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Ensemble Filters for Atmosphere and Ocean Data Assimilat
Jeffrey L. Anderson

3 June, 2003

I. Overview of ‘Assimilation’ Problem

II. A Bayesian context

III. A Monte Carlo approximation

IV. Several heuristic simplifications

V. An example from a simple atmospheric model

VI. Challenges and opportunities
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The Data Assimilation Problem

Given:
________________________________________________

1. A physical system (atmosphere, ocean...)
________________________________________________

2. Observations of the physical system

Usually sparse and irregular in time and space
Instruments have error of which we have a (poor) estimate
Observations may be of ‘non-state’ quantities
Many observations may have very low information content

________________________________________________

3. A model of the physical system

Usually thought of as approximating time evolution
Could also be just a model of balance (attractor) relations
Truncated representation of ‘continuous’ physical system
Often quasi-regular discretization in space and/or time
Generally characterized by ‘large’ systematic errors
May be ergodic with some sort of ‘attractor’

________________________________________________
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The Data Assimilation Problem (cont.)

We want to increase our information about all three pieces:

________________________________________________

1. Get an improved estimate of state of physical system

Includes time evolution and ‘balances’
Initial conditions for forecasts
High quality analyses (re-analyses)

________________________________________________

2. Get better estimates of observing system error characteris

Estimate value of existing observations
Design observing systems that provide increased informat

________________________________________________

3. Improve model of physical system

Evaluate model systematic errors
Select appropriate values for model parameters
Evaluate relative characteristics of different models

________________________________________________
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Examples:

A. Numerical Weather Prediction
Model: Global troposphere / stratosphere O(1 degree by 50 levels)
Observations: radiosondes twice daily, surface observations, satellit

winds, aircraft reports, etc.

B. Tropical Upper Ocean State Estimation (ENSO prediction)
Model: Global (or Pacific Basin) Ocean O(1 degree by 50 levels)
Observations: Surface winds (possibly from atmospheric assimilatio

TAO buoys, XBTs, satellite sea surface altimetry

C. Mesoscale simulation and prediction
Model: Regional mesoscale model (WRF), O(1km resolution)
Observations: Radial velocity from Doppler radar returns

D. Global Carbon Sources and Sinks
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Nonlinear Filtering

Dynamical system governed by (stochastic) DE

(1)

Observations at discrete times

(2)

Observational error is white in time and Gaussian

(3)

Complete history of observations is

(4)

Goal: Find probability distribution for state at time t

(5)

dxt f xt t,( )= G xt t,( )dβt+ t 0≥,

yk h xk tk,( )= vk k;+ 1 2 … tk 1+ tk t0≥>;, ,=

vk N 0 Rk,( )→

Yτ yl tl τ≤;{ }=

p x t Yt,( )
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Nonlinear Filtering (cont.)

State between observation times obtained from DE

Need to update state given new observation

(6)

Apply Bayes’ rule

(7)

Noise is white in time (3) so

(8)

Also have

(9)

p x tk Ytk
, 

  p x tk yk Ytk 1–
,, 

 =

p x tk Ytk
, 

 
p yk xk Ytk 1–

, 
  p x tk Ytk 1–

, 
 

p yk Ytk 1– 
 

------------------------------------------------------------------------------------=

p yk xk Ytk 1–
, 

  p yk xk( )=

p yk Ytk 1– 
  p yk x( ) p x tk Ytk 1–

, 
  xd∫=
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Nonlinear Filtering (cont.)

