has the
virtue of being significantly more economical. Theoretically, Eq. (18) of McDonald’s
(1987) analysis indicates that when using cubic interpolation to evaluate advected quanti-
ties, it 1s sufficient to use lnear interpolation when computing the trajectories that define
the Lagrangian mesh, and this has been confirmed experimentally {(e.g. Temperton and
Staniforth 1987; Bates ef al. 1990). Although it is possible to use interpolation of higher-
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than-linear order in this context, this is of little benefit since it does not reduce the order
of the truncation errors. Also, commonly used algorithms usually assume linear spatio-
temporal trajectories. These observations strongly suggest that linear interpolation should,
for many, if not most, problems, be sufficient to determine the points of intersection of the
Eulerian and Lagrangian meshes, and that little is likely to be gained by paying the price
of cubic interpolation for this component of cascade interpolation.

Consider (see Fg. 1(c)) a specific Y-curve ¥; and recall that it joins the points
(i1, Yir)s (Gizs Yizds o ooy (Xin, Yin). If 1t intersects the x-line defined by y = y;, then it
will, in general, do so such that y;; < y; < y; 44, for some value of the integer index £,
where 1 = £ = n — 1. By passing a straight line between the two points (x;, y;¢) and
(X:,641+ ¥ie41), 1ts point of intersection with y = y; 1s simply (x', y;), where

Yi — Yi¢

Yigsr — Yie

The setofall (x', y;) forall x-lines (j =1, ..., n)andforall Y-curves Y; (i =1, ..., m),
constitutes the intersection points of the sought intermediate mesh.

If yi1, ¥i2, .. ., ¥is forms a monotonically increasing sequence (this will almost al-
ways be the case, and it can always be arranged to be so by a suitable reduction of time-step
length), then a specific Y-curve ¥; will intersect each x-line exactly once. In this case, i
and j indices could be added to x'. The intermediate mesh then exactly consists of the
m x n set of points (x;fj, yj),wherei=1,...,mand j=1,...,n.

Multiple intersections of a specific ¥ -curve with a specific x-line are, however, pos-
sible (see the Y-curves ¥, and ¥, in Fig. 1{(b) for an illustration of this). The intermediate
mesh then has more points than the m x n points of both the Eulerian and Lagrangian
meshes. For the Y-curve Y, the algorithm described above uniquely determines its two
points of intersections with the x-line defined y = y;. However, for the Y-curve ¥, there
are an infinite number of intersections, viz. all points that lie on the straight-line segment
joining the points (x;¢, yi) and (x; ¢, y). [tis then convenient simply to take the midpoint
value of this segment, i.e.

x' =Xy + (Xi 241 — Xig). 4)

Xip + X;
X = +2 ML Yiger = Yoo (3)

Note that this corresponds to, and addresses, the singular case of Eq. (4).

() Cascading the interpolation for schemes based on backward trajectories

In a 2-D rectangular domain, the cascade interpolation procedure for semi-Lagrangian
advection employmg backward trajectories can be summarized as follows.

MFori=1,2,...,mand j=1,2, ..., n, obtain, in the usual way, the upstream
departure points (x;;, y;;) that define the Lagrangian mesh.

(11) Determine the location of the points that define the intermediate mesh (i.e. the
intersection points of ¥-curves with x-lines) using the linear interpolation algorithm (i.e.
Eqs. (4) and (35)) of subsection 2(a). | __

(iti) For j =1, 2, ..., n: interpolate, using 1-D polynomial interpolation along the
x-lines y = y;, all advected fields from the mesh points of the Eulerian mesh to the mesh
points of the intermediate mesh.

