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Abstract

We describe a new application of an existing perfect sampling technique of Corcoran
and Tweedie to estimate the self energy of an interacting Fermion model via Monte
Carlo summation. Simulations suggest that the algorithm in this context converges
extremely rapidly and results compare favorably to true values obtained by brute force
computations for low dimensional toy problems. A variant of the perfect sampling
scheme which improves the accuracy of the Monte Carlo sum for small samples is also
given.

1 Introduction

The interacting fermion problem is of fundamental importance in a wide range of research
areas, including fields as diverse as electronic structure theory of solids, strongly correlated
electron physics, quantum chemistry, and the theory of nuclear matter [6, 11, 15]. The
ultimate objective of this project, which is a massive collaborative effort between physicists,
statisticians, and computer scientists, is to combine Monte Carlo summation techniques
with self-consistent high-order Feynman diagram expansions into an efficient tool for the
controlled approximate solution of interacting fermion models.

The concept of “self energy” is one of the most important examples of the power of Feynman
diagram resummation. Suppose, for example that we have a lattice of atoms (such as in
the case of a crystal) where electrons are almost localized in atomic orbitals at each site.
Suppose further that we create a particle at one site and destroy a particle at another site
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thereby adding and removing a quanta of vibrational energy to the system. Electrons of
opposite spin occupying a single atom give rise to a Coulomb repulsion energy which causes
particles to hop between sites. There is a contribution to the energy of the particle due to
the virtual emission and absorption of particles. In other words, the particle interacts with
its surrounding medium which, in turn, acts back on the particle. Essentially, a “wake” of
energy is created around the movement of the particle. It is this “self energy”, described in
more detail in Section 2.1, that we would like to quantify.

Self energy is represented as a large and complicated sum (“outer sum”) of terms that are,
in themselves, large and complicated sums (“inner sums”). The objective of this paper is
to describe the evaluation of these inner sums via a Monte Carlo approach. Monte Carlo
summation techniques, detailed in Section 3, involve evaluating an approximating sum at
random points drawn from a particular distribution. While there is much flexibility in the
choice of this distribution, some choices are better than others in terms of minimizing the
(first level)error in the approximating sum. The downside to choosing a nearly optimal
distribution is that we often cannot sample points from it directly and are faced with a
second level of error (sampling error) resulting from a Monte Carlo sampling approach. In
this paper we choose a nearly optimal complicated distribution, yet sample from it using
“perfect” simulation techniques, described in Section 4, that completely eliminate the second
level error.

Simulation results are given in Sections 6 and 7.

2 Self Energy, Feynman Diagrams, and Computer Friendly
Representation

The Hubbard model was originally developed in the early sixties in order to understand the
magnetic properties of electron motion in transition metals. The original model remains a
subject of active research today, and it is within this context that we describe our numerical
approach. (The approach applies, with minor adaptations, to all interacting fermion models
which possess a Feynman diagram expansion in terms of a two-body interaction potential.)

Suppose we have a lattice of atoms, representing atoms in a crystal, where electrons are al-
most localized in atomic orbitals at each site. We consider the following model Hamiltonian
governing the motion and interactions between the particles.

H =
∑

j′,j

1

2
Vj′,j nj′ nj −

∑

j′,j

∑

σ

tj′,j c†j′σcj σ (1)

Here
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c†j′σ = creation operator that creates an electron of spin σ =↑, ↓ at site j ′

cj σ = destruction operator that destroys an electron of spin σ =↑, ↓ at site j

c†j′σ cj σ = transfers an electron of spin σ from site j to site j ′

nj = the number of electrons at site j.

Vj′j is called the model Coulomb potential and it includes the on-site (j ′ = j) Coulomb
repulsion energy (U) generated when two electrons of opposite spin occupy a single atom
as well as possibly extended (1st, 2nd, . . . neighbor) repulsions.

tj′j is a parameter that controls an electron’s ability to tunnel or “hop” between sites. If
orbitals are highly localized, then this tunneling amplitude will decay exponentially with
distance between sites. tj′j includes the on-site (j ′ = j) energy of the electron, a nearest
neighbor tunneling amplitude (t) and possibly extended (2nd, 3rd . . . neighbor) tunneling
amplitudes. A depiction is given in Figure 1.

The total energy, given by (1), of this Hubbard model is thus represented as a sum of
potential and kinetic energy given by the first and second terms, respectively, of (1). Both
Vj′j and tj′j are assumed to obey period boundary conditions on a finite lattice defined in
Section 2.1.

Figure 1: The Hubbard Model

Illustration of the Hubbard model. The amplitude for an electron to hop from site to
neighboring site is t and the Coulomb repulsion energy generated by two electrons of
opposite spins at the same site is U .
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2.1 Self Energy and Feynman Diagrams

The concept of self energy enables us to understand the feedback of the interacting environ-
ment on a propagating particle. Physically, it describes the cloud of particle-hole excitations
that form the wake which accompanies a propagating electron.

The following paragraphs describe how to obtain the self energy Σ(k). Basically, we will
depict Σ(k) through Feynman graph expansions and represent it as is a sum (of sums)
involving Green’s functions. (These Green’s functions will in turn involve the self energy
Σ(k) we are trying to compute. This issue is addressed in Section 5.)

Green’s function G(k)

The single-fermion Green’s function G(k) is the most basic physical quantity which can be
obtained via a Feynman graph expansion. As it is expressed in terms of self energy, which
we will denote by Σ(k), we will describe our approach within this context. Here k ≡ (~k, iν)
denotes a D + 1-dimensional “momentum-energy” variable (referred to as “momentum”
hereafter), where ~k is a D-dimensional “wavevector” and iν represents a frequency. These
variables will be described in more detail later in this Section.

In general, a Green’s function is the response of a linear system to a point input. Diagram-
matically, we can represent the single-fermion Green’s function, or propagator, as a sum of
free propagators with various inserted scattering processes. (Mathematically, a propagator
is simply an integral kernel.) The self energy represents all scattering processes combined
into a single quantity. We depict the Green’s function in terms of the self energy in Figure
2.

The self energy is in turn represented as a sum of Feynman diagrams as shown in Figure 3.
These diagrams, developed by physicist Richard Feynman, give a convenient shorthand for
representing complex mathematical quantities. The “wavy” lines represent photons that
are emitted or absorbed by an electron traveling along the straight lines. Assignments of
values to the momentum are made on various sections of the diagrams which correspond to
arguments of functions in the algebraic self energy expression.

Figure 2: Representing a Green’s Function as a Sum of Free Propagators with Inserted
Scattering Processes

= + Σ + Σ Σ + ...G(k)

Algebraically, the free propagator has the form

G0(k) = G0(~k, i ν) =
1

i ν − ε(~k)
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Figure 3: Representing Self Energy as a Sum of Feynman Diagrams

(k) = Σ

...++++

where ε(~k) is the electron energy band

ε(~k) = −µ − 2t
D
∑

d=1

cos(k(d)),

and D is the lattice dimension. Here, µ and t are, respectively, the on-site electron energy
(chemical potential) and nearest neighbor tunneling amplitude, discussed above in the de-
scription of the Hubbard model, and k(d) is the dth element of ~k. In general, ε(~k) is simply
the lattice Fourier transform of tj′j , which reduces to the above form in the case that only
the first neighbor tunneling t and the on-site energy −µ are taken and included in tj′j.

