Objective Bayesian analysis for Proper Gaussian Markov Random Fields

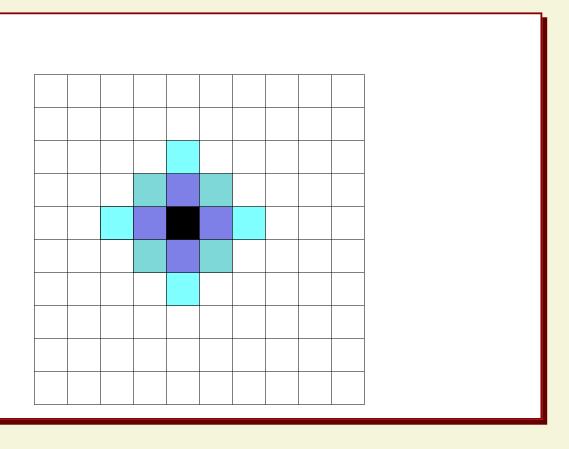
Marco A. R. Ferreira (marco@im.ufrj.br)

Universidade Federal do Rio de Janeiro www.dme.im.ufrj.br/~marco

Outline

- Proper Gaussian Markov random fields
- Confounding of parameters
- Reference prior
- Results for some simulated fields
- Frequentist properties
- Discussion

Proper MRF



Proper MRF

x = observed proper Gaussian Markov random field $p(x|\mu,\alpha,\beta) = N(x|\mu 1_n,\Sigma), \quad \Sigma^{-1} = \beta[Z+\alpha I_n]$

$$\{Z\}_{kl} = \begin{cases} -1, & k \sim l, \\ h_k, & k = l, \\ 0, & \text{otherwise;} \end{cases}$$

 h_k = number of neighbors of the block k.

Another look at the likelihood

$$p(x|\mu,\alpha,\beta) = (2\pi)^{-0.5n} \beta^{0.5n} \prod_{k=1}^{n} (\lambda_k + \alpha)^{0.5}$$

$$\exp \left\{ -0.5\beta \left[\sum_{k=1}^{n} (\alpha + h_k)(x_k - \mu)^2 \right] - \sum_{k=1}^{n} \sum_{l \in \partial k} (x_k - \mu)(x_l - \mu) \right] \right\},$$

 $\lambda_1 \geq \lambda_2 \geq \ldots, \geq \lambda_{n-1} > \lambda_n = 0$ are the eigenvalues of Z.

Confounding of α and β

When α is big enough:

$$p(x|\mu,\alpha,\beta) \approx (2\pi)^{-0.5n} (\alpha\beta)^{0.5n} \exp\left\{-0.5\alpha\beta \left[\sum_{k=1}^{n} (x_k - \mu)^2\right]\right\}$$

Blocks of x become approximately i.i.d. $N[\mu, (\alpha\beta)^{-1}]$.

Consequence: If we assign independent marginal improper priors for α and β , the marginal posteriors will be improper.

Reference prior

 μ is a location parameter, so $\pi^r(\mu|\alpha,\beta) \propto 1$

Integrated likelihood with respect to μ :

$$p(x|\alpha,\beta) = \int_{-\infty}^{\infty} p(x|\mu,\alpha,\beta)\pi^{r}(\mu|\alpha,\beta)d\mu$$

$$= (2\pi)^{-0.5(n-1)}\beta^{0.5(n-1)}n^{-0.5}\prod_{k=1}^{n-1}(\lambda_{k}+\alpha)^{0.5}$$

$$\exp\left\{-0.5\beta\left[\alpha\sum_{k=1}^{n}(x_{k}-\bar{x})^{2}+\sum_{k=1}^{n}h_{k}x_{k}^{2}-\sum_{k=1}^{n}\sum_{l\in\partial k}x_{k}x_{l}\right]\right\}$$

Reference prior

The reference prior for (α, β) is:

$$\pi^r(\alpha,\beta) \propto \sqrt{J(\alpha,\beta)}$$

$$\propto \beta^{-1} \sqrt{(n-1) \sum_{i=1}^{n-1} (\lambda_i + \alpha)^{-2} - \left[\sum_{i=1}^{n-1} (\lambda_i + \alpha)^{-1} \right]^{-2}},$$

where $J(\alpha, \beta)$ is the determinant of the Fisher information matrix.

 α and β are independent a priori.

Propriety of prior and posterior

When α goes to zero the prior converges to a constant.