(iv) For j =1, 2, ..., n: interpolate, using 1-D polynomial interpolation along the
Y-curves Y, all advected fields from the mesh points of the intermediate mesh to the target
mesh points of the Lagrangian mesh. -



MONOTONIC CASCADE INTERPOLATION 201

The interpolation in step (iv) is performed using the distance s along the ¥Y-curve
as the independent variable. Recall that the ¥;-curve is defined by joining (Fig. 1{c)) the
points (x;1, i), (Xiz, Yiz)s - - - » (Xin, Yin) by straight lines between adjacent points (i.e.
‘piecewise’-linearly). Dropping the i subscript for convenience, the distances s; of the
points (x,;, y,) along the curve are recursively defined by

A | 209

e =8+ (et — X002 + Qs — 3?7 fore=1,2...,n—1. (6

A point (x’, y;) of the intermediate mesh (cf. Fig. 1(c)) that lies on the straight line joining
(Xe, ¥e) 10 (xp41, Yer1), where X7 is given by Eq. (4), is therefore located at

(y; — ye)
(Vo1 — }’f)’

(7)

s' =8y + (§ge1 — 5¢)

and the second term on the right-hand side of Eq. (7) is guaranteed positive.

If the time-step is chosen sufficiently small to eliminate multiple intersections of
specific Y-curves with specific x-lines (see Fig. 1(b)), then y may be used as the inde-
pendent variable instead of s, since it remains monotonic. However, these two choices of
independent variable do not in general lead to the same result {e.g. when interpolating
cubically) because of different spacing of mesh points. Our preference is to use s rather
than v, since the algorithm is then more robust and the computational benefit of using y is
slight anyway.

Cubic interpolation, with a monotonicity constraint (see section 3), is adopted in the
present work for the 1-D polynomial interpolators of steps (ii1) and (iv), since cubic in-
terpolation of advected fields has been found to be a good compromise between accuracy
and efficiency for semi-Lagrangian schemes (Stantforth and Coté 1991). Higher-order
(e.g. quintic) interpolators also merit serious consideration (PL91) provided that the ad-
vected fields have sufficient continuity, since this reduces the inherent damping caused by
interpolation, and the incremental cost of increasing the polynomial order for cascade in-
terpolation is much less than that for conventional Cartesian-product mterpolation. Linear
and quadratic interpolation are, however, not generally recommended since they can lead
to an unacceptable amount of damping (Staniforth and Pudykiewicz 1983).

(¢) Cascading the interpolation for schemes based on forward trajectories

For a semi-Lagrangian scheme employing forward trajectories, the interpolation pro-
cedure is very similar to that described above for schemes based on the use of backward
trajectories. The upstream points (x;;, y;;) of step (i) are now to be interpreted as being the
downstream arrival points associated with the departure points (x;, ;) and their locations
are determined in an analogous manner. The step (i1) construction of the intermediate mesh
remains unchanged, and steps (iii) and (1v) are interchanged; i.e., the fields are interpolated
from the Lagrangian mesh to the intermediate mesh to the target Eulerian mesh rather than
the converse.

(d) Comparative computational cost

The computational cost of the ‘economic’ and ‘complete’ interpolation algorithms
for 2-D passive advection is estimated by SY97 to be, respectively, 6K + 90 and 6K* +
150 arithmetic operations per grid point, where K — 1 is the degree of the polynomials
employed. The constant component of these estimates is the cost of determining mesh
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intersection points. By using the linear algorithm proposed here instead of the SY97 cubic
one, this component of the cost is reduced from 90 and 150 operations per grid point to 6
and 12 respectively (see Eq. (4)). For K = 4 (i.e. cubic interpolation of the advected field),
the total costs of the SY97 economic and complete algorithms are therefore reduced from
186 and 254 to 102 and 116 arithmetic operations per grid point respectively. Thus, using
linear mstead of cubic polynomials to determine mesh intersection points approximately
halves the total number of arithmetic operations of the SY97 algorithms.

3. AN IMPROVED MONOTONIC FILTER

In the work of SY97, a modified version (see SYS96) of the QMSL (guasi-monotone
semi-Lagrangian) filter of Bermejo and Staniforth (1992) is applied immediately after
each 1-D interpolation of the interpolation cascade. The SYS96 alogorithm identifies the
existence of a local extremum by examining slope variations of the function in the three-
mesh-length interval surrounding the target evaluation-point: the QMSL filter is then turned
off whenever an extrernum is identified in order to capture it. This modification is designed
to address a shortcoming of the QMSL filter, viz. that under certain circumstances it clips
some local extrema that one would ideally wish to retain. However, the SYS96 filter is
only partially successful, since it trades off an improvement in one circumstance against a
deterioration in another. This is illustrated schematically in Fig. 2 for a 1-D interpolation
function in a region with a strong Gibbs (i.e. overshoot/undershoot) phenomenon.

