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Abstract. The tree-structured multi-resolution spatial models (MRSMs) yield optimal
and computationally feasible spatial smoothers of massive spatial data with nonstationary
behavior. The nonstationary spatial correlation structure of MRSMs is the result of
inhomogeneous stochastic parent-child relationships at adjacent resolutions. Likelihood-
based methods are presented for the estimation and modeling of variance-covariance
parameters associated with the parent-child relationships, resulting in data-adaptive,
nonstationary covariance structure. An application of the MRSMs is given to total column
ozone (TCO) data obtained from a polar-orbiting satellite.
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1. Introduction

As a consequence of new remote-sensing technology, spatio-temporal en-
vironmental data have become more massive in their raw form. Provided
with such rich datasets, scientists eye new opportunities, but at the same
time they are faced with new challenges. The massiveness of the data is
in most cases due to both fine-resolution sampling and a large spatial
domain. An example is Total Column Ozone (TCO), sampled remotely



2 JOHANNESSON AND CRESSIE

by satellites over the entire globe on a daily basis. Due to the large size of
the spatial domain, stationarity assumptions about the process of interest
do not typically hold. Hence, computationally tractable spatial models for
massive data, with nonstationary spatial dependence, are in great demand.
Tree-structured multi-resolution spatial models (MRSMs) (see e.g., Huang
et al., 2002) are able to handle massive spatial data with nonstationary spa-
tial correlation structure. In Section 2, we shall review the MRSM and the
associated fast, change-of-resolution Kalman-filter algorithm for optimal
spatial prediction. At the core of the MRSM is the specification of the spa-
tial covariance structure through a coarse-to-fine-resolution process model.
Section 3 considers such models and proposes a parameterization that al-
lows one to capture smooth changes in (nonstationary) spatial covariance
structure. We also show in Section 3 how to estimate the model parame-
ters using resolution-specific likelihood-based methods. An application to
a day’s worth of TCO satellite data is presented in Section 4.

2. Multi-resolution Spatial Models

In this section, we review briefly the multi-resolution spatial model (MRSM)
as given in Huang et al. (2002). Let D be the spatial domain of interest.
The domain D is partitioned into ng grid cells, which make up the coarsest
resolution (resolution-0). Each grid cell at resolution r = 0,...,R — 1, is
then successively partitioned into m, smaller grid cells. Thus, we obtain a
nested partition of D at (R + 1) resolutions. At the r-th resolution, there
are n, = nomg - - - my_1 grid cells given by {D(i,r)};2,. We call (s*,7+1) a
child of (i,7) if D(i*,7+1) C D(i,r), and we denote the set of the children
of (i,7) by ch(i,r) = {ch(i,r)1,...,ch(i,7)m, }. Then

D(i,r) = Uz D(ch(i,r););  (4,7) € Nr-1,

where Ny, = {(i,7):i=1,...,n,, r =0,...,u}. Figure 1 shows an example
of a multi-resolution partition at resolutions r =0, 1, 2.

Let {Y(s) : s € D} be a Gaussian spatial process of interest defined on
D, and define the multi-resolution aggregated Y-process as

1

Y(i,r) = o)

/ Y(s)ds: (i,r) € Na,
D(i,r)
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Figure 1. An example of a spatial multi-resolution tree-structure partition.

where v(i,r) = |D(i,r)| denotes the area (volume) of D(i,r). The ag-
gregated Y-process is not observed directly, but indirectly through the

additive-measurement-error model,
Z(i,T) :Y('L,’T‘) +V('i,’f‘); (iaT) ENRa (1)

where {Z(i,7)} are (potentially) observed data, and the measurement er-
rors v(i,r) ~ Gau(0,0?V (i,r)) are independent with {V(i,r)} known.
Henceforth, we refer to (1) as the data model. It should be noted that
observations are not needed at all resolutions and can be missing for some
cells within a resolution. For example, in the ozone example considered in
Section 4, the Y-process is taken to be the underlying TCO process at
different resolutions and the data are noisy satellite observations of TCO,
reported (incompletely) at the finest resolution, resolution-R.