Following the Green’s function representation from Figure 2, we may write

G(k) = G0 + G0ΣG0 + G0ΣG0ΣG0 + · · ·
= G0 + G0ΣG0 + G0(ΣG0)

2 + · · ·

= 1
G−1

0 −Σ

by summing the Taylor series expansion in powers of (ΣG0).

This is known as the Dyson equation [11, 15]:

G(k) = G(~k, i ν) = [i ν − ε(~k) − Σ(k)]−1. (2)

Self energy

The self energy Σ(k), in turn, is obtained self-consistently via a Feynman graph expansion
in terms of G and the interaction potential V . As illustrated in Figure 4 for orders n = 1
and 2, an nth order Σ-graph consists of n non-directional wavy lines (referred to as “V -
lines” hereafter) and of 2 external and 2n−1 internal directed straight lines, (referred to as
“G-lines” hereafter). One incoming and one outgoing G-line is attached to each endpoint
(“vertex”) of each V -line. The Σ(k)-contribution for each graph is given by the Feynman
rules [11, 15] so that for k ≡ (~k, i ν) and kv ≡ (~kv , i νv) (v = 1, 2, 3, . . .),

Σ(k) =
nmax
∑

n=1

∑

g∈Gn

(−TP

N

)n
∑

k1,...,kn∈K

F (n)
g (k, k1, . . . , kn). (3)
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Here, Gn denotes the set of all topologically distinct ”G-irreducible” Σ-graphs g of order
n, where g is defined to be G-irreducible (G-reducible) if and only if it cannot (can) be
severed into two disjoint pieces by cutting no more than two internal G-lines, as illustrated
in Figure 4.

Figure 4: Feynman Diagrams

k2

2 1 2

1

3 1k  = k   + k  − k2

k

(c)(b)(a) (d) (e)

k

q   = k   −  k1q = k − k1

Shown are all G-irreducible Σ-graphs of order n = 1, in (a) and (b), and of order n = 2, in
(c) and (d), as well as a selected G-reducible graph of order n = 2, in (e). In (c), a possible
k-assignment is also shown. In (e), vertical arrows indicate the “cuts” which separate the
graph into two disjoint pieces.

Summation Domains and Parameters

The ~kv-summation domain is the set B of ~k- grid points in the first Brillouin zone:

B := {~k = (k(1), . . . , k(D)) | k(d) =
2πmd

Ld
,md ∈ Ld for d ∈ 1, . . . , D} (4)

with
Ld := {−b(Ld − 1)/2c,−b(Ld − 1)/2c + 1, . . . , bLd/2c}

where b·c is the greatest integer function and Ld denotes the integer sidelength of the D-
dimensional finite lattice prism in the d-th coordinate direction. N is the total number of
sites j in the lattice, hence

N =
D
∏

d=1

Ld.

The i ν-summation domain is the set M of odd Matsubara frequencies:

M := {i ν | ν = (2m0 + 1)πTP , m0 an integer} (5)

where TP denotes the temperature of the physical system.

The inner sums in (3) are therefore taken over K := B × M, and the summand

F
(n)
g (k, k1, . . . , kn), for n ≥ 1, contains the internal G- and V -line factors of graph g:

F (n)
g (k, k1, . . . , kn) = (−(2sf + 1))lg exp(δn,1 i ν 0+)

2n−1
∏

u=1

G(ku) ×
n
∏

x=1

V (qx). (6)
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Here, the momenta ku and qx associated with the G- and V -lines, respectively, are de-
termined by the graph’s topology, via momentum conservation rules at each vertex, as
illustrated in Figure 4(c). Only the first n of the internal G-line k-variables, k1, . . . , kn can
be chosen and summed over independently; the remaining k-variables, kn+1, . . . , k2n−1, and
all q-variables, q1, . . . , qn, are linear combinations of the external k and of k1, . . . , kn.

Finally, V (q) denotes the Fourier transform of the interaction potential V of our lattice
model:

V (q) = V (~q) := N−1
∑

j′ j

e−i~q·(~rj′−~rj)Vj′ j (7)

where ~rj denotes the position vector of site j. Note that q is a momentum variable with
a wavevector component in B and a frequency component (q = (~q, i ω)). The frequency
component is not in the set of odd Matsubara frequencies (i.e. q /∈ K), however as V (q) is
independent of the frequency component, we will not describe the domain here.

In equation 6, sf is the “single-fermion spin”, taking the value 1/2 for electrons and lg is
the number of closed G-loops in graph g. Remaining parameters and are described in Table
1 where all parameters and quantities addressed thus far are also summarized.

The purpose of this paper is to give a “perfect” Monte Carlo approach that
will perform the innermost summation in (3). Our collaborators address
the other summations in [20].

2.2 Computer Friendly Representation

Computationally, each Feynman graph g ∈ Gn in (3) can be conveniently represented by
labeling each vertex by an integer n ∈ {1, 2, . . . , 2n}, in such a manner that v and v + 1
denote endpoints of the same V -line if v is odd. Additionally, the origin of the incoming
external G-line and the terminus of the outgoing external G-line are labeled v = 0 and
v = 2n + 1, respectively. The complete topology (connectivity) of the graph can then be
specified by a “linkage list”, [w(v)]2n

v=0, where w(v) is the integer label of the terminating
vertex of the G-line that originates at vertex v. The integer v then also serves as a convenient
label of all G-lines: “v” is that G-line which originates from vertex v for v ∈ {1, 2, . . . 2n},
with v = 0 labeling the incoming external G-line. Using the notation [w−1(v)]2n+1

v=1 for the
inverse assignment, an example for a graph of order n = 2 is shown in Figure (5).

The assignment of k and q variables corresponding to the internal G- and V -lines in equation
(6) can be represented by a pair of “k-assignment” lists, σG(u, v) and σV (x, v), such that

ku =
n
∑

v=0

σG(u, v) kv and qx =
n
∑

v=0

σV (x, v) kv (8)

for u ∈ {1, 2, . . . , 2n − 1} and x ∈ {1, 2, . . . , n} with k0 ≡ k. Given the graph’s linkage list
(and its inverse w−1), the σG’s and σV ’s are constructed to satisfy momentum conservation

6



Figure 5: Representing a Feynman Diagram as a Linkage List

−1
v          w(v)         w (v)

3          2            1

4          5            2

5          −            4

0 51 23 4

0          1            −

2          4            3
1          3            0

at each vertex. For the endpoints of V -line x ∈ {1, 2, . . . , n}, that is, for vertices v = 2x− 1
and v = 2x, respectively,

k2x−1 + qx = kw−1(2x−1) and k2x = qx + kw−1(2x). (9)

We have adopted the convention that the (usually non-directional) V -line x carries momen-
tum qx from vertex 2x − 1 towards vertex 2x and k0 = k2n ≡ k. The resulting σG(u, v)
and σV (x, v) take on values 0, +1, and −1 only, with σG(u, v) = δu,v for u = 0, 1, . . . , n, as
illustrated in Figure 4(c).

