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OUTLINE

» Background:

Challenges of covariance modeling in data
assimilation application

Observations

» Multi-resolution (wavelet) based covariance
Heuristic EM-type approach
Examples (ground-level ozone data)

» Summary and Future Work



Observations

* Numerous, Incomplete, Irregularly distributed

Obs Type

. 14183 SYNOP

. 1695 SHIP

ECMWF Data Coverage (All obs) -SYNOP/SHIP _—
14/NOV/2004; 00 UTC -
_Total number qf ob‘s = 24979
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Observations

* Numerous, Incomplete, Irregularly distributed

ECMWF Data Coverage (All obs) - AIRCRAFT
14/NOV/2004; 00 UTC




MOTIVATION and GOAL N

Spatial analysis of large nonstationary processes poses
challenges in both modeling and computation.

* Need the flow-dependent nonstationary covariance
* Incomplete, irregularly distributed observational data

» Require computational efficiency



Multi-resolution based covariance N
Y = WH*WT

» DWT:
hyy = Ww—Ix

» H? = cou(hyy)
» Determine H

* Enforce
sparsity on H
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Example: Surface Ozone Data I

» 513 stations

» 930 realizations
over 5 years

» 10% on 64-by-64
grid




EM-type approach

Predict x,,;5
[ x =Dy, HED ]
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Results: Covariance Surface N

» After 5th iteration

estimated covariance surface estimated covariance surface
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Summary and Future Work 2N

*» It is possible to model nonstationary covariance
using wavelet basis with computational efficiency



Summary and Future Work 2N

» |t is possible to model nonstationary covariance
using wavelet basis with computational efficiency

» Use of EM algorithm to handle irregularly distributed
iIncomplete data

- Proof of concept: Heuristic approach
- Parameterization: X(6) = WH?(0)WT



Summary and Future Work 2N

» |t is possible to model nonstationary covariance
using wavelet basis with computational efficiency

» Use of EM algorithm to handle irregularly distributed
iIncomplete data

Proof of concept: Heuristic approach
Parameterization: ¥(8) = WH?(O)WT

» Application to a large data set:
Aurora Image data (~ 2K)
NCEP data (~ 100K)
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