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PRogram for Interdisciplinary Mathematics,
Ecology, & Statistics

•PRIMES: NSF-funded IGERT program

– degree-plus program in quantitative ecology

– generous fellowships for students ($27,500 for 03–04)

– workshops, short courses, etc. encouraging team research

– internship support by CDC, US Forest Service, and NCAR

• Five research focus groups:

– Dynamics of Introduced Disease

– Evolution in Structured Populations

– Ecology of Managed Ecosystems

– Ecology of Global Change

– Aquatic Resources Modeling (STARMAP)
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Preliminary Work on Temporal Trends in ANC

• Acid Neutralizing Capacity (ANC)

– surface waters are acidic if ANC < 0

– supply of acids from atmospheric deposition and
watershed processes exceeds buffering capacity

• Temporal trends in ANC within watersheds (8-digit HUC’s)

– characterize the spatial ensemble of trends

– make a map, construct a histogram,
plot an empirical distribution function
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Data Set

• 88 HUC’s in Mid-Atlantic Highlands

• ANC in at least two years from 1993–1998

• HUC-level covariates:

– area

– average elevation

– average slope, max slope

– percents agriculture, urban, and forest

– spatial coordinates

4



Small Area Estimation

• Probability sample across region

– regional-level inferences are model-free

– sample sizes too small to support HUC-level
inferences

– need to construct statistical model to borrow strength
across areas

• Two standard types of small area models (Rao, 2003)

– area-level: watersheds

– unit-level: site within watershed
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Basic Area-Level Model

• Temporal trend estimates:

β̂h = within-HUC WLS slope

= βh + eh
βh = xThθ + ωh

• Design properties:

Ep[eh | βh] = 0 and Varp(eh | βh) = ψh

– design variances assumed known

•Model properties:

Em[ωh] = 0 and Varm(ωh) = σ2
ω ≥ 0
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Two Inferential Goals

• Interested in estimating individual HUC-specific slopes

• Also interested in ensemble:
spatially-indexed true values: {βh}mh=1
spatially-indexed estimates: {βest

h }mh=1

– subgroup analysis: what proportion of HUC’s have
ANC decreasing over time?

– “empirical” distribution function (edf):

Fβ(z) =
1

m

m∑
h=1

I{βh≤z}
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Deconvolution Approach

• Treat this as measurement error problem

β̂h = βh + eh
{eh} ∼ N(0, ψh)

• Deconvolve:

– parametric: assume Fβ in parametric class

– semi-parametric: assume Fβ well-approximated within
class (like splines, normal mixtures)

– non-parametric: assume EFβ [e
iλβ] is smooth

• Not so appropriate for heteroskedastic measurements,
explanatory variables, two inferential goals

8



Hierarchical Area-Level Model

• Extend model specification by describing parameter un-
certainty:

β̂h = βh + eh, {eh} NID(0, ψh)

βh = xThθ + ωh, {ωh} NID(0, σ2
ω)

• Prior specification:

f (θ, σ2
ω) = f (θ)f (σ2

ω) ∝ f (σ2
ω)
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Bayesian Inference

• Individual estimates: use posterior means

βBh = E[βh | β̂] = E
γhβ̂h + (1− γh)x

T
hθ | β̂



where γh = σ2
ω/(ψh + σ2

ω)

• Do Bayes estimates yield a good ensemble estimate?

– use edf of Bayes estimates to estimate Fβ?

•No! Bayes estimates are “over-shrunk”

– too little variability to give good representation of edf
(Louis 1984, Ghosh 1992)

m∑
h=1

(βBh − β̄B)2 < E
 m∑
h=1

(βh − β̄)2 | β̂

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Adjusted Shrinkage

• Posterior means not good for both individual and
ensemble estimates

• Improve by reducing shrinkage

– sample mean of Bayes estimates already matches
posterior mean of {βh}

– adjust shrinkage so that sample variance of estimates
matches posterior variance of true values

• Louis (1984), Ghosh (1992)
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Constrained Bayes Estimates

• Compute the scalars

H1(β̂) = tr
Var

β − β̄1 | β̂


H2(β̂) =
m∑
h=1

βBh − β̄B
2

• Form the constrained Bayes (CB) estimates as

βCBh = aβBh + (1− a)β̄B

where

a =

1 +
H1(β̂)

H2(β̂)


1/2

> 1
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Shrinkage Comparisons for the Slope Ensemble

Slope in ug / L / year
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Numerical Illustration

• Compare edf’s of estimates to posterior mean of Fβ:

FBβ (z) =
1

m

m∑
h=1

E
I{βh≤z} | β̂



• Comparison of ensemble estimates at selected quantiles:

Estimate Fβ(0) Fβ(400)

edf of {βBh } 0.205 0.932
posterior mean 0.356 0.743

edf of {βCBh } 0.352 0.739
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Estimated EDF’s of the Slope Ensemble

Slope in ug / L / year
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Spatial Structure for the Slope Ensemble
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Further Work: Spatial Model

• Let Ah denote set of neighboring HUC’s for HUC h

• Conditional autoregression (CAR) model:

β̂h = βh + eh
βh = xThθ + ωh

ωh | {ωk, k 6= h} ∼ N

ρ
∑

k∈Ah
qhkωk, σ

2
ω



• Adjacency matrix [qhk] can reflect watershed structure
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Further Work

• Restrict to acid-sensitive waters

• Combine probability and convenience samples

– weights from selection functions to get Ep[eh | βh] = 0

• Other covariates?

– deposition maps/trends from CASTNet?

• Other trend summaries?

• Site-level model?

– useful sub-watershed covariates?

– spatial scales: HUC to HUC, site to site

– more concern with design, normality assumptions
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