Assume that a function is sampled at the points represented by solid circles in Fig. 2(a)
and that the curve joining these circles is a high-order interpolating function. Assume also
that this interpolating function is to be evaluated at the upstream points x; — o, The

resulting evaluation is denoted by the hollow stars, and the Gibbs phenomenon is obvious.
The QMSL filter is defined as follows:

(a) identify the local minimum and maximum surrounding the target point x; — o; as

fT=mn{fe, fen), &)
[T =max(fe, fri1), (N

where X; — Oy 18 11 the interval {.X’g, xg+1};
(b) reset f(x; — o) such that

J@i—ai)=f~ if flxi—a;) < f7, (10)
f(xf“fff):f+ iff{xi_{xi)}f+' (11)

The SYS96 filter also applies the QMSL filter, but turns it off whenever an extremum is
identified by the monotonicity condition

(fe — fe-)(fez = ferr) <0, (12)

provided fom < f(x; — &) < fiax, Where fi and fi., are, respectively, the global min-
imum and maximum of f.

The results after applying the QMSL and SYS96 filters to the data of Fig. 2(a) are
shown in Fig. 2(b). The QMSL. filter correctly enforces monotonicity (open-circle points)
and realistically controls the Gibbs behaviour, However, although the SYS96 filter mostly
controls this behaviour, it fails to do so at the point x; — o, resulting in a violation of
monotonicity, an isclated small-scale perturbation being superimposed on the expected
solution, and the introduction of a spurious mass-source.
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All, however, is not lost. By making a further small modification, it is possible to
get the best of two worlds, viz. the robustness of the QMSL algorithm, and the capture
of local subgrid-scale extrema by the SYS96 one. The reason why the SYS96 algorithm
breaks down in a Gibbs-phenomenon situation is that in identifying local extrema, the
local behaviour of the function is considered only in the three-mesh-length-wide interval
containing the extremum, which is insufficient to exclude the two-mesh-length noise sig-
nature of the Gibbs phenomenon. By extending the width to five mesh-lengths (or more
if desired), and by insisting that the function have only a single extremum in this larger
interval (see the schematic of Fig. 2(c)), the problem is avoided. The revised monotonic
procedure can be expressed algorithmically as follows.

(1) If all the following four inequalities hold, do not apply the QMSL filter:

Join = f — ) S fows (13)

(fe-1 = fe-2)(fe — fe-1) > 0, (14)
(fe — fe=t)(fe42 = fer1) <0, (15)
(fear — fes ) (feaz = fri2) > 0, (16)

where the target meshpoint x; — o; 1s in the interval [x;, x,41].
(ii) If one or more of these inequalities is violated, then apply the QMSL. filter.

Inequality (15) (see Fig. 2(c)) identifies f(x; — «;) as an extremum in the interval
[x¢, X011, whereas inequalities (14) and (16) ensure monotonicity in the two-mesh-length-
wide intervals on either side of this interval. Note that the new filter-formulation reduces
to the SYS96 one by dropping conditions (14) and (16), and then further reduces to the
Bermejo and Staniforth (1992) (QMSL) one by dropping conditions (13)-(16) aitogether.

4. DISCUSSION

For the SY97 internet cascade algorithm, the points of the intermediate mesh are
determined by parametrically describing the coordinates of the ¥;-curves as piecewise
cubics of the form

x(8) = a38° + ap8* + ay5 + ay, (17)
y(s) = b3s* + bys® + bys + by, (18)

where s is a parameter. When the high-order interpolator is chosen to be cubic for the
PL91 algorithm, the points of the intermediate mesh are determined by describing the
coordinates of the Y;-curves as piecewise cubics of the form

y(x) = ¢3x° + 2x* + c1x + . (19

The coefficients in Eqgs. (17)—(19) are determined for both of these algorithms by fitting
to the known points (x;1, vi1), (Xi2, ¥i2)s - . . » (Xia, Vin) that lie on the ¥;-curve. Note that
if as, ay, ba, b3, and ¢a, ¢35, were each to be set to zero, the SY97 and PL91 algorithms for
determining the points of the intermediate mesh would reduce to the linear one described
in subsection 2(a).