Probability after new observation

(10)

Second term in numerator, denominator comes from DE
First term comes from distribution of observational error

p x tk Ytk
, 

 
p yk x( ) p x tk Ytk 1–

, 
 

p yk ξ( ) p ξ tk Ytk 1–
, 

  ξd∫
-------------------------------------------------------------------=
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General methods for solving the filter equations are known:

1. Advancing state estimate in time

2. Taking product of two distributions

But, these methods arefar too expensive for problems of interest

1. Huge model state spaces (10 is big!), NWP models at O(10 millio

2. Need truncated representations of probabilistic state to avoid exp
tial solution time and storage

The ART of Data Assimilation:

Find heuristic simplifications that make approximate solution afforda

1. Localization (spatial or other truncated basis)

2. Linearization of models, represent time evolution as linear (around
control non-linear trajectory)

3. Represent distributions as Gaussian (or sum of Gaussians)

4. Monte Carlo methods

5. Application of simple balance relations
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Ensemble Kalman Filters:

Simplifications:

1. Monte Carlo approximation to probability distributions

2. Localization in space, avoids degeneracy from samples
smaller that state space

3. Gaussian representation of probability distributions genera
used for computing update

Problems:

1. Selecting initial samples for ensembles (Monte Carlo samp

2. Determining degree of spatial localization

3. Maintaining appropriate model ‘balances’ in ensemble
members

BUT, UNPRECEDENTED EASE OF INITIAL APPLICATION
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How an Ensemble Filter Works

Theory: Impact of observations can be handled sequentially
Impact of observation on each state variable can be hand
sequentially

B. Observed value
and observational error
distribution from observing

H

H

H

D. (Step 1) Find
increments for
prior estimate of
observation.

E. (Step 2) Use linear
regression to compute
corresponding increments
for each state variable.

A. Integrate model
ensemble to time
at which observation
becomes available.

system.

C. Get prior ensemble
sample of observation
by applying H to each
member of ensemble.
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Details of Step 1: Updating Observation Variable Ensemble

Scalar Problem: Wide variety of options available and afforda

Begin with two previously documented methods:

1. Perturbed Observation Ensemble Kalman Filter

2. Ensemble Adjustment Kalman Filter
__________________________________________

Both make use of following (key to Kalman filter...)

Given prior ensemble with sample meanzp and covarianceΣp

Observation yo with observational error variance matrix R

Note: Product of Gaussians is Gaussian

(9)

and mean:

(10)

Σu Σp
 
  1–

H
T

R 1– H+
 
 
  1–

=

z
u Σu Σp

 
  1–

z
p

HTR 1– y
o+

 
 
 =
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Details of Step 1: Perturbed Obs. Ensemble Kalman Filter

1. Compute prior sample variance and mean,Σp andzp

2. Apply (9) once to compute updated covariance,Σu

3. Create an N-member random sample of observation

distribution by adding samples of obs. error to yo

4. Apply (10) N times to compute updated ensemble membe

Replacezp with value from prior ensemble, yp
i

Replace yo with value from random sample, yo
i

Updated ensemble value is yu
i (= zu from 10)

NOTE: When combined with linear regression for step 2, this
gives identical results to EnKF’s described in literature!

* * * **

*** * *

* * ** *

Observation

Prior

Updated (Posterior)

(4th prior sample
paired with 3rd
obs. sample for
product)

yo
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Details of Step 1: Ensemble Adjustment Kalman Filter

1. Compute prior sample variance and mean,Σp andzp

2. Apply (9) once to compute updated covariance,Σu

3. Apply (10) to compute updated mean,zu

4. Adjust prior ensemble of y so that mean and variance are

exactlyzu andΣu

,   i = 1, ... N

σ is variance of y
Similar methods called square root filters (for obvious reasons)

yi
u

yi
p

y
p

– 
  σu σp⁄ y

u
+=

** * **

* ** *

Observation

Prior

Updated (Posterior)

*

* * ***

Product

Adjust
Mean

Adjust
Variance



/home/jla/dart/gsp_spatio_temporal_stats/gsp_talk.fmMarch 18, 2002

Details of Step 1: Quadrature kernel filter

1. Compute prior sample varianceΣp

2. Use a Gaussian (or other) kernel approximation to get

continuous approximation to p(yp)

3. Use quadrature to take product in (6) directly
Can do individual Gaussians kernels if Gaussian

p(zu) = p(yo | zp) p(zp) / (normalization)

