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ADbstract I

Bayesian process convolution models provide an appealing approach for modeling spatial
temporal data. Their structure can be exploited to significantly reduce the dimensionality
of a complex spatial temporal process. Dynamic process convolution models can easily be
extended to model multivariate spatial time-series. Instead of specifying the cross-covariance
structure directly, we construct an underlying dynamic factor model that provides insight
into the covariance structure. By constructing a factor model, we further reduce the model’s
dimension temporally. Each of the factors evolves over time and the data are modeled as

a smoothed weighted average of these underlying factor processes. Inference procedures
remain computationally tractable due to the additional reduction in the dimensionality of
the model. We illustrate this model using multivariate pollutant data taken from the EPA’s
Clean Air Status and Trends Network (CASTNet).
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Background: Discrete Process Convoluti onsI

(Higdon, 1998)

A Gaussian Process can be created by convolving a convolution kernel k with a

continuous white noise process x over a region D.

Y(s) = /D k(w — s)x(w)dw, for s € D.

This process can be approximated using a discrete white noise process on a lattice

instead of a continuous process.
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e Define a lattice over the field D with M points: w1,...,wn.
e Create a white noise process at the w’s, z(w1),...,x(wn) where z(w;) ~ N(0, Az).

e The value of the field at any point s € D is then defined by the convolution of the white

noise process with a kernel x (with the level adjusted by a mean parameter u),

(s | z) = Z k(wi = s)z(wi) + p.

1=1

Thus, the vector of values of the process at all sites on the grid can be written as
Y =Kz +p

where € = [z(w1),z(w2),...,z(wwm)]" and K is a matrix with rows
K(s) = [k(w1 — s), k(w2 — ), ..., k(wrr — s)] for all s € D.

Note: All kernels x will be Gaussian in the examples given here. For examples of
non-Gaussian kernels see Higdon et al. (1999) and Kern (2000).

o J




4 )

General Univariate Dynamic Process Convolution M odel I

Define z(w;, t) to be a Gaussian random walk for ¢ € 7" and i.i.d. for all w; € D. A space-time

process can be defined as

M

Y (s, t|z) :Zm T(wi, t) + 1+ €s.t
=1

z(wi, t) = z(wi,t — 1) + v ¢, for all 4

where €5 "R N(0, A) and vi “KY N(0, ).

This process can be written as

Y: = K re + M + €
(Nx1) (NXM)(Mx1) (Nx1) (Nx1)

Ty = Ti—1 + V¢
(Mx1) (Mx1) (Mx1)

where x; and K have the same definition as above and N is the number of spatial locations.

= Reduced-Dimension Space-Time Kalman Filter (Cressie and Wikle, 2002)
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M otivation I

e Flexible Models

general model for both univariate and multivariate spatial temporal processes

learn about underlying spatial or temporal trends

learn about the covariance structure of the process

straightforward to model non-stationarity, anisotropy, misaligned data, etc.

« Reduction of Computational Expense

- reduction of spatial dimension (process convolutions)

- reduction of ‘multivariate’ dimension (dynamic factor analysis)




-

Multivariate Dynamic Factor PC M odel I

(Based on models from Aguilar and West (2000), Lopes and West (1998), etc.)

Measurement Equation:

Vec(Y:) =( K | QIixr)Imxm ® F YWec(Xy)+ Vee(p,) + Vec(er)

(NIx1) (NxM (IXK) (MKx1) (NIx1) (NIx1)
= (K® F)Vec(X:) + Vec(p,) + Vec(er)

Y: = K Xy F '+ p + e
(NxI) (NXM)(MxK)(KXI) (NxI) (NXI)

Temporal Process Equation:

Xe = X1+ vy
(MxK) (MxK) (MxK)

e et ~N(0, Inxn,diag(Ae)ixr), where Ae = (Aey, Aegy -y Aey )
o v ~ N(0, Iyxm,diag(Ay)kxk), where Ay = (A, Avgy ooy Auge)

N - # of data points I - # of data types
M - # of lattice points K - # of factors

Note: K < I (dimension reduction)

.
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e Constraint on the factor loadings matrix F':

This restriction insures identifiability of the model.

1 0
’LU2,1 1 O
w31 w3, 2 1 0
Wk, 1 Wk 2
Wek+1,1 Wk+1,2
wr,1 wr,2

b )

(Aguilar and West, 2000, Geweke and Zhou, 1996)

e Restriction on the number of factors: see slide 14

e Order of the time-series impacts:

- interpretation of the factors

- choice of K
- model fit

Wk+1,K

..'LUI,K




Example: CAST Net Data'

Clean Air Status and Trends Network (EPA) - mandated by the 1990 Clean Air Act
Amendments (CAAA) to determine the effectiveness of emission reductions by detecting and

quantifying trends in pollutants

Summary of Relevant Data

e Pollutants: Sulfur Dioxide (SO2), Nitric Acid (HNO3), Particulate Sulfate (SO3™),
Particulate Nitrate (NO3 ), and Particulate Ammonium (NHJ) concentrations — weekly

measurements

e Meteorological Measurements: Temperature, A Temperature, Relative Humidity, Solar