There is, however, a potential weakness (other than computational cost) in using cubic
representations of the Y;-curves. Implicitly, the validity of cascade interpolation depends
upon the smoothness of the velocity field (PL91). Numerically, high-order interpolators
are generally of no benefit, and often detrimental, when their continuity assumptions are
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Figure 2. Schematics for monotonic filtering: (a) sampling a high-order interpolating function (raw values at the

Eulertan meshpoints denoted by ‘e", and interpolated values at Lagrangian mesh-points by “¥%’; (b) interpolated

values at Lagrangian mesh-points affer application of the SYS96 filter (hollow stars) and the new monotonic filter

(open circles) (coincident values denoted by a hollow star within a circle); {c¢) the 5-mesh-length support used to

identify acceptable local extrema (values before interpolation denoted by ‘e’, and after interpolation to x; —~ a; by
a hollow star}.
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Figure 2. Continued.

inadequately respected. In the present context, if the velocity field is insufficiently smooth,
this can lead to an ill-behaved intermediate mesh with too much mesh-distortion for cascade
interpolation to be accurate. This is most likely to occur for regions of intense deformation
(e.g. frontal regions) and for wind-fields with irregular fluctuations (‘noise’). The use
of cubic interpolation to define the intermediate mesh exacerbates this problem since a
Lagrangian curve can now intersect an Eulerian mesh-line more than once, leading to a
breakdown of uniqueness in the intermediate mesh generation and reduced algorithmic
robustness.

Consider the situation (see the solid circles of the ¥, curve of Fig. 1(b)), where the data
defining this ¥Y-curve are a little noisy but still such that the y-coordinate i1s a monotonic
function of the x- coordinate. Because the data are monotonic, it 18 expected that the
Y;-curve should intersect the x-line y = v, only once. When using cubic interpolation to
define the intermediate mesh, it is nevertheless possible to generate (Fig. 1(b) of the present
paper and Fig. 4 of PL.91) three subgrid-scale intersection points, two of which are spurious,
instead of the expected single intersection, This is, basically, a Gibbs phenomenon, induced
by a very strong local gradient, which spuriously distorts the Lagrangian mesh and thereby
reduces the accuracy of cascade interpolation. On the other hand, the linear algorithm of
subsection 2(a) cannot generate such spurious subgrid-scale intersections. As a result, the
Lagrangian mesh is defined more smoothly and there is an increased likelthood that the
continuity assumptions required for cubic interpolation of the advected fields on this mesh
will be respected. However, it should be remembered (PL91) that while this enhanced
robustness is likely to provide some benefit, it only mitigates but does not circumvent the

usual restriction that the directional deformation Courant number should be less than unity
(Pudykiewicz et al. 1985; PL91).
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In this regard, the statement by SY97 that *. . . the stability criterion of conventional
semi-Langrangian schemes comes from the iteration process for backward trajectories” is
somewhat misleading. The criterion referred to is really one of convergence rather than
stability per se. To illustrate what happens, it suffices to consider the problem in 1-D. When
the iterative procedure fails to converge, it is because the deformation is so strong that the
numerically determined trajectories cross, thereby violating the condition for solution
uniqueness. While an explicit computation of the trajectories always yields an upstream or
downstream location, this does not really help matters since, all other things being equal,
it will be so wrong as to render the ensuing solution meaningless.

To address this numerical problem, either the time-step has to be sufficiently reduced
to prevent trajectory crossing, or a different method (possibly iterative, possibly explicit)
must be adopted or devised to prevent this occurring during the specified time-step. This
is, however, easier said than done. Trajectories can be computed in a variety of ways, but
all break down for flows with strong deformation at sufficiently large time-step (typically
characterized by the directional-deformation Courant-number being of the order of unity),
because of the finite spatio-temporal sampling of the velocity field. Trajectory algorithms
exist that allow for curved trajectories instead of the straight-line ones usually employed,
and, 1n principle, they should therefore aliow somewhat longer time-steps. In practice how-
ever, these algorithms can be dangerous since they make further assumptions concerning
the spatio-temporal continuity of the velocity field. These may not be respected, e.g. by
noisy data, and may degrade rather than improve solution accuracy.