The spatial variance-covariance structure associated with the Y -process
is specified indirectly through the following coarse-to-fine-resolution model:

Y(’i,’f‘) = 1Y(i,7") + w(z’,r) ) (i,T’) € NR—I, (2)

where Y (i,7) = (Y (ch(3,m)1), - .., Y (ch(i,r)m,)) and w(i,r) ~ Gau(0,s2W (i,r)),
independently. Henceforth, we refer to (2) as the process model. Hence, the
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Y -process at the children cells is just taken to be equal the the Y-process
at the parent cell plus an error term. The process model is completed by
specifying the distribution of the Y-process at the coarsest resolution; here
we simply assume that (Y'(1,0),...,Y(n,,0)) ~ Gau(a(0),*R(0)).

To match the notation style used for the process model in (2), it will be
more convenient to write the data model in (1) as

Z(i,?”) = Y(i,?”) +V(ia7‘); (i,T’) ENR_1, (3)
where Z(i,7) = (Z(ch(i,r)1),- .., Z(ch(i,7)m,))"s and v(i,7) ~ Gau(0, 02V (i,r)),
independently, with V(i,r) = diag(V (ch(i,7)1),...,V(ch(i,7)m,)).
2.1. CONSTRAINED Y-PROCESS

Note that the process model in (2) does not have a one-to-one mapping
between Y (i,7) and {Y (¢,7),w(é,7)}; Y (i,7) is a vector of length m,, but
{Y(i,7),w(i,r)} has a total of (m, + 1) elements. Consequently, different
configurations of {Y (¢,7),w(i,7)} can yield the same Y (i,7). However, by
placing a single linear constraint on the error term w(i,r), a one-to-one
mapping is achieved. That is, we constrain

q(i,r)w(i,r) =0; (i,r) € Np—1, (4)

for some chosen constraining vectors {q(z,r)}. To satisfy (4), let Q(,7) be
any m, x (m, — 1) orthonormal matrix with columns that span the space
orthogonal to q(7,7) (i-e., q(i,7)'Q(%,7) = 0 and Q(%,7)'Q(%,7) = I). Then
any w(i,r) satisfying (4) can be written as

w(t,r) = Q,r)w*(i,r);  (i,7) € Ng_1,

for some unconstrained w*(i,r) € R™ ~1. The constrained Y-process can

therefore be written as:
Y(Za T) = 1Y(Za ’I") + Q(Za r)w*(i, ’I‘) ; (Za ’I‘) € NR—h (5)

where w*(i,7) ~ Gau(0,0>W* (4, 7)), independently. In terms of the process
model in (2), we have constrained W (i, r) to be of the form:

W(ia'r) = Q(i,T)W*(i,T)Q(’i,T),; (i,?") € NR—l- (6)
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(@3]

Huang et al. (2002) proposed choosing q(i,7) = v(i,7), where v(i,r) =
(v(ch(i,r)1), .., v(ch(i,7)m,))- This choice results in a physically mass-
balanced process model, since it follows that

v(i,m)Y (i,7) = 277 v(eh (i, r);)Y (ch(i,r);) ;s (i,7) € Np—1. (7)

2.2. POSTERIOR INFERENCE

Given all the variance-covariance parameters associated with the data model
in (1) and the process model in (2), our goal is to predict the hidden process
{Y(i,7)} from noisy and incomplete data {Z(i,r)}. Optimal prediction is
obtained from the posterior distribution of {Y (i,7)}, which can be calcu-
lated rapidly using the change-of-resolution Kalman-filter algorithm (Chou
et al., 1994; Huang and Cressie, 2001). The algorithm consists of two ma-
jor steps, namely the leaves-to-root step and the root-to-leaves step. The
leaves-to-root step consists of recursively deriving the distribution of Y (i, r)
conditional on all data observed at all descendents of (i,7) and at (i,r)
itself. At the end of the leaves-to-root recursion, we obtain the distribution
of {Y(4,0)} conditional on all the data (i.e., the posterior distribution of
{Y(7,0)}). The root-to-leaves step starts at the root node, and then traces
down the tree, recursively computing the posterior distribution of Y (i, 7) at
every node in the tree. The algorithm is fast; it requires computations only
proportional to the number of nodes in the tree, with a small computational
overhead at each node. Computation times are discussed in Section 4.

