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1. MCMC methods

MCMC = Markov Chain Monte Carlo

Originally developed for the use in Monte Carlo
techniques (approximating deterministic quantities
using random processes).

Main method is the Metropolis-Hastings algorithm
(METROPOLIS, 1953, HASTINGS 1970).

MCMC has been used extensively outside Monte
Carlo methods.
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1. MCMC methods

Simulate from non-standard distributions with the
help of Markov chains.

Artificially create a Markov chain that has the desired
distribution as equilibrium distribution.

Start the chain in some state at time t = 0 and run
“long enough” (yields approximate samples).

HOW LONG IS LONG ENOUGH??

The problem of assessing convergence is a major
drawback in the use of MCMC methods.
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2. Perfect Sampling

!! MCMC WITHOUT STATISTICAL ERROR !!

Enables exact simulation from the stationary distribution
of certain Markov chains. First paper by PROPP and
WILSON in 1996.

Parallel chains are started in each state.

Chains are run as if started at time t = −∞ and
stopped at time t = 0.

Can be done in finite time for uniformly ergodic
Markov chains.
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Essential Idea – Coupling Sample Paths

Once two sample paths of a Markov chain couple or
coalesce, they stay together.

time

(forward coupling time)
T

Perfect Sampling: Go back far enough in time, so that by
time t = 0, all chains have coalesced (backward coupling
time).
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Why backwards?

If started stationary, the Markov chain is stationary at
all fixed time steps.

Time of coalescence is random.

Reporting states at the random forward coupling time
no longer necessarily gives draws from the stationary
distribution.

�

�
�

�
�

�
�

� �
�

s4

s3

s2

s1

0 1 2 3

t

Forward coupling time T = 3.
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The Challenge

What about infinite and continuous state spaces?

Theoretically works for all uniformly ergodic chains,
BUT we need a way to detect a backward coupling
time!

Ideas include minorization criteria, bounding
processes, perfect slice sampling, Harris coupler,
IMH algorithm, slice coupling, ...

Theoretical development has slowed down.

Focus has shifted towards applying perfect sampling
algorithms to relevant problems – applications are
non-trivial ...
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3. Slice Coupling

Get a potentially common draw from two different
continuous distributions!

Will enable us to couple continuous sample paths in
perfect sampling algorithms.

time

x

y N(y,1)

N(x,1)
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3. Slice Coupling

“‘Slicing” uniformly under the curve of a density function
(area represents probability!)

“‘Slicing” uniformly under the curve of a density function
(area represents probability!)

Different techniques

Layered multishift coupler (WILSON, 2000).

Folding coupler, shift-and-fold step (CORCORAN and
SCHNEIDER, 2003).

Shift-and-patch algorithm for non-invertible densities
(CORCORAN and SCHNEIDER, 2003).
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4. The IMH-algorithm

IMH = independent Metropolis-Hastings

IMH is the perfect counterpart (CORCORAN AND

TWEEDIE, 2000) to the Metropolis-Hastings algorithm
using an independent candidate density.
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Regular Metropolis-Hastings

Want sample from π(x) (possibly unnormalized).

Use instead a candidate density q(x).

Create the Metropolis-Hastings chain Xt according to
the transition law:

Assume Xt = x and draw a candidate y ∼ q(.)

Accept (Xt+1 = y) the candidate with probability

α(x, y) = min(
π(y)q(x)

q(y)π(x)
, 1)

Otherwise, reject (Xt+1 = x).

This Markov chain has stationary distribution π(x).

Advances



Perfect IMH

Reorder the state space S, assume that there exists
l ∈ S, such that

π(l)

q(l)
= max

x∈S

π(x)

q(x)
.

This l (lowest element of S) satisfies

α(l, y) ≤ α(x, y) ∀x ∈ S,

i.e. if we accept to move from state l to state y, any
other x ∈ S will also move to y. This allows us to
detect a backward coupling time.
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Illustration of IMH
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Illustration of IMH
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Variants on IMH

We only need to know the value of the maximum π
q
-ratio,

but not where it occurs.

(1) Bounded IMH (SCHNEIDER and CORCORAN, 2002)
We do not even need to know the maximum exactly!
An upper bound for π

q
is a lower bound for α(l, y) –

still obtain can therefore still obtain exact draws.
Used in

Variable selection problem
Computing self-energy for the interacting fermion
problem
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Variants on IMH

(2) Approximate IMH (CORCORAN and SCHNEIDER, 2003)
If no upper bound is available, a built-in random
search appears to outperform “regular forward” IMH
at the same computational cost.

100,000 draws using approx. IMH with built−in max.
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Variants on IMH

(3) Adaptive IMH (CORCORAN and SCHNEIDER, 2003)
Forward IMH with a self-targeting candidate.
Appears to converge very rapidly.

Advances
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Variants on IMH

(3) Adaptive IMH (CORCORAN and SCHNEIDER, 2003)
Forward IMH with a self-targeting candidate.
Appears to converge very rapidly.

forward MH: 100,000 draws, 500 time steps
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Variants on IMH

(3) Adaptive IMH (CORCORAN and SCHNEIDER, 2003)
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Variants on IMH

(3) Adaptive IMH (CORCORAN and SCHNEIDER, 2003)
Forward IMH with a self-targeting candidate.
Appears to converge very rapidly.

forward MH: 100,000 draws, 2000 time steps
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Variants on IMH

(3) Adaptive IMH (CORCORAN and SCHNEIDER, 2003)
Forward IMH with a self-targeting candidate.
Appears to converge very rapidly.

adaptive IMH: 100,000 draws, 100 time steps
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Variants on IMH

(3) Adaptive IMH (CORCORAN and SCHNEIDER, 2003)
Forward IMH with a self-targeting candidate.
Appears to converge very rapidly.