In our opinion, the claims made by SY97 that “Compared to the conventional semi-
Lagrangian schemes that employ backward trajectories, semi-Lagrangian schemes em-
ploying forward trajectories have the advantage that trajectories can be easily calculated
with great accoracy . ..” and that their procedure “. .. has virtually no restrictions” are
speculative. The reader is not told how to compute forward trajectories with greater accu-
racy than backward ones, nor why such a procedure could not be made to work equally
well for backward trajectories. Furthermore, there is no experimental substantiation since
all the integrations described were performed using exact trajectories. As demonstrated
below, when the trajectories are specified exactly, backward-trajectory variants of cascade
interpolation for passive advection give as good a solution as forward-trajectory ones.

For both forward- and backward-trajectory semi-Lagrangian schemes, the trajectories
leading to the definition of the Lagrangian mesh must, in general, be determined numer-
ically from known values on a Cartesian mesh, rather than being specified analytically.
For both cases, the first-order ordinary differential equation (1) is solved over the same
time-interval using the same known wind information, and the only difference is in the
specification of the initial/final condition. For forward trajectories, the initial condition is
that the trajectory starts at a given mesh-point and Eq. (3) is integrated forward in time,
whereas for backward trajectories the final condition is that the trajectory ends at a given
meshpomt and Eq. (3) is integrated backwards in time. Therefore, we argue that if an ac-
curate method exists to compute either backward or forward trajectories, then it should be
equally applicable for the other case by simply integrating Eq. (3) in the opposite direction
in time, subject to the appropriate specified initial/final condition. As noted by Staniforth
and Coté (1991), it is of particular importance that the appr{}xzmam}n of the trajectory
equation (3) be O(A#?) accurate.

For coupled sets of equations where the velocity ﬁeld also has to be forecast, and
in the context of an implicit or semi-implicit treatment of gravitational-oscillation terms,
it appears to be more straightforward to couple the variables and equations together on a
regular Eulerian mesh with a backward-trajectory variant of semi-Lagrangian advection,
than it is to do so on the curvilinear Lagrangian mesh of a forward-trajectory one.
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As noted by PL91, the overhead penalty for determining the mesh-points of the
intermediate mesh depends only upon the velocity field. As such, it needs to be done only
once, regardless of the number of fields to be interpolated at upstream or downstream
points. Its costs can therefore be amortized over the cost of evaluating multiple fields.
For a typical baroclinic forecast-model there will be a half-dozen or so such fields. For
a typical air-quality transport-model there will be dozens of chemical-species fields, and
cascade interpolation is then even more attractive and cost effective.

5. NUMERICAL EXPERIMENTS

To test the proposed cascade-interpolation schemes, two test-problems are considered:
solid-body rotation and deformational flow. The trajectories are evaluated exactly in all
experiments, as by §Y97, to focus attention on the performance of cascade interpolation
better. All 1-D interpolations of the advected variable 1 are performed using cubic splines.
A series of eight tests is performed for each test problem to evaluate solution accuracy as
a function of a scheme’s trajectory-direction (backward vs. forward), its monotonic filter
(SYS96 vs. the one proposed here), and the order of the interpolator used to determine the
intermediate mesh (linear vs. cubic spline). Regarding the latter, note that the ‘economic’
version of the SY97 algorithm corresponds to using cubic-spline interpolation to determine
the points of intersection of the ¥-curves of the Lagrangian mesh with the x-lines of the
Eulerian one.