3. Variance-Covariance Modeling and Estimation

In Section 2, the scalars {V(i,r)} associated with the measurement errors
in (1), and the parameters {W™*(i,7)}, a(0), and R(0) associated with the
process model in (5), were assumed known. This assumption is realistic
for the {V(i,7)}, since they reflect the relative accuracy (weight) of each
observation. On the other hand, the matrices {W*(i,7)} and R(0) deter-
mine the variance-covariance structure of the hidden process {Y (i,7)}, a
priori. A common approach in spatial statistics is to use the data to as-
sist in specifying the variance-covariance structure of the Y-process, which
can be thought of as an empirical Bayes approach. For example, when
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doing kriging (e.g., Cressie, 1993, Chapter 3), the data are typically used
to estimate variance-covariance parameters using, for example maximum
likelihood (ML) or restricted maximum likelihood (REML) estimation (e.g.,
Cressie, 2002). We follow a similar approach here by parameterizing the
{W*(i,7)} matrices and then estimating any unknown parameters using
ML- and REML-based methods. Estimation of a(0) and R(0) is discussed
in Section 4.

3.1. VARIANCE-COVARIANCE MODELING

The (m, —1) x (m, —1) matrix W*(¢,7) has at most (m, —1)m, /2 unknown
parameters associated with it that need to be estimated. Denote by 0(i, )
the unknown parameter vector associated with W*(i,r), and write

W (i,r) = W2B(,7); (i) € Nigor. ®)
An example of a W*-model is the single-parameter-per-scale (SPPS) model:
W*(ia T') = 0(7;,’)")00(7;,’)") ) (i,T) € NR—17 (9)

where {Cy(i,7)} are known positive-definite matrices and {6(i,7)} are un-
known, positive, scaling parameters.

As presented above, the different {6(z,7)} in (8) are not related in any
way. However, one could expect that cells within the same resolution that
are nearby (in space) will have similar #-parameters. Let {s(¢,7)} be a set
of representative point locations for {D(%,7)} (e.g., using the centroids of
each cell). Then, in the case of the SPPS model (9), for example, one could

assume

log 0, ) = 3071 4;(s(3,1))B(r);, (10)
within each resolution r, where 91(-),...,%p,(-) are known, smooth basis-
functions of spatial locations, S(r) = (B8(r)1,...,0(r)p,) are unknown

parameters to be estimated, and p, € {1,2,... }. We now present likelihood-
based methods for estimating {3(r)}.
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3.2. LIKELIHOOD-BASED PARAMETER ESTIMATION

Denote by
p(Z(i,r) |Y (i,r)) and p(Y(i,r)|Y(i,7);0(, 7)), (11)

the conditional Gaussian probability densities associated with the data
model (3) and the process model (5), respectively, and assume for the mo-
ment that 02, the variance-scaling parameter in (3) and (5) is known. With
very little loss of generality, assume further that the data are only observed
at the finest resolution, resolution-R. Due to the conditional structure of
the MRSM, the joint density of {Z (i, R)} and {Y (,r)} is given simply by
a product of conditional densities. That is,

({20, R}, {Y (i)} {6G,n)}) = (1% p(2(i, R~ 1)| Y (i, R — 1))
X (Hfgll H;Zl p(Y(i, r) | Y(i’ 7"); 0(7’5 T))) p({Y(i, 0)})’ (12)

