Ensemble Filters for Atmosphere and Ocean Data Assimilatio

Jeffrey L. Anderson
3 June, 2003

|. Overview of ‘Assimilation’ Problem
ll. A Bayesian context
lll. A Monte Carlo approximation

IV. Several heuristic simplifications

V. An example from a simple atmospheric model

VI. Challenges and opportunities




The Data Assimilation Problem

Given:

1. A physical system (atmosphere, ocean...)

2. Observations of the physical system

Usually sparse and irregular in time and space
Instruments have error of which we have a (poor) estimate
Observations may be of ‘non-state’ quantities

Many observations may have very low information content

3. A model of the physical system

Usually thought of as approximating time evolution

Could also be just a model of balance (attractor) relations
Truncated representation of ‘continuous’ physical system
Often quasi-regular discretization in space and/or time
Generally characterized by ‘large’ systematic errors

May be ergodic with some sort of ‘attractor’




The Data Assimilation Problem (cont.)

We want to increase our information about all three pieces:

1. Get an improved estimate of state of physical system

Includes time evolution and ‘balances’
Initial conditions for forecasts
High quality analyses (re-analyses)

2. Get better estimates of observing system error characteristic

Estimate value of existing observations
Design observing systems that provide increased informatio

3. Improve model of physical system

Evaluate model systematic errors
Select appropriate values for model parameters
Evaluate relative characteristics of different models




Examples:

A. Numerical Weather Prediction

Model: Global troposphere / stratosphere O(1 degree by 50 levels)

Observations: radiosondes twice daily, surface observations, satellite
winds, aircraft reports, etc.

B. Tropical Upper Ocean State Estimation (ENSO prediction)

Model: Global (or Pacific Basin) Ocean O(1 degree by 50 levels)

Observations: Surface winds (possibly from atmospheric assimilation),
TAO buoys, XBTs, satellite sea surface altimetry

C. Mesoscale simulation and prediction
Model: Regional mesoscale model (WRF), O(1km resolution)
Observations: Radial velocity from Doppler radar returns

D. Global Carbon Sources and Sinks




Nonlinear Filtering

Dynamical system governed by (stochastic) DE

dxt = f(xt, t)+G(x,[, t)d[3t, t=0

Observations at discrete times
yk:h(xk,tk)+vk; k=12 ...; e+ 1> 021
Observational error is white in time and Gaussian

vy - N (O, Rk)

Complete history of observations is

Goal: Find probability distrilstion for state at time t

pP(X ] Yt)




Nonlinear Filtering (cont.)

State between observation times obtained from DE

Need to update state given new observation

PEK tk\YtkE = PR Y Yic Ytk—lg

Apply Bayes’ rule

p%’k\xk’ Yt _ ﬁp%‘ %[Vt _ 1%

p%’k\Ytk_lg

PEK tk\YtkE -

Noise is white in time (3) so

PEVk| i Ytk_lg = POy X

Also have

POK|Ye, 0= § PORIPER Yy 9




Nonlinear Filtering (cont.)

Probability after new observation

P(Y )P tk\Ytk_l%

TP(Y )P tk\Ytk_l%E

PEK tk\YtkD

/\
T~

Second term in numerator, denominator comes from DE
First term comes from distribution of observational error




General methods for solving the filter equations are known:
1. Advancing state estimate in time
2. Taking product of two distributions

But, these methods afer too epensve for problems of interest

1. Huge model state spaces (10 is big!), NWP models at O(10 million)

2. Need truncated representations of probabilistic state to avoid expone
tial solution time and storage

The ART of Data Assimilation:

Find heuristic simplifications that make approximate solution affordable
1. Localization (spatial or other truncated basis)

2. Linearization of models, represent time evolution as linear (around a
control non-linear trajectory)

3. Represent distributions as Gaussian (or sum of Gaussians)

4. Monte Carlo methods

5. Application of simple balance relations




Ensemble Kalman Filters:

Simplifications:

1. Monte Carlo approximation to probability distributions

2. Localization in space, avoids degeneracy from samples
smaller that state space

3. Gaussian representation of probability distributions generall
used for computing update

Problems:

1. Selecting initial samples for ensembles (Monte Carlo sample:

2. Determining degree of spatial localization

3. Maintaining appropriate model ‘balances’ in ensemble
members

BUT, UNPRECEDENTED EASE OF INITIAL APPLICAON




How an Ensemble Filter Wks

Theory: Impact of observations can be handled sequentially
Impact of observation on each state variable can be handle
sequentially

A. Integrate model
ensemble to time

at which observation
becomes available.