4. Create an N-member random sample of p(zu)

5. An interesting variant uses boxcar kernels

6. Only useful for non-Gaussian structure in prior;
very powerful for Lorenz-63 model

* * * * *

* * ** *

Observation

Prior

Updated (Posterior)
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Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state
variable ensembles

Simple idea: Do linear regression of xp on yp

Equivalent to doing: Least squares fit
Assuming Gaussian prior relation

(Doing previously documented ensemble Kalman filters)

*

*

*
*

*
*

++++++

+

+
+
+

+
+

+

y

x

Observation

∆y5

∆y1

∆x1 ∆x5

Least Squares Fit
(Regression of
x on y)

Sometimes called
Statistical Linearization

*  is prior ensemble sample

y=h(x)
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Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state variables

Idea: Do linear regression of xp on yp

Could also do local linearizations:
(Related to Gaussian Kernel approximation)

*

*

*
*

*
*

++++++

+

+
+
+

+
+

+

y

x

Observation

∆y5

∆y1

∆x1 ∆x5

*  is prior ensemble sample

y=h(x)
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Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state variab

More challenging when obs and state are not functionally rel

Example: y = h(x2), x and x2 strongly correlated

Large sample size needed to ‘remove’ noise
Trade-offs with local linearization (dotted magenta)

*
*

* *

**

++++++

+
+

++

++

+

y

x

Observation

∆y5

∆y1

∆x1 ∆x5

*  is prior ensemble sample

y=h(x2)

Least Squares Fit
(Regression of
x on y)
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GFDL FMS B-Grid Dynamical Core (Havana)
Held-Suarez Configuration (no zonal variation, fixed forcing)

Low-Resolution (60 longitudes, 30 latitudes, 5 levels)
Damping coefficients reduced to 0.10 for error growth
Timestep 1 hour (or less for frequent observations)

Has baroclinic instability

T at Level 3 (Middle of Atmosphere)
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Perfect model experiments

‘Truth’ is generated by integrating model

B-grid, integrated for 100 years from state of rest before starting
(Multi-year spin-up for upper level temperatures)

‘Synthetic’ obs. by applying‘forward observation’ operator to truth
(Here, this is just interpolating to a random horizontal location)

Instrument error simulated by adding random draw from aspecified
Gaussian distribution to the interpolated observation

All the assimilation algorithm ever sees is these simulated observati

Result of assimilation can be compared to ‘truth’

*

time

Truth
(model)

Forward
Obs. Operator

Observational
Error
Distribution

Synthetic
Observation
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Experimental Design Details

Base case assimilation starts from ‘climatological’ ensemble

Add tiny perturbations to control integration (truth)
Integrate this ensemble for several years

Ensemble size is 20 for ALL cases here

Each assimilation case is run for 400 days

Summary results are from last 200 days

No bias correction steps taken (no covariance inflation)

Single tuning parameter controls distance dependent correlation ma
Gives less weight to distant observations
This was tuned to give best RMS results in base case
Not changed for any other experiments

Note: Level 1 temperature in Held-Suarez configuration has very low
quency adjustment,
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Experimental Sets

1. Impact of spatial density of observations:
150, 300, 450, 900, 1800, 3600, 7200, 14400, 28800 PS obs
Every 24 hours
PS observational error standard deviation 1.0 mb

2. Impact of frequency of observations
1800 PS observations
Every 24, 12, 6, 4, 3, 2, and 1 hours, 30, 15, and 5 minutes
PS observational error standard deviation 1.0 mb

3. Information content of different observation types
1800 observations of PS, or low-level T, or low-level U/V
Every 24 hours
PS observational error SD 2.0 and 1.0 mb
T observational error SD 1.0 and 0.5 K
U/V observational error SD 2.0 and 1.0 m/s, U, V errors independ

4. What happens if observations are confined to limited spatial doma
450 PS obs, only in N. Hemisphere between 90 and 270 deg. long
Every 24 hours
PS observational error standard deviation 1.0 mb

