Predictive spatio-temporal models for
spatially sparse environmental data

Xavier deLunaand Marc G. Genton

xavi er . del una@t at . unu. se and genton@t at. ncsu. edu

http://ww. stat.unu. se/ egna/ xdl /i ndex. ht m
http://ww4. st at. ncsu. edu/ ~nggent on/

U e Ulest

NC State University

DEPARTMENT QF STATISTICS

o
;%

NC STATE UMNIVERSITY Seminar — p.1



Outline

Introduction

NC STATE UNIVERSITY



Outline

Introduction
VAR models with spatial structure

NC STATE UNIVERSITY



Outline

Introduction
VAR models with spatial structure
Spatio-temporal correlation analysis

NC STATE UNIVERSITY



Outline

Introduction

VAR models with spatial structure
Spatio-temporal correlation analysis
Prediction performance analysis

NC STATE UNIVERSITY



Outline

Introduction
VAR models with spatial structure

Spatio-temporal correlation analysis
Prediction performance analysis
Conclusions

NC STATE UNIVERSITY



1. Introduction
Spatio-temporal data: z(s;, )
at stations s;, 72 = 1,..., N (irregular)
and timest =1,...,7T (regular)

Data: sparse In space and rich In time

Applications.

e Environmental: e.g. air pollution levels at
meteorological stations in a given region/country
e Economics. e.g. socio-economic
measurements made at different geographical
levels, where stations are whole sub-regions or
countries

Goal: build a simple model for predictions in the
future at the stations with as few assumptions as
possible (e.g. no stationarity or isotropy in space)
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Approachesto space-time modeling
Direct joint modeling of space-time covariance
Hierarchical Bayesian models
Vector of time series
Vector of spatial random fields

see survey by Kyriakidis and Journel (1999)

Many papers in the literature, for example:
Wikle and Cressie (1999): Kalman filter
Stroud, Muller, and Sanso (2001): state space
Tonellato (2001): Bayesian multivar. time series

Pfeifer and Deutsch (1980), Stoffer (1986):
STARMAX

Previous talks...
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2. VAR models with spatial structure

A simple model for z; = (2(s1,1),...,2(sn,t)) Is:

zi =B+ ) Rizi i + &y,

B = (B(s1),...,B(sn)) is a vector of spatial
effects (spatial trend)

R;;t=1,...,p,areunknown N x N
parameter matrices

e:, IN-dimensional white noise process:
E(e;) =0,E(ee}) =2, E(gie],) =0u #1t

Vector autoregressive (VAR) model commonly used
In multivariate time series analysis (e.g., Lutkeponl,
1991). However: spatial structure of data typically

has major consequences on R; (specific structure)
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Remarks:

The deterministic dynamic system is stable if:
det(I — Ryxz — ... — Ry2?) #0, forz € C, |z| < 1

Stability implies time-stationarity: E(z;) = wu,
forall £, and Cov(zs, z; ) =1',(7), 1.e. IS a
function of 7 only, forall tand = =0, 1,2, ...

Covariance matrix I',(7) can easily be computed
from Ry, ..., R, and X.. For instance, p = 1:

vec(I',(0)) = (Iy2 — Ry @ Ry) tvec(X,)

and I',(7) = R7I",(0)

A temporal trend needs to be modeled/removed
No assumption of spatial stationarity/isotropy
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Estimation and inference

Estimation of parameters of our model with:
maximum likelithood (if distributional assumptions
are made)
least squares
moments estimators (Yule-Walker type)
More about estimation and inference In, e.g.,
L Utkepohl (1991)

Robust estimation of the parameters with:

robust estimators of moments (Ma and Genton, 2000)
together with Yule-Walker estimating equations

(de Luna and Genton, 2002)

Estimation of the parameters: all stations
simultaneously or station-wise
Model building must be performed separately

for each station
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Spatio-temporal trends
Deterministic trend specification:

z(s,t) = p+g(s,t) + y(s, 1)

where y(s, t) is a time stationary process
Often removed by time differencing with V¢:

Vz(s,t) =g(s,t) — g(s,t — 1) + Vy(s, )

where Vy(s, t) is a time stationary process
Vz(s,t) can be modeled by a VAR if

B(s) = g(s,t) — g(s,t — 1) is a function of s only
Will happen most often In practice, at least

approximately (as soon as g(s, t) is a polynomial

function In ¢ with coefficients possibly function of

location s), e.9. g(s,t) = 71(s) + Y2(s)t



Periodic time trends or cycles may also be tackled
by differencing, e.g. observations taken monthly will
typically have to be stationarized with the seasonal
differencing operator

Viez(s,t) = z(s,t) — z(s,t — 12)

Modeling a deterministic trend with a weighted
sum of known basis functions, where the weights
are typically estimated by regression:

Periodic functions: to account for seasonal effects
along the time axis

Polynomials: to model smooth variations in space
see review article by Kyriakidis and Journel (1999)

When other variables are observed at the same
locations and time, these may also be used to model
trends by regressing on them
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Model building strategy

|dentify zeroes In the R; matrices

Each station is modeled separately: covariate
selection problem, where the available predictors
are the lagged values at each station
Complex model selection problem

From the spatio-temporal structure: define an
ordering to sequentially introduce the predictors

in the model for z(s, t) say

Such ordering 1s used In purely time series models:
to explain x; the lag one variable x;_; 1s considered
first, then lag two x;_s, etc...

