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MOTIVATION and GOAL

Spatial analysis of large nonstationary processes poses
challenges in both modeling and computation.

Need the flow-dependent nonstationary covariance

Incomplete, irregularly distributed observational data

Require computational efficiency



Multi-resolution based covariance

Σ = WĤ2WT

DWT:
hW = W−1

x

Ĥ2 = cov(hW)
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Example: Surface Ozone Data
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EM-type approach

x = (
xobs

xmis

) ∼ N (0,Σ), Σ = WĤ2WT

Predict xmis

[ x(k−1)|xobs, Ĥ
(k−1) ]

hW = W−1
x

· · ·

Ĥ(k)
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Results: Covariance Surface

After 5th iteration
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Summary and Future Work

It is possible to model nonstationary covariance
using wavelet basis with computational efficiency

Use of EM algorithm to handle irregularly distributed
incomplete data

Proof of concept: Heuristic approach
Parameterization: Σ(θ) = WH2(θ)WT

Application to a large data set:
Aurora Image data (∼ 2K)
NCEP data (∼ 100K)
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