Preliminary steps for this labeling procedure consists of setting up tables with topologies of
all irreducible diagrams. This task has been carried out using a deep first search algorithm
program developed by Robert Robinson and coworkers [18] at the University of Georgia.

3 Monte Carlo Summation

We are often faced with integrals (or sums) that cannot be computed analytically. In
the case of multidimensional integrals, even the simplest methods of approximation by
discretization can become prohibitively expensive. Monte Carlo integration provides an
alternative approximation technique.

Suppose we wish to evaluate the integral

I(g,A) =

∫

A
g(x)dx (10)

for some integrable function g : IRn → IR and some set A ⊆ IRn. Let π(x) be any probability
density function whose support contains A. Then we may write

I(g,A) =

∫

A
g(x)dx =

∫

IRn
g(x)1lA(x)dx =

∫

IRn

g(x)1lA(x)

π(x)
π(x)dx
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where 1lA(x) is the indicator function. We shall refer to π(x) as the weight function and
the remaining part of the integrand as the score function.

Now if X is a random variable with density π(x), we find that we have written the integral
as an expected value

I(g,A) = E

[

g(X)1lA(X)

π(X)

]

. (11)

A basic Monte Carlo integration technique is to simulate independent and identically dis-
tributed (i.i.d.) values drawn from the distribution with density π(x), say

X1, X2, . . . , Xn
iid∼ π

and to estimate the probability weighted average given in (11) by

Î(g,A) =
1

n

n
∑

i=1

g(Xi)1lA(Xi)

π(Xi)
. (12)

Clearly, by (11), this is an unbiased estimator of I(g,A).

Since the variance of this estimator is

V [Î(g,A)] = 1
n V

[

g(X)1lA(X)
π(X)

]

= 1
n E

[

(

g(X)1lA(X)
π(X) − I(g,A)

)2
]

,

the variance is minimized by choosing

π(x) =
|g(x)|1lA(x)

∫

IRn |g(x)|1lA(x) dx
. (13)

Specifically, we choose

π(x) =















|g(x)|
∫

A
|g(x)| dx

, x ∈ A

0 , x /∈ A

(14)

Of course, if we could compute the denominator for this optimal “weight”, it is likely that we
could have solved our original problem and there is no need to use a Monte Carlo approach
to compute the integral in (10). Hence, we may consider taking a different, non-optimal
candidate weight, keeping in mind that we would like to at least choose something that
attempts to mimic the shape of g. We point out that while we may usually sample from
(14) without knowing the constant of proportionality, (for example using the Metropolis-
Hastings algorithm), we ultimately require the constant in order to evaluate (12).
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4 Perfect Simulation

There has been considerable recent work on the development and application of “perfect
sampling” algorithms that will enable the simulation of the invariant (or stationary) measure
π of a Markov chain, either exactly (that is, by drawing a random sample known to be from
π) or approximately, but with computable order of accuracy. These were sparked by the
seminal paper of Propp and Wilson [17], and several variations and extensions of this idea
have appeared since – see [3, 4, 5, 7, 8, 12], and [14]. These ideas have proven effective in
areas such as statistical physics, spatial point processes and operations research, where they
provide simple and powerful alternatives to methods based on iterating transition laws, for
example.

The essential idea of most of these approaches is to find a random epoch −T (not to be
confused with the physical temperature of the system being considered in this paper) in
the past such that, if we construct sample paths (according to a transition law P (x, y) that
is invariant for π) from every point in the state space starting at −T , then all paths will
have coupled successfully by time zero. The common value of the paths at time zero is a
draw from π. Intuitively, it is clear why this result holds with such a random time T . For
consider a chain starting at −∞ with the stationary distribution π. At every iteration it
maintains the distribution π. But at time −T it must pick some value x, and from then on
it follows the trajectory from that value. But of course it arrives at the same place at time
zero no matter what value x is picked at time −T : so the value returned by the algorithm
at time zero must itself be a draw from π.

Perfect sampling algorithms can be particularly efficient if the chain is stochastically mono-
tone in the sense that paths from lower starting points stay below paths from higher starting
points. In this case, one need only couple sample paths from the “top” and “bottom” of
the space, as all other paths will be sandwiched in between. It is possible to generalize one
step further to monotone chains on an unbounded state space by considering stochastically
dominating processes to bound the journeys of sample paths. For example, see [8].

For this to be practicable we need to ensure that T is indeed finite. In [17] it is shown that
this occurs for irreducible aperiodic finite space chains, and for a number of stochastically
monotone chains possessing maximal and minimal elements. Indeed, in [2] it is shown that
if the distribution at −∞ is any fixed (or even random) value x0, then under fairly standard
conditions the value at time zero is still distributed according to π, and this observation is
crucial for perfect sampling algorithms.

There are several easy-to-read perfect sampling tutorials available, and we refer interested
readers to [1]. In this paper we only wish to emphasize that the key idea in the search
successively further and further back in time for the so-called backward coupling time T
requires that one reuse random number streams. That is, if sample paths run forward to
time 0 from time −1 using a random number (or random vector) U−1 have not coalesced
by time 0, then one must go back further, say to time −2 and run paths forward for two
steps using a random number U−2 and then the previously used U−1.

We now describe a particular specific perfect sampling scheme that we will use for our self
energy calculations.
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4.1 The IMH Algorithm

Certain monotonicity properties of the “independent” Metropolis-Hastings (IMH) scheme,
which we review briefly in this section, are such that perfect sampling is feasible [2]. We
use the term “independent” to describe the Metropolis-Hastings algorithm where candidate
states are generated by a distribution that is independent of the current state of the chain.
In other words, suppose we have a given candidate distribution Q which we will assume to
have a density q, positive everywhere for convenience, with which we can generate potential
values of an i.i.d. sequence. A “candidate value” generated according to q is then accepted
with probability α(x, y) given by

α(x, y) =

{

min
{

π(y)
π(x)

q(x)
q(y) , 1

}

π(x)q(y) > 0

1 π(x)q(y) = 0

where x is the current state and y is the candidate state.

Thus, actual transitions of the IMH chain take place according to a law P with transition
density

p(x, y) = q(y)α(x, y), y 6= x

and with probability of remaining at the same point given by

P (x, {x}) =

∫

q(y)[1 − α(x, y)]µ(dy)

where µ is Lebesgue measure. With this choice of α we have that π is invariant for P .

The perfect IMH algorithm uses the ratios in the acceptance probabilities α(x, y) to reorder
the states in such a way that we always accept moves to the left (or downwards). That is,
if we write π(x) = c h(x) where k is unknown, we define the IMH ordering,

x � y ⇔ π(y)q(x)

π(x)q(y)
≥ 1 ⇔ h(y)

q(y)
≥ h(x)

q(x)
(15)

With this ordering, we can (hopefully) attain a “lowest state” l. Essentially, one can think
of l as the state that is hardest to move away from when running the IMH algorithm. Thus,
if we are able to accept a move from l to a candidate state y drawn from the distribution
Q with density q, then sample paths from every point in the state space will also accept
a move to y, so all possible sample paths will coalesce. The perfect sampling algorithm is
formally described as follows:

IMH (Backward Coupling) Algorithm

1. Draw a sequence of random variables Qn ∼ Q for n = 0,−1,−2, . . ., and a sequence
αn ∼ unif(0, 1) for n = −1,−2, . . ..