Radiation, Precipitation, Wind Speed, Wind Direction — hourly measurements

e 42 monitoring locations in the Eastern United States out of 101 locations (100 in United
States, 1 in Canada)

e 1990-2001 (572 Weeks)
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Locations of the Eastern U.S. Monitoring Stations (42)
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Particulate Sulfate Sulfur Dioxide

Particulate Ammonium
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Pollution Data from a site in northeastern Alabama (lat=39.5, lon=-84.7)
January 1990 - December 2001
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Define Y; be the log of the weekly pollution concentration readings.

Mean Specification:
pe(n,i) = Bo(n, i) + B1(n,i)sin(2w(t + c1(n,1))/52)) + B2(n, i) cos(27(t + c2(n,i))/26))

B1(n,i), B1(n,i), c1(n,i) and co(n,i) are chosen using least-squares
Note: eventually want to incorporate meteorological variables

Ay, 1s fixed at 0.1

Priors:
- Independent conjugate priors on A, and X

- Flat priors on By(n,¢) and w; i (elements of F)
Missing Data: imputed within Gibbs sampler

MCMC algorithm (Gibbs sampler): straightforward since all full conditional
distributions can be found in closed form
Note: use dynamic linear modeling techniques to sample the X;’s
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Restriction on the value of K

Choosing K I

For dynamic factor model (for a multivariate time-series):

For PC dynamic factor model: no practical restriction on K for large N, but there may be
numerical problems depending on the standard deviation of the convolution kernel and the
difference between N and M

Methods for Choosing K

SIT+1)—[(IK-iK(K+1)+K+1]>0
I=5 = K<=2

1.
2.

N

Interpretation (our method): two factors representing SO2 and NO, emissions
Exploratory analysis (principal component decomposition)

Cross-Validation

Variance of Underlying Process (\,)

Model Selection Criteria (see Lopes and West (1998))

Reversible Jump MCMC (Green, 1995)
Algorithm developed in Lopes and West (1998) - independent parallel MCMC output to
create proposal distributions /
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Resul tsI

Order of Pollutants = (SO2,HNO3,S03~ ,NO3 ,NH})

Ac =(3.01 (2.80, 3.23),0.540 (0.455,0.623),1.83 (1.65,1.99),
0.551 (0.476, 0.630), 0.419 (0.368,0.476))

1

0.224 (0.178,0.270)
F =0.678 (0.644, 0.715)

0.268 (0.235,0.307)
10.148 (0.0871,0.190)
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1.03 (0.904,1.18) |
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Multiresolution M odels'

General Framework

R

TP(S:t) — Zw(r)(sat)'

r=1

Motivation

1. Modeling at different resolutions allows insight into the dynamics of the underlying

process at various scales.

2. At fine resolutions, the underlying process may not exhibit temporal dependence yet
the predictive ability of the model can be enhanced by including a fine resolution,

temporally independent process.

Multiresolution Dynamic Factor PC Model

Ry Rs
t K] ,r,S ?"S
Ye=p,+ Y KUOXTDI e LN RODX RO g,
a=1 b=1

t t t
XET“) = Xiial) + ui’"a) for all a.

Xgr’f)’s are temporally independent for all b.
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Model for CASTNet data:
Y, = p+ KODX pei  gEDX D R ¢,
X = XD | )

— X,Erf)’s are temporally independent

+ = locations of the coarse, temporally dependent underlying process (30)

\ + = locations of the fine, temporally independent underlying process (55)

J
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Results

1 0 1 0
. 0.107 (0.044, 0.205) 1 . 0.073 (0.002,0.137) 1
#(T1) = | 0.624 (0.567, 0.688) 0.574 (0.475,0.675)| F("1) = | 0.105 (—0.003, 0.205) 0.420 (0.318, 0.522)
0.171 (0.109, 0.253) 0.837 (0.748,0.926) —0.047(—0.110,0.011) —0.008 (—0.072,0.051)
0.037 (—0.033,0.134)  0.983 (0.871, 1.081) 0.083 (0.014,0.149) 0.240 (0.170,0.305)

Xe = (3.297 (3.117,3.472),0.717 (0.650,0.787),1.914 (1.773,2.0438),0.598 (0.534,0.664), 0.447 (0.402, 0.498))
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Conclusions and Extensi ons'

Conclusions:

e Dynamic PC models can capture structure in data which is not visible using

ordinary exploratory analysis techniques.
e Inference procedures (MCMC) are realistic for large data sets.
Extensions:
e Mean Structure
e Spatial Prior on Factor Loadings Matrix
e Evolution Process of the Factors

e Visualization and Uncertainty Estimates

.
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