The performance measures chosen to evaluate the integrations are

_ JJ{¥ — min(y)} dx dy

g1 ; 20
' [T — min(yr)} dx dy (20)
ff(‘ﬁg) dx dy
Er= ) 21
> T dx dy @1
1/2
E"‘“Sm” W—‘”ﬂ)zdxdi*’} * (22)

where the integrals are evaluated using the trapezoidal rule, v, is the analytic solution,
and rp 18 1ts evaluation at initial time. The first two quantities are related to the mass and
square mass. They are conserved for the exact solution, and have been normalized to unity.
Note that a constant has been introduced in the first of these to avoid possible division by
zero and allow its normalization.,

(a) Solid-body rotation

The solid-body rotation of a symmetric slotted cylinder is examined with parameters
set to be 1dentical to those used in one of the SY97 experiments. The cylinder (displayed
at initial time in Fig. 3(a) of SY97) rotates six times with constant angular velocity w =
0.3635 x 10~* s~! about the centre of the domain [~1/2, 1/2] ® [—1/2, 1/2], and it is
sampled on a uniform mesh of mesh length A = 1/100. The time-step for the experiments
is 1800 s, and one revolution of the cylinder is completed every 96 time-steps.

Results of four integrations after six revolutions (576 time-steps) using linear inter-
polation to determine the intermediate mesh are summarized in Table 1. A further four
integrations reveal that, to the number of figures displayed, the values are identical when the
mesh-intersection points are determined by cubic-spline interpolation. Figure 3 displays
the slotted cylinder after six revolutions for the forward-trajectory case using linear inter-
polation to determine these points. Corresponding plots for the other seven experiments
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Figure 3. The ‘slotted cylinder’ after 6 revolutions (576 time-steps) using a forward-trajectory cubic-spline
cascade scheme with the new monotonic filter, and linear interpolation to determine mesh intersection points.

TABLE 1. SLOTTED CYLINDER TEST USING BACKWARD AND FORWARD TRA-
JECTORY SCHEMES AND CASCADE INTERPOLATION

¥ y?

Analviic trajecio Monotonic limiter f R.m.s. error
| y jeciory m 1#5'

Backward New 1607 (LBOS 0.0684
Forward New 1509 0809 (0.0684
Backward SYS06 1009 (.09 0.0683
Forward SYS06 1010 0811 (.06%3

The intermediate mesh is determined by linear interpolation. Resuits are tabu-
lated after 6 rotations (576 time-steps}.

are almost indistinguishable and are not shown: the only visible difference noted 1s that the
new filter captures the flatness of the solution a little better in the immediate vicinity of the
discontinuity, as expected from the above arguments regarding the Gibbs phenomenon.
Figure 3 can be compared with the corresponding results shown in Fig. 3(b)) of SY97 for
their ‘full-cost’ algorithm. From the eight integrations performed, it is concluded that for
this test problem there is no loss of accuracy when using the simpier and more economical
linear-interpolation algorithm proposed herein to determine mesh-intersection points, the
new monotonic filter addresses the Gibbs-phenomenon deficiency of the SYS96 filter, and
the cascade interpolation gives equally good solutions, whether schemes use backward or
forward trajectories.

(b) Idealized cyclogenesis

The idealized cyclogenesis problem described by Doswell (1984) and Davies-Jones
(1985) has been used for scalar-advection tests by Randi¢ (1992), Hélm (1993), and SY97.
The test case considered here is that given by SY97. The flow field is highly deformational
and more challenging than solid-body rotation. A steady circular vortex with a tangential
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TABLE 2. IDEALIZED CYCLOGENESIS TEST USING BACKWARD AND FORWARD TRA-
JECTORY SCHEMES AND CASCADE INTERPOLATION

. S [ w-minyg v2
Analytic trgjectory  Monotonic limiter - > Runs. error
f ¥p—-min g ¥
Backward New 1.0001 (J.985 0.0692
Forward New 1.0001 0.985 0.0693
Backward SYS96 1.0001 0.985 0.0692
Forward SYS96 1.0001 0.985 0.0693

The intermediate mesh is determined by linear mterpolatmn Results are tabulated
after five time-units (16 time-steps).

velocity vr(r) = vy sech?(r) tanh(r) is defined, where r is the radius of the vortex and v, is
a value chosen such that the maximum value of vy never exceeds unity. The initial condition
of the advected scalar is ¥(x, y, 0) = — tanh{(y — y.)/8}, where § is the characteristic
width of the front zone. The analytic solution at time ¢ is

(y — ¥) (x — x.)
5 cos{w?) — 3

where (x., y.) is the centre of the vortex that has angular velocity @ = vy /r. The domain
of integration is a square of side ten non-dimensional units. The value of the parameter 5
is set to (.05, which corresponds to ‘non-smooth’ cyclogenesis, and the integration time
is five time units.