B. Observed value
and observational error
distribution from observing

system /

C. Get prior ensemble
sample of observation
by applying H to each
member of ensemble.

D. (Step 1) Find
increments for
E. (Step 2) Use linear prior estimate of
regression to compute observation.
corresponding increments
for each state variable.




Details of Step 1: Updating Observation Variable Ensemble
Scalar Problem: Wide variety of options available and affordabl
Begin with two previously documented methods:

1. Perturbed Observation Ensemble Kalman Filter

2. Ensemble Adjustment Kalman Filter

Both make use of following (key to Kalman filter...)
Given prior ensemble with sample me&rand covarianczP

Observation § with observational error variance matrix R

Note: Product of Gaussians is Gaussian

1 —1
2= 427 +HTR—1H§

and mean:

1 1
Zu = ZUE p% Zp+ HTR—lyOE
[l U




Details of Step 1: Perturbed Obs. Ensemble Kalman Filter

1. Compute prior sample variance and mé&&randzP

2. Apply (9) once to compute updated covaria@ce,

3. Create an N-member random sample of observation
distribution by adding samples of obs. errorfo y

4. Apply (10) N times to compute updated ensemble members
Replacez® with value from prior ensemblefy

Replace § with value from random sample’,y
Updated ensemble value ig = z" from 10)

NOTE: When combined with linear regression for step 2, this
gives identical results to EnKF’s described in literature!

yO

ObservatiV—’\
* * k% *

(4th prior sample
paired with 3rd
obs. sample for
product)

-

-

Updated (Posterior)
L




Details of Step 1. Ensemble Adjustment Kalman Filter
1. Compute prior sample variance and mé&&randzP
2. Apply (9) once to compute updated covaria@ce,

3. Apply (10) to compute updated meah,

4. Adjust prior ensemble of y so that mean and variance are
exactlyz andz="

= %/ip—yp%\/ou/op+yu, i=1,...N

o is variance of y
Similar methods called square root filters (for obvious reasons)

Observation /\
- |

Prior oIS
P 4
P 4

-
Product

\ \ \ \ Adjust

Mean
- * * |

> - - Adj_ust
* %% % * Varlan(E

Updated (Posterlor)
-




Details of Step 1. Quadrature kernel filter

1. Compute prior sample varianee

2. Use a Gaussian (or other) kernel approximation to get
continuous approximation to gy

3. Use quadrature to take product in (6) directly
Can do individual Gaussians kernels if Gaussian

p(z") =p(y? | 7" p(z°) I (normalization

4. Create an N-member random sample of)p(z
5. An interesting variant uses boxcar kernels

6. Only useful for non-Gaussian structure in prior;
very powerful for Lorenz-63 model

Observation /\
-

Updated (Posterior)




Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state
variable ensembles

Simple idea: Do linear regression &fon \°

Equivalent to doing: Least squares fit
Assuming Gaussian prior relation
(Doing previously documented ensemble Kalman filters)

y=h(x)

Ya

+ Observation Least Squares Fit
(Regression of
X ony)

/ Sometimes called

Statistical Linearization

* is prior ensemble samgle




Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state variables

Idea: Do linear regression of »n \°

Could also do local linearizations:
(Related to Gaussian Kernel approximation)

y=h(x)

Ya

+ Observation

* is prior ensemble samjle




Two Step Ensemble Assimilation (cont.)

