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Who We Are / What We Do

The U.S. National Center for Atmospheric Research (NCAR)

Data Assimilation Initiative (DAI) employs:

• Jeffrey Anderson (PI - formerly of GFDL),

• Kevin Raeder (integration of CAM),

• Hui Liu (BUFR obs & GPS obs),

• Alain Caya (WRF & Radar Obs),

• and me, Tim Hoar (none of above)

with the goal of providing a flexible, modular, environment for

exploring Data Assimilation methodologies rather than differences

of software implementation.

With this many people, we are focusing on Ensemble Methods;

EnKF, EaKF...
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Data Assimilation Research Testbed → DART

• Many low-order models: Lorenz63, L84, L96∗,L2004, . . . ,

• Global 2-level PE model (from NOAA/CDC),

• NCAR’s CAM 2.0 & 3.0 (global spectral model),

• NCAR’s WRF (regional),

• GFDL FMS B-grid GCM (global grid point model),

• MIT GCM (from Jim Hansen),

• NCEP GFS (assisted by NOAA/CDC),

• GFDL MOM3/4 ocean model,

• NCAR’s ROSE model (upper atmosphere with chemistry)

Forward Operators and Datasets

• Many linear, non-linear forward operators for low-order models

• U, V, T, Ps, Q, for realistic models

• Radar reflectivity, GPS refractivity for realistic models

• Observations from BUFR files (NCEP reanalysis flavor)

• Can create synthetic (i.e. perfect model) observations for any

of these.
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Roadmap to the rest of the talk

Ensemble Assimilation Outline ∼ 1 minute

Identify the problem areas ∼ 2 minutes

Describe Solution ∼ 3 minutes

Describe Model & Obs ∼ 1 minute

Show results ∼ 5 minutes

Questions ∼ closing
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Ensemble Data Assimilation – Overview.

.

y

An observation and its probability density function.
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Ensemble Data Assimilation – Integrate.

.

y

Integrate an ensemble of models to the time of the observation.

This is the prior.
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Ensemble Data Assimilation – ŷ = H(x).

.

y

Apply a forward operator H to determine the pdf of the state

variables in observation-space.
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Ensemble Data Assimilation – Increments.

.

Determine and apply ’increments’.
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Ensemble Data Assimilation – Regress.

.

Use ensemble samples of y and each state variable to linearly

regress observation increments onto state variable increments. Can

be done sequentially if observations are conditionally uncorrelated.
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Ensemble Data Assimilation – Proceed.

.
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Error Sources and Treatments

.

.

3) Observational Errors

1) Model Error

2) H

4) Increments
Gaussian Assumption

5) Regressions
uncorrelated obs

• 1,2,3 → Independent, Hard, ongoing . . .

• 1-4 → Adaptive Observation-Space Algorithm

• 5 → Localization, Group Filter
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Group Filter – augments Localization

A Monte Carlo algorithm to address regression sampling errors.

• Create M groups of N ensembles.

• Compute the observation increments as usual.

• For a given observation/state variable pair:

1. M estimates of the regression coefficient r

2. Uncertainty in r implies state variable increments ⇓

3. Can compute a regression confidence factor → α

http://www.cgd.ucar.edu/DAI/publications.html
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Adaptive Observation-Space Treatments

Prior Observation

σp σo

µp µo

Construct a ratio R =
|µp−µo|√
σ2

p+σ2
o

Best Possible Scenario: R ≡ 1 → no covariance inflation needed.

Reality: As R differs from 1, adaptively inflate the variance of

both the Prior and the Observation.
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Why assimilate with a climate model?

• Systematic error: Can one detect long-term biases quickly?

• Model quality evaluation: Being a good forecast model increases

climate model credibility.

• Parameter estimation: Can model be ’tuned’ with assimilation?

• Observation system evaluation experiments: determine value of

different observations, OSSEs
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Experiment Description

CAM 2.0.1 T42L26

• U, V, T, Q, and PS impacted by observations

• Land Model (CLM 2.0) not impacted by observations

• Climatological SSTs

Assimilation/Prediction Experiment

• Initialized from a climatological distribution (huge spread)

• 80-member ensemble divided into 4 equal groups

• Run on a ’university-sized’ computer – 16 compute nodes.

• Assimilation cycling every 6 hours; ± 1.5 hour window for obs.

• Uses most observations used in NCEP reanalysis (ACARS,

Radiosondes (no Q), Satellite Winds ..., no surface obs.)

NCEP Reanalysis – used for comparison only

• T62L28

• uses radiances (DART does not)
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06Z 1 Jan 2003 → after first cycle.

Ensemble Mean;

large differences

≈ ± 125 m
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00Z 2 Jan 2003 → 4 Assimilation cycles.

Adapting . . .
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00Z 4 Jan 2003 . . .

Still

Improving . . .
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00Z 8 Jan 2003 . . .

Small differences.

Proof we are as-

similating.

Excellent amount

of structure from

a T42 model!
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Monthly Mean NH Temperature Jan 2003
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Monthly Mean TR Temperature Jan 2003
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Monthly Mean NH Wind Jan 2003
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12 GMT 04 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)

(WET, DRY)

Observations are impacting all state variables – including Q.

Level 21 (of 26) ≈ 850 hPa, WET ' 0.01

23



00 GMT 05 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)

(WET, DRY)

T42 gets realistic structure consistent with obs, much more so

than climate model
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12 GMT 05 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)
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00 GMT 06 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)

(WET, DRY)
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12 GMT 06 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)
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00 GMT 07 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)

(WET, DRY)
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12 GMT 07 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)

(WET, DRY)
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00 GMT 08 Jan 2003 CAM Analysis

Specific Humidity (kg/kg)

(WET, DRY)

Cyclogenesis off Newfoundland; dry air in front, dry air in

occlusion.
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Conclusions

• Assimilation of real observations in a climate model is a reality.

• The observations can impact all the state variables if desired.

• The diagnostics can focus research efforts in model develop-

ment.

• A static covariance inflation is not needed to address filter di-

vergence.

• Augmenting localization with a small ’ensemble of ensembles’

approach proves useful.

My thanks go to: Jeff Anderson, Kevin Raeder, Hui Liu, Alain Caya

http://www.cgd.ucar.edu/DAI

The Geophysical Statistics Project is Supported by

the U.S. National Science Foundation DMS
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Community Atmosphere Model → CAM

• Atmospheric component of NCAR’s Community Climate Sys-

tem Model

• Designed for climate scenario integrations (IPCC) and research

• Open source; estimated to be ≈ 1000+ users

• This experiment uses spectral Eulerian T42 resolution.

(Semi-lagrangian and finite-volume cores, T5 and T85 also

available.)

• Horizontal localization: 0.2 radians half-width

• Multiplicative vertical localization: 200hPa half-width

• Observational errors are directly from BUFR files
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Monthly Mean NH Temperature Jan 2003
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Monthly Mean SH Temperature Jan 2003
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Monthly Mean TR Temperature Jan 2003
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Monthly Mean NA Temperature Jan 2003
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Monthly Mean NH Wind Jan 2003
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Monthly Mean SH Wind Jan 2003
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Monthly Mean TR Wind Jan 2003
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Monthly Mean NA Wind Jan 2003
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