where {Z(i,R — 1)} is equivalent to {Z(¢,R)} and recall that the last
factor is the density of the multivariate Gau(a(0),0?R(0)). However, for
maximum-likelihood inference, the marginal distribution of the data { Z(i, R)}
is needed, which is the integral the joint distribution above with respect
to {Y'(4,r)}. This integration is not at all straightforward, and it leaves
us with a likelihood that has to be simultaneously maximized with re-
spect to all variance-covariance parameters. However, as we shall see, it
is possible to extract information from the data that is relevant to each
resolution separately, leading to fast, resolution-specific likelihood inference.
One such approach, given by Kolaczyk and Huang (2001), is to combine a
recursive integration of (12) with recursive aggregation and transformation
of the data. The resulting marginal distribution of the transformed data
factors into resolution-specific likelihood (RESL) components, with each
component being only informative for the variance-covariance parameters
associated with that particular resolution. Another such approach, which
mirrors REML estimation in mixed-effects models (e.g., McCulloch and
Searle, 2001), is to form contrasts among the data such that the distribution
of the contrasted data only depends on the variance-covariance parameters
associated with a single resolution. The resolution-restricted likelihood-
based (RESREL-based) estimates derived using this latter approach are
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not in general the same as the RESL-based estimates obtained from the
first approach. However, when estimating variance-covariance parameters
in Gaussian mixed-effect models and in Gaussian spatial models, REML
estimators are in many cases preferred (see, e.g., McCulloch and Searle,
2001, Section 6.10; Cressie, 2002). We now present briefly both estimation
approaches; see Johannesson (2003) for full details.

The RESL is derived by effectively integrating (12), resolution-by-resolution,
with the help of a recursive decomposition of the data. Let r = R — 1.
Integrating (12) with respect to {Y(,7)};'";, results in most terms coming
outside the integral, leaving behind

, i i, i,7 1,7);0(3,7)) dY (3,7),
I1 [, P67 1Y) pY ) [Y 65006 m) aY ), (19

for r = R—1. The i-th integral in (13) is easily seen to be p(Z(i,r) | Y (i,7); 0(i,7)),
which can be obtained from the additive model,

Z(i,r) = 1Y (i, 7) + QU, r)w* (i,7), +v(i,r); i=1,...,7np. (14)

Instead of proceeding to next resolution and taking a second integral of
(12), now with respect to {Y (i, — 1)};77", we decompose the {Z(i,7)}
into aggregated global components {Z(i,7)} and detail local components

{d(i,r)}. Define

] = ] e e onn o

—1, assuming that

where q(i,7) is given in (4), q(i,7) = q(i,7)(1'q(i, 7))
1'q(i,r) # 0; and P(4,7) is any m, X (m, — 1) matrix satisfying P(,7)"(1 —
k(i,r)) = 0,k(i,r) = V(i,r)q(i,r)V (i,7)" L, and V (i,r) = q(i,7) 'V (i,7)q(3, 7).
Given that the transformation in (15) is one-to-one and does not depend

on 6(i,r), the joint density of {Z(i,r),d(i,7)} provides identical likelihood
inference for 6(i,7), conditional on Y (,7). Its advantage over using the
conditional density of Z(%,r) given Y (i,7), follows from the fact that

p(Z(i,r),d(i, )| Y (i,); 0(i,r)) = p(d(i,r) [ Z(i,7); 00, 7)) p(Z(i, ) | Y (3, 7)),

where p(Z(i,7) | Y (i,7)) is a Gaussian density with mean Y (¢,7) and vari-
ance o2V (i,7), and p(d(i,r) | Z(i,7); 0(i,r)) is a multivariate Gaussian den-
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sity with mean P(i,7)'k(i,7)Z(%,7) and variance-covariance matrix
P(i,r) (Q(i, YW (0(i,7))Q(i, )" + V(i,r) — V (i, r)k(i, r)k(i,r)')P(i,r).