2. For each time −n = −1,−2, . . ., start a lower path L at l, and an upper path, U at
Q−n.
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3. (a) For the lower path: Accept a move from l to Q−n+1 at time −n + 1 with proba-
bility α(l, Q−n+1), otherwise remain at state l. That is, accept the move from l
to Q−n+1 if α−n ≤ α(l, Q−n+1).

(b) For the upper path: Similarly, accept a move from Q−n to Q−n+1 at time −n+1
if α−n ≤ α(Q−n, Q−n+1); otherwise remain at state Q−n.

4. Continue until T defined as the first n such that at time −n + 1 each of these two
paths accepts Q−n+1. (Continue the Metropolis-Hastings algorithm foward to time
zero using the α’s and Q’s from steps 1-3 to get the draw from π at time zero.)

By monotonicity, the upper path will accept a candidate point whenever the lower path will,
and the two paths will be the same from that time forward. Consequently, our description
of the upper process is a formality only, and, indeed, the upper process need not be run at
all. Figure 6 illustrates a realization of the perfect IMH algorithm.

Figure 6: A Realization of the Perfect IMH Algorithm With Backward Coupling Time at
-4

Dashed grey lines represent potential but unrealized arcs of the sample path. Solid grey lines represent the
sample paths started at times -1, -2, and -3 that did not achieve the coupling. The solid black line represents
the path whose outcome is ultimately observed in the perfect sampling algorithm.

For sampling from complicated densities, we may wish to take advantage of the observation
that neither the lowest state, l, nor the maximum value π(l)/q(l) need be attained explicitly.
If we are able to find a constant C such that

C ≥ π(x)

q(x)
, for all x
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then we know that

α(l, y) ≥ π(y)

C q(y)

so we could modify step 3(a) of the IMH algorithm to read

3. (a)′ For the lower path: Accept a move from l to Q−n+1 at time −n + 1 with probability
α(l, Q−n+1), otherwise remain at state l. That is, accept the move from l to Q−n+1 if

α−n ≤ π(y)
C q(y) .

We refer the reader to [2] for details on how one’s choice of Q will affect the expected
backward coupling time for the perfect IMH algorithm.

5 Perfect IMH in the Context of this Self Energy Problem

Earlier work on the Monte Carlo evaluation of individual Feynman diagrams has employed
a variety of non-perfect sampling techniques [9, 10, 19]. We now describe the perfect IMH
algorithm for computing the innermost sum in (3) for the second order diagram depicted
in Figures 4(c) and 5. Ignoring the physical constants, we would like to compute

Σ2(k) :=
∑

k1,k2∈K

3
∏

u=1

G(ku) ×
2
∏

x=1

V (qx). (16)

Using momentum conserving assignments, described in Section 2.2 and shown in Figure
4(c), this becomes

Σ2(k) =
∑

k1,k2∈K

G(k1) · G(k2) · G(k2 + k − k1) · V (k − k1) · V (k1 − k2). (17)

Recall that each k, k1, k2 is a D + 1-dimensional with the vector of the first D components
coming from B as decribed in (4) and the third component taking values in

M := {i ν | ν = (2m0 + 1)πTP , m0 an integer}.

As a computational simplification, we will truncate M to a finite space MT . (We address
alternatives in Section 5.4.) This will allow us to choose a trivial candidate distribution for
the perfect IMH algorithm where, more importantly, we can easily maximize the h/q ratio
described in (15) in order to identify the “lowest state” needed to carry out the algorithm.
For physical reasons, it is necessary to truncate M in a symmetric way, say

MT = {i ν | ν = (2m0 + 1)πTP , m0 ∈ {−l,−l + 1, . . . , l − 1}}

for some positive integer l.

The astute reader may have noticed by now that we are trying to compute Σ2(k) which is
a term of Σ(k), given by (3), which is itself involved in the Green’s function (2), which is
in our expression for Σ2(k). This is handled with standard feedback methods described in
[20], [16], and [13] where one

12



1. starts by setting Σ(k) ≡ 0 in (2) so that G(k) becomes

G(k) = G(~k, i ν) = [i ν − ε(~k)]−1, (18)

2. carries out the entire Monte Carlo procedure to compute (3) which consists of the
procedures of this paper for the “inner (single-diagram) sum” and the procedures of
[20] for the “outer sums” which move through diagram orders and diagrams within
an order,

3. uses the resulting Σ(k) to update the Green’s function before returning to step 2. and
repeating the entire combined Monte Carlo procedure.

This approach is repeated until consecutive updates of the Green’s function coincide within
a given limit of accuracy. As this paper is concerned with computing the self energy con-
tribution for single diagrams only, we will use a fixed Green’s function. For simplicity, we
use (18).

5.1 The Monte Carlo Sum

For the Monte Carlo summation, we propose as a weight function the product of the mag-
nitudes of the Green’s functions:

|G(k1)| · |G(k2)| · |G(k2 + k − k1)|. (19)

However, since this involves the input external momentum k, it would be inefficient to
focus exclusively on this weight. In order to have a single weight function for any input
momentum, we again rewrite our summation goal:

Σ2(k) =
∑

k1,k2,k0∈K

V (k − k1) · V (k1 − k2) · δk,k0G(k1) · G(k2) · G(k2 + k0 − k1) (20)

where δk,k0 is equal to 1 when k0 = k and equal to 0 otherwise.

Now we may write

Σ2(k) =
∑

k1,k2,k0∈K

S(k, k0, k1, k2)W (k0, k1, k2) (21)

where W (k0, k1, k2) is the (unnormalized) weight function

W (k0, k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k0 − k1)| (22)

and S(k, k0, k1, k2) is the score function

S(k, k0, k1, k2) = δk,k0 V (k − k1) · V (k1 − k2)
G(k1) · G(k2) · G(k2 + k0 − k1)

|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|
. (23)

Our “target distribution” from which to draw values for the Monte Carlo summation de-
scribed in Section 3 is

π(k0, k1, k2) =
1

NW
W (k0, k1, k2) =

1

NW
|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)| (24)
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where
NW :=

∑

k0,k1,k2∈B×MT

|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|. (25)

Following Section 3 we write

Σ2(k) = NW
∑

k0,k1,k2∈B×MT
S(k, k0, k1, k2)π(k0, k1, k2)

= NW E [S(K0,K1,K2)]

where (K0,K1,K2) is a random vector with density π(k0, k1, k2).

5.2 The IMH Algorithm

We will now describe how to use the perfect IMH algorithm to draw n values, (k0i, k1i, k2i),
from π(k0, k1, k2). We will use these values both to estimate NW and to plug them into the
Monte Carlo approximation

Σ̂2(k) := NW
1

n

n
∑

i=1

S(k, k0i, k1i, k2i). (26)

(Note: Due to the large number of symbols in use, we are reclaiming the use of the letter
n throughout Section 5 where we are considering a fixed diagram of order 2. In previous
sections, n was reserved for a diagram order.)