5. Impact of increased vertical resolution
1800 PS obs
Every 24 hours
PS observational error standard deviation 1.0 mb
5 and 18 vertical levels

6. Impact of adding stochastic ‘sub-grid scale’ noise
1800 PS obs, Every 24 hours
PS observational error standard deviation 1.0
Temperature time tendency noise standard deviation 0, 10%, 40%
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Baseline Case: 1800 PS Obs every 24 hours

Largest error in mid-latitudes, ‘synoptic’ scales after 400 days
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PS Error Reduces
by about factor of
10

Asymptotes after
about 50 days

Ensemble spread
is approximately
correlated with
RMS error

Final Error is
about 0.4 mb
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Baseline Case: 1800 PS Obs every 24 hours

Largest T error in tropics for interior levels (level 3, day 400 shown
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T Error also reduced
by about factor of 10

Asymptotes about
day 70

Final error about
0.25 K for interior
levels
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Sample Correlation: Baseline Case
Sample correlations reflect how observations can impact state varia

Correlation of PS with PS at (180, 50S): largest values local but nois

Correlation of T at level 3 with PS at (180, 50S);
Lots of noise, limited local signal
Filter must be able to extract limited signal from lots of noise
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Sample Correlation with Envelope: Baseline Case

Sample correlations reflect how observations can impact state varia

Correlation of PS with PS at (180, 50S):

Correlation of T at level 3 with PS at (180, 50S);
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Sample correlations vary significantly in time and space

Correlation of PS at (180, 0) with T at level 3

Same field, but 10 days later; Local structure is somewhat similar
Noise at a distance has moved around randomly
Must take actions to avoid impact from remote noise
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Sample correlations vary significantly in time and space

Correlation of PS at (180, 0) with T at level 3

Same field, but 10 days later
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Impacts of spatial density of PS obs

150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 h
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tological error
by less than
half

More than 7200
obs appears
superfluous

Why is 14,400
worse? No
clue.
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7200 obs

Behavior for very large
numbers of obs clearly
different
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Impacts of spatial density of PS obs on Temperature RMS

150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 h

Behavior for Temperature (and U, V not shown) similar to that for PS
Best results for 7200 PS observations
Interior level mean T RMS of about 0.25 K for best case

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

2.5

NUMBER OF PS OBS EVERY 24 HOURS

E
N

S
E

M
B

L
E

 M
E

A
N

 P
R

IO
R

 R
M

S
 T

E
M

P
 E

R
R

O
R

 (
K

) LEVEL 1
LEVEL 2
LEVEL 3
LEVEL 4
LEVEL 5
/home/jla/dart/gsp_spatio_temporal_stats/gsp_talk.fmMarch 18, 2002



Impacts of frequency of PS obs
24, 12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.
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Steady RMS
decrease as fre-
quency
increases

Much smaller
RMS than for
high density
low frequency
obs

RMS < 0.02mb
for 5 minutes

Strange behav-
ior between 1
and 6 hour fre-
quency
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)Plotting log /log of RMS shows
approx. linear increase with a
bump

What’s going on in the middle?
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Impacts of frequency of PS obs
24, 12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.

Temperature (and U and V, not shown) similar to PS
Consistent decrease in RMS with increased obs frequency
Errors at 5 minute frequency less than 0.01 K !!!
How low can you go?
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What’s going on at moderate obs frequencies?

Equilibrated model has very low gravity wave amplitude
When perturbed, ‘off-attractor’ gravity waves can result
Noise in observations can project off attractor

Ensemble members pulled in same direction; get phased gravity wa

Gravity wave period varies: approximately 4 hours
Gravity waves heavily damped; quickly reduced in amplitude

Low frequency (> 12 hours): gravity waves damped before next obs 

High frequency (< 1 hour): enough obs per period to control amplitud

Moderate frequency (~ 4 hours): get phased gravity waves in ensemble;
large bias; increased assimilation error
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TRUTH 
10 ENSEMBLE MEMBERS

Time series of
10 out of 20
ensemble
members at
mid-latitudePS
point.