That is, (15) factorizes the information content of Z(i,r) into what is
relevant to 0(i,r), through d(i,r), and what is relevant to all coarser-
resolution #-parameters, through Z(i,7); r = R—1. Note that {Y (i, R—1)}
is equivalent to {Y (¢, R—2)} and hence the second integration of (12) yields
a term equivalent to (13) with r = R — 2. By repeating the integration-
factorization process outlined above, until the final integration with respect
to {Y(4,0)}°,, we obtain the likelihood of {6(i,7)} to be proportional to

11"{:_01 H?:Tlp(d(ia'r) |Z(’i,‘l“);9(’i,’r‘)), (16)

where d(i,7) and Z(i,r) are obtained from (15), generalized for all = R —
1,...,0. The estimation of O(r) = {6(:,r) : i = 1,...,n,} (or equivalently
B(r)) is then carried out using the resolution-specific likelihood (RESL),

LYO(r) = [T, p(d(i,r) | Z(,7);06,7)); r=R—1,...,0, (17

resulting in a fast, resolution-specific estimation procedure.

RESL-based estimates of {6(i,7)} are identical to maximum-likelihood
estimates if the transformation in (15) is one-to-one. Kolaczyk and Huang
(2001) point out that a necessary and sufficient condition for this is q(i,7) =
(V(ch(i,r)1)7L, ..., V(ch(i,T)m,) ). Generally, this is different from the
mass-balance constraint q(i,7) = v(4,7), but is the same when the measurement-
error variance is inversely proportional to the area of the cell. However, if
the transformation in (15) is not one-to-one, the likelihood decompositon
in (16) is not exact, and hence the RESL estimates derived using (17)
are only approximately ML estimates. We therefore consider an alterna-
tive likelihood-type quantity to maximize, namely the resolution-specific
restricted likelihood (RESREL).

In place of maximum likelihood estimation of the {6(i,r)}, the fine-
resolution data {Z(i,R)} and the aggregated data {Z(i,r)}; r = R —
1,...,0, can be used to construct a sequence of resolution-specific restricted
likelihoods (RESRELSs), such that the r-th likelihood is used to estimate
O(r);r=R—1,...,0. Just as for REML, let E(r) be any m, x (m, — 1)
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matrix such that E(r)'1 = 0, and define the contrasts,
e(i,r) = E(r)Z(i,7); (i,7) € Np_1. (18)
Then, using (14),
e(i,r) = Qe(i, r)w" (i,7) + ve(i,r);  (i,r) € Np—1,
where Qc(i,7) = E(r)'Q(4,7) and v,(i,7) = E(r)'v(i,r). That is,
e(i,r) ~ Gau(0,0%(Qe(i,r) W;(0(i, 7)) Qe (i, )’ + Ve(i,7))),

where V,(i,7) = Q.(2,7)V(:,7)Q(i,7)". Note that within each resolution
r, the {e(i,7)} are independent. One can then use the resolution-specific
restricted likelihood (RESREL),

L (6(r)) = 1121 p(e(i,r); 6, 7)), (19)

for inference on 6(r), where p(e(é,7);0(é,r)) is the Gaussian density asso-
ciated with e(i,r);i=1,...,n,,r=R—1,...,0.

Note that the RESREL is not tied to any particular set of constraining
vectors {q(%,7)}, as is the case for RESL. However, the choice of {q(%,7)}
does determine how the fine-resolution data {Z(i, R)} will be aggregated.

Hitherto, we have assumed that 2 is known and there is no missing

data in {Z(i, R)}. In the more realistic situation where o2

is unknown, one
can estimate o at a fixed resolution, say the finest-resolution (using either
RESL or RESREL), and use the resulting o2 estimate when estimating
{6(i,7)}.

If some of the elements of Z(i, R —1) are missing (unobserved), it is not
possible to decompose Z(i, R — 1) into the two components, Z (i, R —1) and
d(¢, R — 1) with the right factorization properties needed for RESL. One
solution is to ignore those ¢ for which Z(i, R — 1) has any missing elements.