adaptive IMH: 100,000 draws, refinement 1

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Advances



Variants on IMH

(3) Adaptive IMH (CORCORAN and SCHNEIDER, 2003)
Forward IMH with a self-targeting candidate.
Appears to converge very rapidly.

adaptive IMH: 100,000 draws, refinement 2
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5. Bayesian Variable Selection

Linear regression model with Gaussian noise

y = γ1θ1x1 + · · · + γqθqxq + ε

where:

xi ∈ IRn, i = 1, . . . , q predictors (fixed, known)

θi ∈ IR, i = 1, . . . , q coefficients (random)

ε ∼ N(0, σ2I) noise vector (random)

γi ∈ {0, 1}, i = 1, . . . , q indicators (random)

Applications



The Goal

Given an observation y, choose the "best" subset of the
predictors – which predictors were part of the model?
Amounts to finding values of γ = (γ1, . . . , γq)!

Best? Bayesian perspective:

Select γ that appears most frequently when sampling
from the posterior of the model.

We need to be able to simulate from the posterior
πΓ,σ2,Θ| !

Usually, Bayesian approaches use regular MCMC
methods – question of convergence!

Applications
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The Model: Priors

Want to incorporate the following “standard normal
gamma conjugate” priors:

λν

σ2
∼ χ2(ν) −→ Z :=

1

σ2
∼ Γ(

ν

2
,
λν

2
)

θ|Z ∼ N(ξ, σ2V )

γi
i.i.d.
∼ Bernoulli(

1

2
), i = 1 . . . , q

The variance σ2 for the ε and θ is random.
V , ξ, λ, and ν are hyperparameters (fixed and known).
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The Model: Posterior

Linear regression with Gaussian noise yields likelihood

L(γ,θ, z) = z
n

2 exp{−
1

2
z(y −

q
∑

i=1

γiθixi)
T (y −

q
∑

i=1

γiθixi)}

Posterior – proportional to likelihood × priors:

πΓ,Z,Θ|


 (γ, z,θ|y) ∝ z
n+q+ν

2
−1×

exp{−
1

2
z[(y−

q
∑

i=1

γiθixi)
T (y−

q
∑

i=1

γiθixi)+(θ−ξ)T V −1(θ−ξ)+λν]}
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Increasing Layers of Complexity

Fixed variance, fixed coefficients – sampling
γ = (γ1, . . . , γq) using support set coupling within a
Gibbs sampler (HUANG and DJURIC, 2002)

Random variance, fixed coefficients – sampling
(γ, z) = (γ1, . . . , γq, z) using slice coupling within a
Gibbs sampler (SCHNEIDER and CORCORAN, 2002)

Random variance, random coefficients – sampling
(γ, z,θ) = (γ1, . . . , γq, z, θ1, . . . , θq) using bounded IMH
(SCHNEIDER and CORCORAN, 2002)

Applications



The General Case

Incorporate random variance and random
coefficents.

Reduce the size of the state space – define βi := γiθi

to have a mixture prior distribution.

The values of γ can be recovered from
β = (β1, . . . , βq)

T by setting:

γi =

{

0 if βi = 0

1 if βi 6= 0
i = 1, . . . , q.

Applications



The General Case – Using bounded IMH

Posterior

π �

,Z|


 (β, z|y) ∝ L(β, z)g �

|Z(β|z)gZ(z)

where L(

�

, z) = z
n

2 exp{− 1

2
z( 
 − q�

i=1

βi

�

i)
T ( 
 − q�

i=1

βi

�
i)}

Choose candidate density

q(β, z) ∝ z
n

2 g �
|Z(β|z)gZ(z).

Then

π

q
=

L(β, z)

z
n

2

= exp{−
1

2
z(y−

q
∑

i=1

βixi)
T (y−

q
∑

i=1

βixi)} ≤ 1
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The General Case – Using bounded IMH

To get the candidate values (z,β) according to

q(z,β) ∝ z
n

2 g �

|Z(β|z)gZ(z),

sample “hierarchically”.

Draw Z ∼ Γ(n+ν
2 , λν

2 )

Draw B|Z ∼ N(ξ, 1
z
V )

Set βi = 0 with probability 1
2 (i = 1 . . . , q)

Can now use bounded IMH to get exact draws from the
posterior.

Applications



Some results

Hald data set q = 4, n = 13, y contains heat
measurements of cement, predictor variables describe
composition of the cement (aluminate, silicate, ferrite,
dicalcium)

� percentage

(0,1,0,0) 69 %

(1,1,0,0) 14 %

(1,0,1,0) 13 %

(0,1,1,0) 3 %

(0,1,0,1) 1 %

component percentage

P ( �
1 = 1) 27 %

P ( �
2 = 1) 87 %

P ( �

3 = 1) 16 %

P ( �

4 = 1) 1 %
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6. Computing Self Energy

Compute self energy for the interacting fermion problem.

Create and destroy a particle on a lattice of atoms
(such as a crystal).

Particle interacts with other electrons, “wake” of
energy created around the movement of the particle.

Quantify this self energy with the help of Feynman
diagrams.

Approximate the sum using Monte Carlo methods and
perfect sampling (CORCORAN, SCHNEIDER and SCHÜTTLER,
2003)

σ(k) =

nmax
∑

n=1

∑

g∈Gn

(

−T

N

)n
∑

k1,...,kn∈K

F
(n)
g (k, k1, . . . , kn).

Applications



7. Future Research

Address large backward coupling times of the IMH
algorithm (Bayesian variable selection) – multistage
coupling?

Find analytical error bounds and employ
convergence diagnostics for the approximate and
adaptive IMH algorithm.

More to come ...
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