Step 2: Given increments for y, find increments for state variabl
More challenging when obs and state are not functionally relate

Example: y = h(x), x and % strongly correlated
y=h(xp)

Ya

+ Observation

Least Squares Fit
(Regression of
xony)

* is prior ensemble samfle

Large sample size needed to ‘remove’ noise
Trade-offs with local linearizatiornl¢tted magenj)a




GFDL FMS B-Grid Dynamical Core (Ktana)
Held-Suarez Configuration (no zonal variation, fixed forcing)

T at Level 3 (Middle of Atmosphere)
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Low-Resolution (60 longitudes, 30 latitudes, 5 levels)
Damping coefficients reduced to 0.10 for error growth
Timestep 1 hour (or less for frequent observations)
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Surface Pressure: Day392
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Surface Pressure: Day393
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Surface Pressure: Day394
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Surface Pressure: Day395
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Surface Pressure: Day396
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Surface Pressure: Day398
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Surface Pressure: Day399
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Surface Pressure: Day400
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Perfect modelx@eriments

‘“Truth’ is generated by integrating model

B-grid, integrated for 100 years from state of rest before starting
(Multi-year spin-up for upper level temperatures)

Observational Synthetic

Error _
Distribution Observation
"X

A

Forward
Obs. Operator

time

s

‘Synthetic’ obsby applying'forward observation’ operatdo truth
(Here, this is just interpolating to a random horizontal location)

Instrument error simulated by adding random draw framezified
Gaussian distributioto the interpolated observation

All the assimilation algorithm ever sees is these simulated observations

Result of assimilation can be compared to ‘truth’




Experimental Design Details

Base case assimilation starts from ‘climatological’ ensemble
Add tiny perturbations to control integration (truth)
Integrate this ensemble for several years

Ensemble size is 20 for ALL cases here

Each assimilation case is run for 400 days

Summary results are from last 200 days

No bias correction steps taken (no covariance inflation)

Single tuning parameter controls distance dependent correlation mask
Gives less weight to distant observations
This was tuned to give best RMS results in base case
Not changed for any other experiments

Note: Level 1 temperature in Held-Suarez configuration has very low fre
guency adjustment,




Experimental Sets

. Impact of spatial density of observations:

150, 300, 450, 900, 1800, 3600, 7200, 14400, 28800 PS obs
Every 24 hours

PS observational error standard deviation 1.0 mb

. Impact of frequency of observations

1800 PS observations

Every 24, 12, 6, 4, 3, 2, and 1 hours, 30, 15, and 5 minutes
PS observational error standard deviation 1.0 mb

. Information content of different observation types

1800 observations of PS, or low-level T, or low-level U/V

Every 24 hours

PS observational error SD 2.0 and 1.0 mb

T observational error SD 1.0 and 0.5 K

U/V observational error SD 2.0 and 1.0 m/s, U, V errors independen

. What happens if observations are confined to limited spatial domain
450 PS obs, only in N. Hemisphere between 90 and 270 deg. longituc
Every 24 hours

PS observational error standard deviation 1.0 mb

. Impact of increased vertical resolution

1800 PS obs

Every 24 hours

PS observational error standard deviation 1.0 mb
5 and 18 vertical levels

. Impact of adding stochastic ‘sub-grid scale’ noise

1800 PS obs, Every 24 hours

PS observational error standard deviation 1.0

Temperature time tendency noise standard deviation 0, 10%, 40%




Baseline Case: 1800 PS Oh®®y 24 hours

PS Error Reduces °%

by about factor of 45
10

400
Asymptotes after 35

about 50 days %
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Baseline Case: 1800 PS Oh®®y 24 hours

3k

LEVEL1 (Top)
T Error also reduced LEVEL2

LEVEL3
by about factor of 10 25 LEVEL4

LEVEL5 (Bottom)

Asymptotes about
day 70

N

Final error about
0.25 K for interior
levels

DEGREES K
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T —

100 150

DAYS

Largest T error in tropics for interior levels (level 3, day 400 shown)
Min = —1.9012 Max = 2.3893 RMS ERROR = 0.24305
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Sample Correlation: Baseline Case
Sample correlations reflect how observations can impact state variable
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Lots of noise, limited local signal
Filter must be able tax&ract limited signal from lots of noise




Sample Correlation with Enelope: Baseline Case
Sample correlations reflect how observations can impact state variable
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Sample correlationsavy significantly in time and space
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Noise at a distance has moved around randomly
Must tale actions towid impact from remote noise




Sample correlationsavy significantly in time and space
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Impacts of spatial density of PS obs
150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 ho
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Impacts of spatial density of PS obs @aniperature RMS
150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 ho
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Behavior for Temperature (and U, V not shown) similar to that for PS
Best results for 7200 PS observations
Interior level mean T RMS of about 0.25 K for best case




Impacts of frequencof PS obs
24,12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.