In the notation of Section 4.1, the unnormalized target density is

h(k0, k1, k2) ≡ W (k0, k1, k2)

which is given by (22).

We choose a simple uniform candidate distribution with density q(k0, k1, k2) which gives
equal weight to all points (k0, k1, k2) ∈ (B ×MT )3.

In order to implement the IMH algorithm, it remains to identify the “lowest point”,
(k∗

0 , k
∗
1 , k

∗
2), which is the point in (B × MT )3 that maximizes the ratio h/q. Since q is

constant for all (k0, k1, k2) ∈ (B ×MT )3, we simply want to maximize

h(k0, k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|. (27)

Consider first a single factor |G(k)|. Since

|G(k)| = |G(k(1), . . . , k(D), iν)| = |i ν + µ + 2t
∑D

d=1 cos(k(d))|−1

=



ν2 +

(

µ + 2t
D
∑

d=1
cos(k(d))

)2




−1/2

,
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we can maximize |G(k)| by minimizing

ν2 +

(

µ + 2t
D
∑

d=1

cos(k(d))

)2

.

Regardless of where we truncate M, ν2 is minimized for ν = ±πTP . The IMH algorithm
does not require a unique “lowest point”, so we may take either value for ν.

We minimize
(

µ + 2t
D
∑

d=1

cos(k(d))

)2

with brute force by searching over the (finite) space B. It turns out that we only need to
do this once for the extire self energy calculation. This does not depend on the particular
graph we are considering at any moment and also therefore, just as importantly, does not
depend on the number of k’s associated with a graph.

At this point we have identified a k∗ = (~k∗, i πTP ) that maximzes |G(k)|. We may simulta-
neously maximize all factors in (27) by setting each of k0, k1, and k2 to be k∗. Due to the
relationships given by (9), we will always be able to simultaneously maximize all factors in
the weight function associated with any Feynman graph in this way.

As Σ2(k) and ultimately Σ(k) is complex-valued, the denominator of the updated, self-
consistent Green’s function obtained through the feedback procedure described in Section 5
will have an imaginary component that is not simply in the set MT . In this case, we will
have to maximize |G(k)| by searching over values for ~k and ν together. This does not require
searching over the entire space (B×MT ) but rather it can be done with some finite upper-
limit cut-off on |i ν| since for very large i ν, Σ(k) is bounded by a constant independent of
i ν. This fact will be especially useful when we want to use the entire set M (described in
Section 5.4) as opposed to the truncated set MT . The foregoing procedure (of choosing W
and then maximizing W by individually maximizing each contributing |G(ki)|-factor) can
be straightfowardly generalized to higher order diagrams. The method is thus applicable at
all diagram orders with arbitrarily updated input Green’s function G(k).

5.3 Estimating NW

In order to estimate the normalization constant NW , we take advantage of computations
already performed within the IMH algorithm. In executing the algorithm, we are drawing
values uniformly from the space (B ×MT )3. Hence, letting M := #

(

(B ×MT )3
)

denote
the number of points in the space, we write NW as

NW =
∑

(B×MT )3 h(k0, k1, k2)

=
∑

(B×MT )3
h(k0,k1,k2)

1/M
1
M

= E

[

h(K0,K1,K2)
1/M

]

= M · E
[

h(K0,K1,K2)
1/M

]
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where (K0,K1,K2) is a random vector with uniform density on (B ×MT )3.

We estimate this expectation by drawing n points uniformly over (B×MT )3 and computing

N̂W :=
M

n

n
∑

i=1

h(k0i, k1i, k2i)

where (k0i, k1i, k2i) are the uniform draws.

5.4 Extending the M- Space

In order to execute the perfect IMH algorithm, we need to be able to identify the point that
maximizes h/q where h is the (possibly unnormalized) target density and q is a candidate
density with the same support as h from which we are able to simulate values. The trun-
cation of M is a common practice, irrespective of the algorithm to be used, that simplifies
computational cost. This turned out to be very convenient for us as well since it provided us
with a finite state space that allowed us to choose a very simple uniform candidate density
which exchanged our task of maximizing h/q for the simpler task of maximizing only h.
Another nice feature of this model is that we are able to make MT arbitrarily large (but
finite) without any adjustment, as h is always maximized at ν = ±i πTP .

It is possible that one can use the full space M provided one chooses a candidate density
q on B × M for which the maximizing point for h/q can be identified. If this is not the
case, one alternative is to approximate the maximum either with traditional deterministic
optimizers or a stochastic search approach. We are currently investigating the effect of this
approximation on the perfect IMH algorithm and preliminary results suggest this “imperfect
perfect simulation algorithm” is still superior to traditional Monte Carlo methods in terms
of both accuracy and speed.

6 Simulation Results

For each of the following two examples, we use the specific second order diagram of Section 5.
To verify our algorithm, we start with a very low dimensional toy example where our results
can be compared to those from brute force calculations.

For both examples we take µ = 0.5, t = 1.0, and the physical temperature to be TP = 2.0.

Example 1:

We take D = 2, L1 = L2 = 2, and only two odd Matsubara frequencies. This means that
all of the k’s in (17) have 3 components with the first two taking values in

A := {0, π} .

and the third taking values in

MT := {−i πTP , iπ, TP }.
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(Note that B = A×A.)

We simulated 100,000 (9-dimensional) values from

π(k0, k1, k2) ∝ h(k0, k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|.

The results were as follows.

1. Exact NW Versus the Estimate

By brute force summation, we find that the exact value of the normalizing constant
NW is 1.349741. Since there are (2 · 2 · 2)3 = 512 possible values for (k0, k1, k2), we
write

NW =
∑

(k0,k1,k2) h(k0, k1, k2)

= 512 ·∑(k0,k1,k2) h(k0, k1, k2) · 1
512

= 512 · E[h(K0,K1,K2)]

where (K0,K1,K2) is a random vector distributed uniformly over (B ×MT )3.

Our estimate is then

N̂W = 512 · 1

m

m
∑

i=1

h(k0i, k1i, k2i)

where (k0i, k1i, k2i) is a particular value generated from the uniform candidate distri-
bution in our simulation and m is the number of candidates generated. (To generate
100,000 outomes we generate more than 100,000 candidates.)

Our simulation produced the estimate

N̂W = 1.349738.

2. Comparing Probability Estimates for Various Regions

Using the true value of NW , we computed the 512 probabilites associated with the
512 points in (B ×MT )3. We can then compute, for example

P (k1
(1) = 0) =

1

NW

∑

(k0,k1,k2),k
(1)
1 =0

h(k0, k1, k2) = 0.4963337.

In Table 2, we compare the true probabilities of seeing value in a given region of
points with the our estimated probabilities. Although we are sampling “perfectly”
from the target distribution, we are estimating probabilities based on a finite number
of sampled values. All estimates consistently remain well within two standard errors
of the target values.

