Predictions using \texttt{lm} and spatial predictions

APPM Methods and Analysis of Large Data Sets

\begin{verbatim}
#
library(dataWorkshop)

Loading required package: maps
Loading required package: fields
Loading required package: spam
Loading required package: grid
Spam version 0.41-0 (2014-02-26) is loaded.
Type 'help(Spam)' or 'demo(spam)' for a short introduction
and overview of this package.
Help for individual functions is also obtained by adding the
suffix '.spam' to the function name, e.g. 'help(chol.spam)'.
##
Attaching package: 'spam'
##
The following objects are masked from 'package:base':
##
backsolve, forwardsolve

first some review
predictions for PilotSUV data
Here is a basic model. This may not be the best but a reasonable
one.
 data(PilotSUV)
 fitSUV<-	exttt{lm}(price \sim \texttt{model} + \texttt{year} + \texttt{mileage}, \texttt{data} = \texttt{PilotSUV})
check the fit
 fields.style()
 set.panel(2,1)

plot window will lay out plots in a 2 by 1 matrix

plot(predict(fitSUV), residuals(fitSUV))
yline(0, col=1)
indBuy<- \texttt{which.min}(residuals(fitSUV))

qqnorm(residuals(fitSUV))
\end{verbatim}
inference for predicted values

obj <- predict(fitSUV, se.fit = TRUE)

summary of predicted values for the 20 most negative residuals

set.panel()

plot window will lay out plots in a 1 by 1 matrix

CI <- cbind(obj$fit - 2 * obj$se.fit, objfit, objfit + 2 * obj$se.fit)
iorder <- order(fitSUV$residuals)
N <- length(PilotSUV$price)
temp <- cbind(PilotSUV$price, CI)
considering prediction intervals
obj2 <- predict(fitSUV, interval="prediction", newdata = PilotSUV)
CI2 <- obj2[, c(2, 1, 3)]
iorder <- order(fitSUV$residuals)
N <- length(PilotSUV$price)
temp <- chind(PilotSUV$price, CI2)
temp <- temp[iorder,]
matplot(temp[1:20,], 1:20, type="p",
pch = c("o", "|", "+", "|"), cex = 1.2, col = c(1, 2, 3, 2),
ylab = "Rank by residual", xlab = "Asking Price")
yline(1:20, lwd = .5, col = "grey")
getting standard errors for a spatial prediction
#
subset of North American Rainfall

```r
data( NorthAmericanRainfall)
x<- cbind( NorthAmericanRainfall$longitude, NorthAmericanRainfall$latitude)
y<- NorthAmericanRainfall$precip
# change to inches of rainfall
y<- y/254
# select out the subset of locations from reat Plains
ind <- (x[,1] <= -90) & (x[,1]>= -103) & (x[,2] >= 32) & (x[,2] <= 47)
x<- x[ind,]
y<- y[ind]
```
par.grid <- list(theta = exp(seq(log(1), log(10), 30)))

explore likelihood with smoothness 1.0 along with lambda and theta
NOTE: this function automatically optimizes over lambda so saves that grid search.

MLEObj1 <- mKrig.MLE(x, y, Covariance = "Matern", cov.args = list(smoothness = 1.0),
 par.grid = par.grid, lambda = rep(1, 30), verbose = TRUE)

theta.MLE <- MLEObj1$cov.args.MLE$theta
lambda.MLE <- MLEObj1$lambda.MLE

check results
plot(par.grid$theta, MLEObj1$summary[, "lnProfLike"],
 ylab = "profile log Likelihood", xlab = "theta")
xline(theta.MLE, col = 2, lwd = 2)
fitRainfall <- mKr["m", y, Covariance="Matern", cov.args=list(smoothness=1.0, theta=theta.MLE), lambda=lambda.MLE)

fitSurface <- predictSurface(fitRainfall)
SESurface <- predictSurfaceSE(fitRainfall)

take a look
set.panel(2,1)

plot window will lay out plots in a 2 by 1 matrix

image.plot(fitSurface, axes=FALSE)
US(add=TRUE, lwd=2, col="grey")
image.plot(SESurface, axes=FALSE)
US(add=TRUE, lwd=2, col="grey")
points(x, col="white", cex=.5, pch=16)
less that 9 inches of rain
set.panel()

plot window will lay out plots in a 1 by 1 matrix

ind9<- fitSurface$z < 9 - 2*SESurface$z
image(fitSurface$x, fitSurface$y, ind9, col=c("white", "grey"))
contour(fitSurface, level=c(8,9), add=TRUE)
NOTE: Tricky to interpret what this plot means because significance is found across many grid boxes

a better way to make this inference
#(add timing just to have reference as to how long this takes)

```r
system.time(
  simObj <- sim.mKrig.approx( fitRainfall, M=10, nx=50, ny=50, gridExpansion= 3 )
)
```

user system elapsed
19.604 0.716 20.159

```r
set.panel()
```

plot window will lay out plots in a 1 by 1 matrix
in class bootstrap example
NBoot<- 1000
hold<- matrix(NA, nrow=194, ncol=NBoot)
sigma<- (summary(fitSUV)$sigma)
for(k in 1: NBoot)
 {
 }
cat(k, " ")#
yFake <- predict(fitSUV) + rnorm(194, sd=sigma)#
obj <- lm(yFake ~ model + year + mileage, data = PilotSUV)#
hold[,k] <- 100*residuals(obj)/predict(obj)#
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ...
##
SEpercentage <- apply(hold, 1, FUN="sd")
hist(SEpercentage)
PilotSUV[170,]

year model price mileage SUV color distance
175 2005 HEX 21.9 19 SUV 678 2004

100*residuals(fitSUV)[170]/ predict(fitSUV)[170]

175
-23.71

95% CI from bootstrap sample
quantile(hold[170,],c(.025, .975))

2.5% 97.5%
-12.90 13.32

compare to approx 95% CI bounds based on standard deviation of bootstrap results
2* SEpercentage[170]

[1] 13.55