Steady RMS 40
decrease as freg?
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Impacts of frequencof PS obs
24,12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.
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Temperature (and U and V, not shown) similar to PS
Consistent decrease in RMS with increased obs frequency
Errors at 5 minute frequendess than 0.01 K !!!

How low can you go?




What's going on at moderate obs frequencies?

Equilibrated model has very low gravity wave amplitude
When perturbed, ‘off-attractor’ gravity waves can result
Noise in observations can project off attractor

Ensemble members pulled in same direction; get phased gravity waves

Gravity wave period varies: approximately 4 hours
Gravity waves heavily damped; quickly reduced in amplitude

Low frequency (> 12 hours): gravity waves damped before next obs ti
High frequency (< 1 hour): enough obs per period to control amplitude

Moderate frequenc(~ 4 hours): get phased gity waves in ensemble;
large bias; increased assimilation error

x 10°
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Time series of 10151}
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point.
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Challenge #1: Model Bias and Atmospheric Balances

Filter equations assume prior estimate (and observations) are unbiased
Questionable for Observations, ridiculous for Models

Biased prior estimate will cause observations to be given too little weight

Repeated applications lead to progressively less weight, estimate can diverge

OBSERVATI

Implications are obvious for 4D-Var, too

Dealing with model bias is mostly an open question:
1. Can reduce confidence in model prior estimates by some constant factor

2. Explicitly model the model bias as an extended state vector and assimilate coef
cients of this bias model

Model: dx/dt = F(x)

Model plus bias model: dx/dt = F(x)&ft); de/dt =0
whereg€ is a vector of the same length as x

Very tricky: if we knew much about modeling the bias, we could remove




Challenge #2: Balances and Attractors

Many models of interest have balances, both obvious (say geostrophic) and subt
The structure of the model ‘attractors’ may be extremely complex

In some cases, off-attractor perturbations may lead to ‘large’ transient response
Example: High frequency gravity waves in some Primitive Equation models

The behavior of these transients can lead to model bias

In this sense, even perfect model experiments can have large model bias

Understanding how to minimize this behavior or limit its impact is a fun problem

The continuous system may also have balances, obvious and subtle

Unclear how differences between model and continuous ‘attractors’ impacts
assimilation




Lorenz 9-\ariable Model

Time series of Ensemble Filter Assimilation for variable X1
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UjU+ ViV —vea X + Y + 87
= Uij+Yij—Xi—VoaiYi
z = Uj(zk—hk)+(zj—hj)Vk—goXi—Koaizi+Fi
i = —bjx tcy;
—byx; —cy;
X
i = &Y

Defined for cyclic permutations of the indices (i, j, k)

6.75 6.755 6.76 6.765 6.77

X 104

(1)
(2)
3)
(4)
(5)
(6)
(7)

over the values (1, 2, 3).

X, Y and z variables can be thought of as representing divergence, vorticity and height




Lorenz-96Free Brcing Model Filter

20 Member Ensemble (10 Plotted) Obs Every 2 Steps
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Challenge #3: Assimilation of Discrete Distrtibns

Example: assimilation of convective elements

Prior Ensemble

Updated
A& Ensemble
Mean

Observations____g,

Prior is ‘certain’ that there are no convective cells outside the red areas
Observations indicate discrete areas outside the red

This is indicative of highly non-linear problem

Ensemble techniques, at best, tend to smear out prior discrete structur
4D-Var is likely to have non-global local minima

But, we think we knav what we vant to do
Keep information from prior on larger scale ‘background’
Introduce cells where observed

Requires new norms or ways to deal with model bias as function of sca




Quality Control of Obsetions

Methods to exclude erroneous observations
1. Discard impossible values (negative R.H.)
2. Discard values greatly outside climatological range

3. Discard values that are more thaprior ensemble sample
standard deviations away from prior ensemble mean

4. ‘Buddy’ checks for pairs of observations: just apply chi-square
test using prior ensemble covariance and label pair as inconsis
tent if threshold value exceeded

Yo
A

\

5. Could also apply chi-square to larger groups of obs.