Forecast initi-
ated from end
of 1800 PS obs
every 4 hours

(Extreme
example)
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Challenge #1: Model Bias and Atmospheric Balances

Filter equations assume prior estimate (and observations) are unbiased
Questionable for Observations, ridiculous for Models

Biased prior estimate will cause observations to be given too little weight

Repeated applications lead to progressively less weight, estimate can diverge

Implications are obvious for 4D-Var, too

Dealing with model bias is mostly an open question:

1. Can reduce confidence in model prior estimates by some constant factor

2. Explicitly model the model bias as an extended state vector and assimilate c
cients of this bias model

Model: dx/dt = F(x)

Model plus bias model: dx/dt = F(x) +ε(t); dε/dt = 0
whereε is a vector of the same length as x

Very tricky: if we knew much about modeling the bias, we could remove

PRIOR

OBSERVATION

* * *
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Challenge #2: Balances and Attractors

Many models of interest have balances, both obvious (say geostrophic) and s

The structure of the model ‘attractors’ may be extremely complex

In some cases, off-attractor perturbations may lead to ‘large’ transient respons

Example: High frequency gravity waves in some Primitive Equation models

The behavior of these transients can lead to model bias

In this sense, even perfect model experiments can have large model bias

Understanding how to minimize this behavior or limit its impact is a fun proble

The continuous system may also have balances, obvious and subtle

Unclear how differences between model and continuous ‘attractors’ impacts
assimilation
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Lorenz 9-Variable Model

Time series of Ensemble Filter Assimilation for variable X1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Defined for cyclic permutations of the indices (i, j, k) over the values (1, 2, 3).
X, Y and z variables can be thought of as representing divergence, vorticity and height
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10 of 20 Ensembles

Ensemble Mean

Truth

Observations Every 10 Steps
with specified error distribution
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żi U j zk hk–( ) zj hj–( )Vk g0Xi K0aizi Fi+––+=

Ui bj xi cyi+–=

Vi bkxi– cyi–=

Xi ai xi–=

Yi ai yi–=
/home/jla/dart/gsp_spatio_temporal_stats/gsp_talk.fmMarch 18, 2002



/home/jla/dart/gsp_spatio_temporal_stats/gsp_talk.fmMarch 18, 2002

Lorenz-96Free Forcing Model Filter

20 Member Ensemble (10 Plotted) Obs Every 2 Steps

Truth (8.0) Ensemble
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>> Can treat model parameters
as free parameters <<

>> Here, the forcing F is assimi-
lated along with the state <<

>> This is potential mechanism
for dynamic adjustment of
unknown parameters and for
dealing with unknown model
systematic error <<
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Challenge #3: Assimilation of Discrete Distributions

Example: assimilation of convective elements

Prior is ‘certain’ that there are no convective cells outside the red are
Observations indicate discrete areas outside the red
This is indicative of highly non-linear problem
Ensemble techniques, at best, tend to smear out prior discrete struc
4D-Var is likely to have non-global local minima

But, we think we know what we want to do
Keep information from prior on larger scale ‘background’
Introduce cells where observed

Requires new norms or ways to deal with model bias as function of 

Prior Ensemble

Observations

Updated
Ensemble
Mean
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Quality Control of Observations

Methods to exclude erroneous observations

1. Discard impossible values (negative R.H.)

2. Discard values greatly outside climatological range

3. Discard values that are more thanα prior ensemble sample
standard deviations away from prior ensemble mean

4. ‘Buddy’ checks for pairs of observations: just apply chi-squa
test using prior ensemble covariance and label pair as incon
tent if threshold value exceeded

5. Could also apply chi-square to larger groups of obs.

y1

y2

*

*

/home/jla/dart/gsp_spatio_temporal_stats/gsp_talk.fmMarch 18, 2002