A similar strategy can be taken for the RESREL approach.
4. Application: Total Column Ozone (TCO)

Our data consist of spatially and temporally irregular TCO observations
sampled on October 2, 1988, by the total ozone mapping spectrometer
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(TOMS) instrument on the Nimbus-7 satellite. In a single day, the satellite
is able to achieve approximately global coverage, with a slight overlap in
consecutive orbits. Under perfect conditions, this generates about 200,000
TCO observations within a single day. In practice, a number of observations
are missing and others are removed by a quality-control procedure, resulting
in 162,265 valid observations for October 2, 1988. In our analysis of the TCO
data, we shall use five spatial resolutions, as in Huang et al. (2002):

Resolution: R-1 R-2 R-3 R4 R-5

Cell size (lon x lat): 45°x36° 15°x12° 5°x4° 2.5°%x2° 1.25°x1°
Number of cells: 40 360 3,240 12,960 51,840

The TCO data are initially aggregated to the finest resolution, R-5, yielding
the (potential) data {Z(i,5),V (i,5) : 4 = 1,...,51,840}, where Z(i,5) is
defined as the average of all observations within D(,5), and V (7,5) is
taken to be the reciprocal of the number of observations within D(%,5); i =
1,...,51,840. In our case, 7,382 R-5 cells do not contain any observations,
resulting in 7,382 missing observations in the R-5 dataset (Figure 3, top).

To apply the spatial multi-resolution model of Section 2 to the TCO
data, the matrices {W(i,7)} and o2 need to be estimated. Although the op-

2 we need it for prediction variances.

timal predictor does not depend on o
We assume that the TCO process follows the mass-balanced, coarse-to-
fine-resolution process model (5), with {W*(i,r)} given by the SPPS in
(9) and Cy(i,7) = I. An exploratory data analysis indicates that most of
the between-resolution variation is latitudinal. Based on this, {log8(i,r)}
is modeled as a smooth function of latitude only, within each resolution r,
using a linear combination of B-spline basis functions, as in (10), with 4, 7,
10, and 14 knots at resolutions 1-4, respectively. The B-splines were con-
strained to have zero derivative at the poles, resulting in a smooth surface
on the sphere. Estimation of the parameter vectors {3(r)} was carried out
using both the RESL in (17) and the RESREL in (19), with o? estimated
at the finest resolution in each case. Only aggregated data {Z(i,r)} with
no missing elements were used in the estimation process. At the coarsest
resolution, R-1, recall that (Y'(1,1),...,Y(40,1)) ~ Gau(a(0),o%R(0)).
We assume that the trend a(0) is a linear combination of 25 spherical
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(a) 66(i,4)"/2 (b) (vax(Y (i,5))) "/
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Figure 2. (a) The RESL and RESREL estimates of 66(i, 4)'/? as a function of latitude.
(b) The estimated standard deviation of {Y(4,5)}, as a function of latitude, based on
RESREL estimation of o and {8(i,r)}.

harmonics (i.e., a(0) = X3(0)) and R(0) is given by an exponential covari-
ance function. Unknown parameters of this model were estimated from the
coarsest-resolution aggregated data {Z(i,0)}:2, using REML. An alterna-
tive approach would be to detrend the original, massive TCO data, as in
Johannesson and Cressie (2003).

Figure 2(a) shows both the RESL and the RESREL estimates of 06(i, 4)'/2,
plotted versus latitude. We note first that the two estimates are basically
identical, both showing that the difference between the aggregated Y-
process at R-4 and R-5 has least variability around the equator. Figure 2(b)
shows the marginal variance of {Y'(¢,5)}, based on the RESREL estimates
of 6% and {6(i,r)}. The stepwise appearance in Figure 2(b) is due to the
change-of-resolution nature of the MRSM. Finally, Figure 3 shows the TCO
data {Z(7,5)}, and the posterior mean and standard deviation given by the
MRSM after substituting in RESREL estimates of o2 and {0(i,)}.

The MRSM has enormous advantages, computationally. The program
used for the analysis in this paper was written using the statistical pro-
gramming language R (IThaka and Gentleman, 1996). The whole execution
time of the program, from creating the spatial tree-structure, through to
computing the estimates used in Figures 2 and 3, took about 3 minutes on
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Figure 8. Top: the TCO data at resolution-5 (white denotes missing data). Middle: the
posterior mean of the TCO process. Bottom: the posterior standard deviation.
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a linux computer with an Atholon MP 1800 processor.
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