Results after 16 time-steps for semi-Lagrangian advection, with both forward and
backward trajectories, on a 129 x 129 mesh using linear interpolation to determine the
intermediate mesh, are summarized in Table 2. This corresponds to five time-units with a
maximum Courant-number of approximately four. For all integrations, the numerical solu-
tion is very close to the exact one. To the given number of decimal places, the performance
values are identical when the mesh-intersection points are determined by cubic-spline in-
terpolation, except that the root mean square (r.m.s.) error is reduced by one in the fourth
decimal place, which is insignificant.

Figure 4(a) displays solutions after five time units using backward trajectories, linear
interpolation to determine mesh-intersection points, and the new monotonic filter. It can be
compared with both the corresponding result using the SYS96 monotonic filter (Fig. 4(b)),
and that of SY97 (their Fig. 4) using forward trajectories, cubic-spline interpolation to
determine mesh-intersection points, and the SYS896 filter. It is concluded (cf. Fig. 4(a, b))
that the new monotonic filter again captures the flatness of the solution in the immediate
vicinity of the discontinuity a little better than the $YS96 filter. Corresponding plots for
the other six experiments are visually almost indistingunishable and are similar to either
Fig. 4(a) or Fig. 4(b), depending upon which filter is used. Also, given the very close
agreement between the results of the experiments for this test case (as determined both
visually and by the performance measures), it can again be concluded that the cascade
algorithm described in the present paper has an accuracy similar to that of the SY97 one,
but has the advantages of being more economical and of treating the Gibbs phenomenon
a httle better,

Results are also shown by SY97 after five time-units with a single time-step on a half
resolution 65 x 65 mesh using both their ‘complete’ intermediate mesh (their Fig. 5(a)) and
their ‘economic’ determination of the intermediate mesh (their Fig. 5(b)). The appearance
of a spurious spike in this latter solution, and its absence in the former, leads the reader
to conclude that the ‘economic’ algorithm is somehow less accurate and robust than their

¥ (x, v, t) = — tanh { sin(wz)} (23)
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Figure 4. The cyclogenesis simulation ona 129 x 129 mesh after 5 time-units {16 time-steps), using a backward-
trajectory cubic-spline cascade scheme, linear interpolation to determine mesh intersection points and two different
filters: (a) the new monotonic filter; (b) the SYS56 filter.
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Figare 5. The cyclogenesis simulation on a 65 x 63 mesh after 5 time-units {1 time-step) using a forward-
trajectory cubic-spline cascade scheme, cubic interpolation to determine mesh-intersection points, and the SYS96
filter.

‘full-cost’” one. We have not only repeated the experiment that led to their Fig. 5(b), but
have also performed seven similar integrations to examine all eight possible combinations
of backward vs. forward trajectories, of linear vs. cubic-spline interpolation to determine
mesh-intersection points, and of the SYS96 filter vs. the new one. None of these solutions
exhibits the spike observed in the SY97 results and, furthermore, they all closely resemble
one another. In particular, they resemble the result displayed in Fig. 5 of the present paper,
obtained under the same ostensible conditions as Fig. 5(b) of SY97. We therefore conclude
that the spurious SY97 spike is a misieading artefact of their particular implementation,
and that it does not represent a deficiency in the ‘economic’ variant of the algorithm per
SE.

6. CONCLUSIONS

From the test integrations it 1s concluded that:

e there is no loss of accuracy when using our proposed simpler, more efficient, and more
robust algorithm to determine the mesh-intersection points for cascade interpolation;

e the proposed modified monotonic filter addresses the Gibbs-phenomenon deficiency
of the SYS96 filter; and

e these proposed monotonic cascade interpolation algorithms work equally well for
backward- or forward-trajectory variants of semi-Lagrangian schemes.

It is also concluded that the curious and spurious spike obtained in one of the SY97
integrations is a misleading product of their particular implementation, and does not rep-
resent a deficiency in their ‘economic’ variant of cascade interpolation per se.
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