3. Backward Coupling Times

In 100,000 draws, the average backward coupling time (the number of time steps
required to achieve a draw from the target distribution) was 1.2 time steps. The
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minimum and maximum backward coupling times were 1 and 8, respectively. Drawing
100,000 values from π(k0, k1, k2) took less than a second on a 450 MHz Sun SPARC
processor.

4. Σ2(k)

It remains only to evaluate the score function

S(k, k0, k1, k2) = δk,k0 V (k − k1) · V (k1 − k2)
G(k1) · G(k2) · G(k2 + k0 − k1)

|G(k1)| · |G(k2)| · |G(k2 + k0 − k1)|
.

at the values we have drawn from π(k0, k1, k2) and a fixed external input k in order
to produce the estimate for Σ2(k) given by (26).

As a simple model potential, we consider

Vj′ j =



















4t , for j = j ′

t , for j and j ′ nearest neighbors

t/
√

2 , for j and j ′ second nearest neighbors
0 , otherwise

.

Here, j and j ′ label the sites of the 4 points in

B = L1 ×L2

and “nearest neighbors” of a site are the four nearest neighbors with periodic boundary
conditions. Recall that our score function contains V (~k) factors where V (~k) denotes
the Fourier transform of the interaction potential:

V (~k) := N−1
∑

j′ j

e−i~k·(~r j′−~rj)Vj′ j (28)

where ~rj denotes the position vector of site j and N is the total number of points in
B.

In Table 3 we compare the true value of Σ2(0, 0, iπTP ) with simulated values based
on various sample sizes. In Table 4 we compare the true value of Σ2(k) for each
k ∈ B × M with simulated values based on a sample of size 100,000. It should be
pointed out that, for this example, the δk,k0 term in the score function allowed only
approximately 12.5% of the simulated values drawn from π(k0, k1, k2) to contribute
to our estimate for Σ2(k).

Example 2:

We take D = 2, L1 = L2 = 64, and 50 odd Matsubara frequencies. Thus, our 9-dimensional
state space has approximately 8.6 × 1015 points, making a brute force approach rather
unappealing.

Drawing 100,000 values from π(k0, k1, k2) took approximately 12 seconds on a 450 MZ Sun
Sparc processor.
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Our simulation resulted in the estimate

N̂W = 3.483866904037023 × 1010.

It would be of little value in this case to attempt an estimate of Σ2(0, 0, i πT ) as the δk,k3

factor would take the value 1 with probability

∑

k1,k2

π((0, 0, i πTP ), k1, k2) ≈
1

N̂W

∑

k1,k2

h((0, 0, i πTP ), k1, k2).

A very rough upper bound on this is given by

1
N̂W

(64 · 64 · 50)2 maxk1,k2 h((0, 0, i πTP ), k1, k2) ≤ 1
N̂W

(64 · 64 · 50)2 (maxk |G(k)|)3

≈ 1
N̂W

(64 · 64 · 50)2 0.15915493 ≈ 0.004854.

Here, maxk |G(k)| was obtained numerically.

However, Monte Carlo simulations give the more realistic estimate

1

N̂W

645603.228730 ≈ 0.0000186

In other words, almost none of the values drawn from π(k0, k1, k2) contribute to the sum.
Clearly another approach is needed here, and we provide two alternatives that address
this “low-score problem” by removing the δk,k0 factor. In Section 7.1 we use conditional
averaging to change the score function while still using the current weight. In Section 7.2
we change the weight and at the same time reduce the dimensionality of the problem using
the modified perfect IMH algorithm given by step 3(a)′ in Section 4.1.

7 Addressing the Low-Score Problem

7.1 Conditional Averaging

In this section, we change the score function (23) in order to remove the δk,k0 “spike” while
retaining the original weight function.

Recall from (21) that

Σ2(k) =
∑

k0,k1,k2∈K S(k, k0, k1, k2)W (k0, k1, k3)

= NW
∑

k0,k1,k2∈K S(k, k0, k1, k2)π(k0, k1, k3)

where
NW =

∑

k0,k1,k2

W (k0, k1, k2).
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Using the conditional density

π(k0|k1, k2) :=
π(k0, k1, k2)

π(k1, k2)

where π(k1, k2) is the marginal density

π(k1, k2) :=
∑

k0

π(k0, k1, k2), (29)

we may write

Σ2(k) = NW
∑

k0,k1,k2
S(k, k0, k1, k2)π(k0|k1, k2)π(k1, k2)

= NW
∑

k1,k2

[
∑

k0
S(k, k0, k1, k2)π(k0|k1, k2)

]

π(k1, k2)

= NW
∑

k1,k2
S′(k, k1, k2)π(k1, k2)

(30)

where
S′(k, k1, k2) :=

∑

k0

S(k, k0, k1, k2)π(k0|k1, k2).

Since we are already drawing values from π(k0, k1, k2), we take advantage of the relationship
given by (29) to write (30) as

Σ2(k) = NW

∑

k0,k1,k2

S′(k, k1, k2)π(k0, k1, k2). (31)

Note that we have removed k0 from the score function and, in particular, we have removed
the troublesome δk,k0 factor.

Replacing k by k0 in (23), the original score function has the form

S(k, k0, k1, k2) = δk,k0 R(k0, k1, k2).

Thus, the conditionally averaged score function S ′(k, k1, k2) may be written as

S′(k, k1, k2) = R(k, k1, k2)
π(k,k1,k2)
π(k1,k2)

= R(k, k1, k2)
W (k,k1,k2)
W (k1,k2)

(32)

where
W (k1, k2) :=

∑

k′

W (k′, k1, k2). (33)

By implementing this conditional averaging approach, we have eliminated the δk,k0 factor
which enables us to make use of all values drawn from π(k0, k1, k2) while simultaneously
reducing the variance of the Monte Carlo estimate for Σ2(k). The evaluation of W (k1, k2)
requires a CPU effort on the order of N ×|MT | steps, but needs to be performed only once
to accumulate the scores for all external k-points, per given (k1, k2). Hence, the evaluation
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of W (k1, k2) will, at most, double the amount of CPU effort for score accumulation in a
full simulation where Σ(k) must be evaluated for all N × |MT | external k-points. For large
lattice sizes and/or higher order diagrams, the CPU effort for perfect sample generation
will likely exceed the effort for score accumulation.

Example 1 Revisited:

Once again, we take D = 2, L1 = L2 = 2 and only two odd Matsubara frequencies. The
parameters are µ = 0.5, t = 1.0, and the physical temperature is TP = 2.0.

From (31) we have that
Σ(k) = NW E[S′(k,K1,K2)].

We use the previous estimate
N̂W = 1.349738

and average values of S ′(k, k1, k2) at values for k1 and k2 from draws (k1, k2, k3) from
π(k1, k2, k3) for various sample sizes. Results for 6 different simulation runs are shown in
Table 5.

Example 2 Revisited:

Again, we take D = 2, L1 = L2 = 64 and 50 odd Matsubara frequencies. The parameters
are µ = 0.5, t = 1.0, and the physical temperature is TP = 2.0.

