Extreme Values on Spatial Fields

Daniel Cooley
Department of Applied Mathematics, University of Colorado at Boulder
Geophysical Statistics Project, National Center for Atmospheric Research

Philippe Naveau
Department of Applied Mathematics, University of Colorado at Boulder
Laboratoire des Sciences du Climat et de l’Environnement, IPSL-CNRS, Gif-sur-Yvette, France

Doug Nychka
Geophysical Statistics Project, National Center for Atmospheric Research
Background

- 5th year graduate student
- 2nd year with GSP
- Anticipated graduation date: Fall 2005
Background

- 5th year graduate student
- 2nd year with GSP
- Anticipated graduation date: Fall 2005

Projects

- Extreme value model for Lichenometry
- Spatial dependence estimation and prediction for annual maxima
- Colorado Front Range Precipitation
Colorado Precipitation Project

Goal: Create a map of precipitation return levels for Colorado’s Front Range.
Colorado Precipitation Project

Goal: Create a map of precipitation return levels for Colorado’s Front Range.

- project originated from ISSE, interested in flooding
- NWS has done maps for Southwest US (AZ, NM, UT, NV) and mid-Atlantic (OH, PA, MD, NJ, NC, WV)
- plans to do entire US (contingent on funding)
- handles spatial dependence and prediction differently
- present NWS with our method and results
Front Range Data

Data: hourly precipitation from 56 weather stations, 12-60 years of data, Apr1 - Oct 31.
Univariate Extreme Values

GEV: Used to model block (annual) maxima

\[
G(z; \mu, \sigma, \xi) = \exp \left[- \left(1 + \xi \left(\frac{z - \mu}{\sigma} \right) \right)^{-\frac{1}{\xi}} \right]
\]

- wasteful of data
- used by NWS to produce their maps
Univariate Extreme Values

GEV: Used to model block (annual) maxima

\[G(z; \mu, \sigma, \xi) = \exp \left[- \left[1 + \xi \left(\frac{z - \mu}{\sigma} \right) \right]^{-\frac{1}{\xi}} \right] \]

- wasteful of data
- used by NWS to produce their maps

GPD: Models exceedences above a threshold

\[P\{X - u < y | X > u\} \approx 1 - \left(1 + \frac{\xi y}{\tilde{\sigma}}\right)^{-1/\xi} \]

where \(\tilde{\sigma} = \sigma + \xi(u - \mu) \)

- Less wasteful of data
- Must choose threshold \(u \)
- How to go spatial?
Bayesian Hierarchical Model

Let $X_{i,j}$ be observation j from station i.

$$X_{i,j} \sim GPD(\tilde{\sigma}_i, \xi_i)$$
Bayesian Hierarchical Model

Let $X_{i,j}$ be observation j from station i.

$$X_{i,j} \sim GPD(\tilde{\sigma}_i, \xi_i)$$

$$\log \tilde{\sigma} \sim MVN(a, B)$$

$$\xi \sim MVN(c, D)$$

- a, c are functions of covariates
- B, D are functions of distance
Bayesian Hierarchical Model

Let $X_{i,j}$ be observation j from station i.

$$X_{i,j} \sim GPD(\tilde{\sigma}_i, \xi_i)$$

$$\log(\tilde{\sigma}) \sim MVN(a, B)$$

$$\xi \sim MVN(c, D)$$

- a, c are functions of covariates
- B, D are functions of distance

Plan: Use existing spatial techniques on the parameters, then convert to the desired return levels.
Covariates

To do spatial prediction, any covariate must be available for every location in the region.
First Model

\[X_{i,j} \sim \text{GPD}(\tilde{\sigma}_i, \xi_i) \]

\[\log \tilde{\sigma} \sim \text{MVN}(a, B) \]

\[\xi \sim \text{MVN}(c, D) \]

\[a = \alpha_{\sigma 1} + \alpha_{\sigma 2}(\text{elevation}) \quad B = \beta_{\sigma 1} \exp[-\beta_{\sigma 2}(\text{distance})] \]

\[c = \alpha_{\xi 1} + \alpha_{\xi 2}(\text{elevation}) \quad D = \beta_{\xi 1} \exp[-\beta_{\xi 2}(\text{distance})] \]

\[\alpha_{.} \sim \text{Unif}(-\infty, \infty) \quad \beta_{.} \sim \text{Unif}(-\infty, \infty) \]
Model Results

![Graphs showing the relationship between log(sigma) and elevation, and another graph showing xi against elevation.](image)
Model Results

\[\log(\sigma) \]
Model Results

\[\xi \]
Model Results

20-year Return Levels

Extreme Values on Spatial Fields – p. 13/1
Future Work

- Extend spatially
- Search for covariates
- Speed up MCMC method
- Examine covariance structure
- Test other models
- Model comparison (DIC)
- ???