Using first order Taylor expansions around one of x^{-1} and x^{-2} :

$$\pi^{r}(\alpha) \propto \alpha^{-1} \sqrt{(n-1) \sum_{k=1}^{n-1} \left(1 + \frac{\lambda_{k}}{\alpha}\right)^{-2} - \left[\sum_{k=1}^{n-1} \left(1 + \frac{\lambda_{k}}{\alpha}\right)^{-1}\right]^{2}}$$

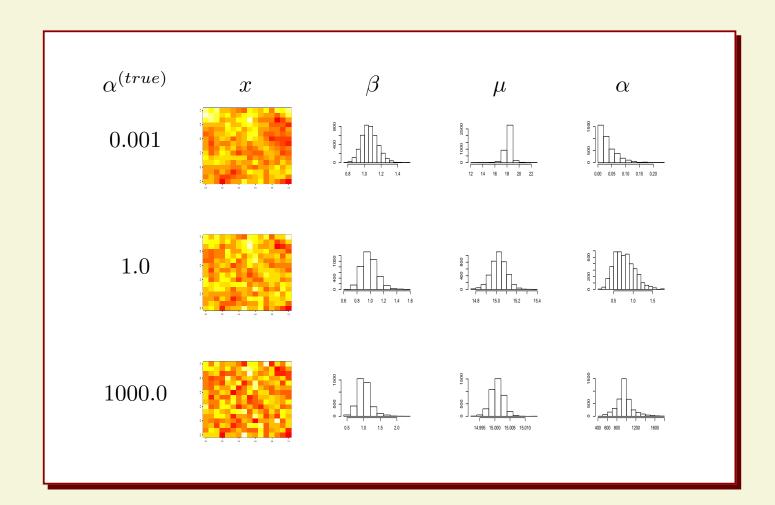
$$\approx \alpha^{-1} \sqrt{(n-1) \sum_{k=1}^{n-1} \left(1 - 2\frac{\lambda_{k}}{\alpha}\right) - \left[\sum_{k=1}^{n-1} \left(1 - \frac{\lambda_{k}}{\alpha}\right)\right]^{2}}$$

$$= \alpha^{-2} \left(\sum_{k=1}^{n-1} \lambda_{k}\right)$$

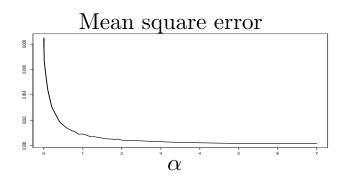
Thus, for large α the prior behaves like α^{-2} .

Therefore, the prior of α is integrable and provides a proper marginal posterior distribution for α .

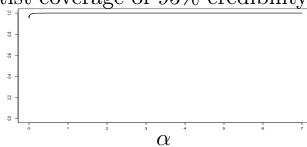
Results for simulated fields



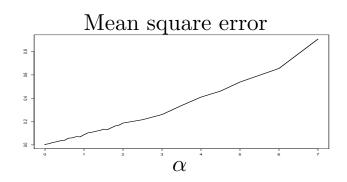
Frequentist properties - Estimation of β

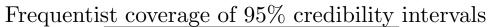


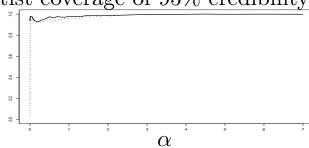
Frequentist coverage of 95% credibility intervals



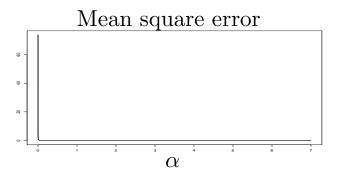
Frequentist properties - Estimation of α



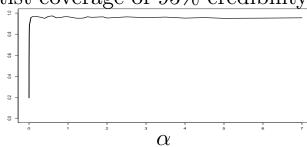




Frequentist properties - Estimation of μ



Frequentist coverage of 95% credibility intervals



Discussion

- Inference for β is robust with respect to $\alpha^{(true)}$
- HPD credibility interval for α works well for all values of $\alpha^{(true)}$
- Proposed objective Bayesian analysis works very well for $\alpha^{(true)} \geq 0.05$:
 - MSE of the estimators of β , μ and α is small
 - Frequentist coverage of central credibility intervals for β , μ and α is close to nominal value
- When $\alpha^{(true)}$ approaches zero field gets closer to improper:
 - Estimation of μ is more problematic, marginal posterior has heavy tails
 - Frequentist coverage of central credibility intervals for μ and α becomes too small