Using the conditionally averaged score function, we arrive at the estimate Σ̂2(0, 0, i πTP ) ≈
−285.6363 − 2868.7525 i, which, when multipled by the constants we have ignored to this
point, contributes

(

2.0

64 · 64

)2

[−285.6363 − 2868.7525 i] ≈ −0.000068 − 0.000684 i

to the self energy Σ(k) given by (3).

7.2 Using IMH Step 3(a)′

In Section 6 we used the basic perfect IMH algorithm to draw values from the weight
function given by (22) as opposed to the somewhat more natural weight function given by
(19):

W (k, k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k − k1)|
where k is the external user-input momentum vector that is fixed for any given Σ2(k)
calculation. The purpose of using (22) was so that it would be unnecessary to change the
sampling procedure each time we wanted to change the input k. However, there are two
obvious drawbacks to this approach:
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1. We increase the size of our state space. In this example, we go from having to sample
values for (k1, k2) to having to sample values for (k0, k1, k2).

2. Even with an efficient approach to sampling from the weight function, the δk,k0 in
the score function causes us to effectively discard most of the sampled values. In
Section 6, the score function turned out to be zero approximately 87.5% of the time
in Example 1 and almost 100% of the time in Example 2.

In this section, we consider sampling directly from (19) in order to avoid the two drawbacks
listed above. We can actually write down a single procedure that is efficient in the sense
that will work for any k if we can accept the trade-off that it may become inefficient in
some cases due to increased backward coupling times. (In some cases, however they may
decrease since we will be making the state space smaller.)

For any fixed k, we write Σ2(k) as

Σ2(k) =
∑

k1,k2∈K V (k − k1) · V (k1 − k2) · G(k1) · G(k2) · G(k2 + k − k1)

=
∑

k1,k2∈K V (k − k1) · V (k1 − k2)
G(k1)·G(k2)·G(k2+k−k1)

|G(k1)|·|G(k2)|·|G(k2+k−k1)|

= S(k, k1, k2)Wk(k1, k2)

where S(k, k1, k2) is the score function

S(k, k1, k2) :=
V (k − k1) · V (k1 − k2) · G(k1) · G(k2) · G(k2 + k − k1)

|G(k1)| · |G(k2)| · |G(k2 + k − k1)|

and Wk(k1, k2) is the weight function

Wk(k1, k2) := |G(k1)| · |G(k2)| · |G(k2 + k − k1)|.

We wish to use the perfect IMH algorithm to draw values from

π(k1, k2) ∝ h(k1, k2) ≡ Wk(k1, k2).

We again choose a simple uniform candidate distribution this time with density q(k1, k2)
which gives equal weight to all points (k1, k2) ∈ (B ×MT )2.

In order to implement the IMH algorithm, it remains to identify the “lowest point”, (k∗
1 , k

∗
2),

which is the point in (B ×MT )2 that maximizes the ratio h/q. Since q is constant for all
(k1, k2) ∈ (B ×MT )2, we simply want to maximize

h(k1, k2) = |G(k1)| · |G(k2)| · |G(k2 + k − k1)|. (34)

As in Section 5.2 we can, after a limited search, identify a point k∗ = (~k∗, i πT ) (where
~k∗ is two dimensional) that maximizes |G(k)|. This time however, it is more difficult to
simultaneously maximize all factors in (34) as we will not necessarily be able to simply make
all three arguments equal to k∗ at the same time. It is not desirable to search through all
k1 and k2 for a fixed k in order to maximize (34) for three reasons:
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1. The search would need to be performed again each time we change the external k.

2. The search would need to be performed again for every graph included in the overall
summation defining Σ(k).

3. The search space will increase in size with higher order graphs and, with higher
dimensions, (i.e. large D, L1, . . . , LD), it will increase much more quickly than for the
limited search described in Section 5.2.

Given that we do not want to maximize (34), we appeal to Step 3(a)′ (Section 4.1) of the
IMH algorithm.

Recall that in the IMH algorithm we move backwards in time through time steps
−1,−2,−3, . . .. At each time step, we start a sample path at the “low point”, l, and,
looking forward in time, decide whether or not the sample path is able to accept a move
to the next candidate point drawn from the candidate density q. If it will not accept the
move, we go back one more time step and try again. If it will accept the move, we have
achieved a coupling and, after following this sample path forward to time zero, we have a
draw from π.

Suppose that we are starting a sample path at the low point l and have drawn a candidate
value x from the distribution with density q. We accept a move from l to x with probability
π(x)/π(l) = h(x)/h(l). That is, we simulate a value u from the Uniform[0,1] distribution
and accept the move if

u ≤ h(x)

h(l)
.

Suppose now that we know a value C such that h(l) ≤ C. Since

h(x)

C
≤ h(x)

h(l)

we may choose to accept the move from l to x whenever

u ≤ h(x)

C

since this would imply that

u ≤ h(x)

h(l)
.

In this case, we will accept moves away from l less often which result in a higher backward
coupling time, but we may still perform the IMH algorithm despite not being able to identify
l provided we can identify a C.

In the context of this problem, we have that

max
k1,k2

|G(k1)| · |G(k2)| · |G(k2 + k − k1)| ≤ |G(k∗)| · |G(k∗)| · |G(k∗)|,

so we take C to be |G(k∗)| · |G(k∗)| · |G(k∗)|.
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Example 1 Revisited:

Once again, we take D = 2, L1 = L2 = 2 and only two odd Matsubara frequencies. The
parameters are µ = 0.5, t = 1.0, and TP = 2.0. We report estimates for Σ2(π, 0, iπT ) in
Table 6. As expected, we have improved accuracy for small sample sizes since we are able
to make use of all values drawn from the weight when evaluating the score function. The
average backward coupling time for 100,000 draws was still 1.2 time steps in this case with
a minimum of 1 and a maximum of 7.

Example 2 Revisited: We again consider the case where D = 2, L1 = L2 = 64 with 50
odd Matsubara frequencies. Using the modified IMH algorithm described at the beginning
of this Section, we arrive at the estimate Σ̂2(0, 0, i πT )P ≈ −286.0717 − 2876.0375 i which,
when multiplied by the constants we have ignored to this point, contributes

(

2.0

64 · 64

)2

[−286.0717 − 2876.0375 i] ≈ 0.0000068 − 0.000686

to the self energy Σ(k) given by (3).

It is interesting to note that even though the state space was of size (64 · 64 · 50)2 =
41, 943, 040, 000, roughly one-third of our 100,000 draws from the weight function, required
that we only go back in time 1 step to acheive the coupling. In 50% of the draws, we had
to go back 3 steps or less and 75% of the time the backward coupling time was less than
or equal to 9. The average backward coupling time in 100,000 draws was 20.5. This was
skewed upwards by a few backward coupling times of just over 2,000, but 90% of the draws
were made in less than 33 time steps.
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Table 1: Summary of Symbols

Notation Meaning Additional Information

D number of dimensions of the lattice

Ld integer sidelength of the lattice
in dimension d, (d = 1, 2, . . . , D)

B set of points in the 1st Brillouin zone given by equation (4)

N number of points in B
M set of odd Matsubara frequencies given by equation (5)

consists of a wavevector

k ≡ (~k, i ν) momentum-energy variable ~k ∈ B and a frequency i ν ∈ M;
∈ K = B ×M (momentum) associated with “G-lines” (straight

lines) in the Feynman diagrams

k1, k2, . . . elements of K
k(1), k(2), . . . , k(D) components of a vector ~k ∈ B

Σ(k) self energy given by equation (3)

G(k) Green’s function given by equation (2)

consists of a wavevector
q ≡ (~q, i ν), momentum-energy variable ~q ∈ B and a frequency i ν;

~q ∈ B (momentum) associated with “V -lines” (wavy
lines) in the Feynman diagrams

Vj′j model interaction potential repulsion energy generated by
electrons

V (~q) Fourier transform of interaction potential given by equation (7)

TP physical temperature of the system

lg number of closed G-loops in graph g Figure 4, lg = 1, 0, 0, 1, 0 for
(a), (b), (c), (d), and (e), respectively

sf single-fermion spin quantum number sf = 1
2 for non-spin-polarized

electrons

δij Kronecker delta 1 when i = j, zero otherwise

nmax the highest order graphs that will
be considered in computing Σ(k)

F
(n)
g (k, k1, . . . , kn) the summand of Σ(k) given by equation (6)
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Table 2: Selected True Versus Estimated Probabilities Based on a Sample of Size 100,000:
Example 1 in Section 6

Region True p Estimated p

k
(1)
1 = 0 0.4944148 0.49886

k1 = 0, ν2 = πT 0.2472074 0.24799

k
(1)
0 = 0 or k

(2)
1 = 0 0.7472078 0.74707

Set of 50 randomly generated (k0, k1, k2)-points 0.0962621 0.09632

Set of 70 randomly generated (k0, k1, k2)-points 0.1325202 0.13166

Set of 100 randomly generated (k0, k1, k2)-points 0.1996107 0.20006

Set of 300 randomly generated (k0, k1, k2)-points 0.5827408 0.58275

Set of 375 randomly generated (k0, k1, k2)-points 0.7396903 0.73867

Set of 400 randomly generated (k0, k1, k2)-points 0.7885402 0.78757
Model Parameters: D = 2, L1 = L2 = 2, |MT | = 2, µ = 0.5, t = 1.0, TP = 2.0

Table 3: Estimated Value of Σ2(0, 0, iπTP ) Based on Various Sample Sizes: Example 1 in
Section 6

True value of Σ2(0, 0, iπTP ) = 0.010953844 + 0.997002312i

Sample Size

Sim 100 1000 10000 100000

1 0.070568 + 1.894689 0.040577 + 1.325870i 0.012238 + 1.046736i 0.010843 + 0.997868i
2 0.083460 + 1.485778 0.050968 + 1.285695i 0.013005 + 0.968438i 0.010914 + 0.997350i
3 0.030653 + 0.848791 −0.002457 + 0.973494i 0.010843 + 0.995879i 0.010672 + 0.996325i
4 −0.020880 + 1.232835 0.045756 + 0.993246i 0.010967 + 0.991003i 0.010946 + 0.997358i
5 0.154370 + 1.345225 0.011286 + 0.963402i 0.011794 + 1.134048i 0.010957 + 0.996579i
6 −0.036580 + 0.946579 0.010258 + 1.323729i 0.020001 + 1.003477i 0.010144 + 0.998348i

Model Parameters: D = 2, L1 = L2 = 2, |MT | = 2, µ = 0.5, t = 1.0, TP = 2.0
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Table 4: True Versus Estimated Value of Σ2(k) Based on a Sample of Size 100,000: Example
1 in Section 6

k Σ2(k) Estimated Σ2(k)

(0, 0, −i πTP ) 0.010954 - 0.997002 i 0.010933 - 0.996102 i
(0, 0, i πTP ) 0.010954 + 0.997002 i 0.010991 + 1.015137 i

(0, π, −i πTP ) -0.053717 - 2.295094 i -0.054136 - 2.297783 i
(0, π, i πTP ) -0.053717 + 2.295094 i -0.053234 + 2.284396 i

(π, 0, −i πTP ) -0.053717 - 2.295094 i -0.054249 - 2.268983 i
(π, 0, i πTP ) -0.053717 + 2.295094 i -0.053113 + 2.300121 i

(π, π, −i πTP ) 0.015501 - 1.199040 i 0.010938 - 1.183866 i
(π, π, i πTP ) 0.015501 + 1.199040 i 0.016491 + 1.195241 i

Model Parameters: D = 2, L1 = L2 = 2, |MT | = 2, µ = 0.5, t = 1.0, TP = 2.0

Table 5: Estimated Value of Σ2(0, 0, iπTP ) Based on Various Sample Sizes Using Conditional
Averaging: Example 1 in Section 7.1

True value of Σ2(0, 0, iπTP ) = 0.010953844 + 0.997002312i

Sample Size

Sim 100 1000 10000 100000

1 −0.078502 + 0.877613 i 0.016364 + 0.938827 i 0.010553 + 0.995451 i −0.002656 + 0.990609 i
2 −0.020618 + 1.258647 i −0.132466 + 0.832302 i −0.017643 + 1.006430 i 0.010735 + 1.004080 i
3 0.283950 + 1.347881 i 0.007313 + 0.952197 i 0.038507 + 1.007398 i 0.011389 + 1.010014 i
4 −0.010512 + 1.054748 i 0.046003 + 1.104158 i 0.014029 + 0.956924 i 0.015495 + 0.997494 i
5 0.050348 + 0.758642 i 0.138418 + 1.078661 i 0.017016 + 1.023525 i −0.010569 + 0.980516 i
6 −0.030622 + 0.924121 i 0.010811 + 1.088295 i 0.024671 + 0.978156 i 0.010921 + 0.996255 i

Model Parameters: D = 2, L1 = L2 = 2, |MT | = 2, µ = 0.5, t = 1.0, TP = 2.0
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Table 6: Estimated Value of Σ2(0, 0, iπTP ) Based on Various Sample Sizes Using the Mod-
ified IMH Algorithm: Example 1 in Section 7.2

True value of Σ2(0, 0, iπTP ) = 0.010953844 + 0.997002312i

Sample Size

Sim 100 1000 10000 100000

1 0.017980 + 1.199001i −0.119150 + 0.877788i 0.013816 + 0.963932i 0.010960 + 0.996932i
2 −0.323498 + 1.058913i −0.039490 + 1.017291i 0.013452 + 0.999321i 0.010744 + 0.997154i
3 −0.001811 + 0.915970i −0.164076 + 0.952820i 0.026331 + 0.991237i 0.010955 + 0.997030i
4 −0.013037 + 0.897021i −0.011933 + 0.972742i 0.023496 + 0.940430i 0.010601 + 0.998827i
5 −0.025634 + 1.009884i 0.013173 + 1.093038i −0.012007 + 1.024184i 0.010821 + 0.995304i
6 0.072457 + 1.096260i 0.003531 + 0.932560i 0.020840 + 0.967423i 0.015686 + 0.992164i

Model Parameters: D = 2, L1 = L2 = 2, |MT | = 2, µ = 0.5, t = 1.0, TP = 2.0
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