NC STATE UNIVERSITY Seminar — p.10/2¢



To explain z(s, t), consider predictors in the
following order:

z(s,t —1),2(s(1),t —1),2(s(2),t —1),...
z(s,t —2),2(s(1),t —2),...

where s(1),s(2),...,s(N — 1) is an ordering of the
stations, e.g., in ascending order with respect to their
distance (using a given metric) to s

Other ordering motivated by physical knowledge
about the underlying process, e.g. Irish wind speed
application

Predictors can be entered in the model sequentially:
simplification of the model building stage
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Spatio-temporal ordering of the
stations

S t
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Several strategies to decide on the number of

predictors to be used
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Popular technique in time series modeling: partial
autocorrelations
Generalization to space-time: look at partial
correlation along the ordering of predictors

Three random variables: z, z, and y
The partial correlation of x and z given y:

Corr(z, z|y) = Corr(x — P(z|y), 2z — P(z|y))

where P(x|y) is the best linear predictor of x|y
This partial correlation has the property that it is
zero when x & z are independent conditional on y

Renaming:
r1 = 2z(s(1),t—1),...,2y = 2(s(N),t — 1)
i1 = 2(s(1),t—2),..., 2958 = 2(s(N),t — 2)
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Partial correlation function (PCF) for station s:

ps(h) = Corr(z(s,t), xp|T1, ..., Tp_1)

PCF is useful for model selection
Define h; to be such that ps(h1) # 0 and ps(h) = 0

forhy <h <N
Similarly, h; can be defined for each time lag ¢, such

that ps(h;) # 0 and ps(h) =0 for h; < h <iN
Identify the h; with the sample PCF:

ps(h) = Corr(z — P(zly), z — P(2|y))

Test for ps(h) = 0: under joint normality
ps(R)+/(n — h)/(1 = ps(h)?) is t,_,-distributed

see e.g. Krzanowski (1988, Sec. 14.4)
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Strategy

Identify h; by looking at the sample PCF
ps(h),h=1,... N.

Identify ho by looking at the sample PCF
ﬁs(h), h=N+1,...,2N when Thi4+1y---+ TN
have been put to zero

Identify ks by looking at the sample PCF
ps(h), h =2N +1,... 3N when
Th,41,---> TN+ Thetl,---,Ton Nave been put to
Zero

Step 3 Is repeated In a similar manner for
all necessary time lags in order to identify
hy, hs, €tc.

Deletion of uninteresting predictors

Use model selection criterion: AIC, BIC,...
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Carbone monoxide In Venice
Implementation of the methodology using Splus

T = 300 hourly observations of atmospheric
concentrations (micrograms per cubic meter) of
carbon monoxide (CO) recorded in September
1995 at N = 4 monitoring stations located
In Mestre (\Venice, Italy)

Locations of the 4 stations

Locations of stations
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Time series of CO concentrations
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CO concentrations
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Stations 2 and 4 are located along streets with high
Intensity traffic, whereas station 1 is in a garden and

station 3 in a pedestrian area
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Data set has been analyzed by Tonellato (2001) in a
Bayesian dynamic linear model framework

Our methodology Is appropriate for this application:

Italian law requires public authorities to produce
short-term forecasts of air pollutant concentrations at
locations where monitoring stations are present

With so few stations, it Is not possible to model the
spatial dependence adequately, therefore, the use of a
spatial stationary isotropic exponential correlation
function suggested by Tonellato (2001) seems
questionable

Wind speed and direction can influence air pollutant
concentrations In a nonstationary and anisotropic way

Explanatory variables such as wind and road traffic
Information are not available
Seminar — p.18/2¢



We take the logarithm of the CO concentrations and
we estimate a trend for each station by regressing

on a family of daily harmonics
Fitted models with BIC:

Univariate AR time series models

Ry Ry
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Station 3
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3. Spatio-temporal correlation analysis

Irish wind data set analyzed by Haslett and Raftery
(1989)

Daily averages of wind speeds recorded at N = 11
meteorological stations in Ireland 1961-1978

Square root transformation to stabilize the variance

Subtraction of an estimated seasonal effect and
spatially varying mean from the data

Gneiting (2002): assumption of full symmetry of
the spatio-temporal correlation not realistic because
wind patterns are predominantly westerly over
Ireland. We incorporate this physical information by
defining a special ordering of the stations

With BIC, we fit a spatial VAR(3) model
Seminar — p.21/2!
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4. Prediction performance analysis

Comparison of model selection strategies through
out-of-sample validation based on recursive
prediction errors, see de Luna and Skouras (2003)

For given s, a model selection strategy can be
evaluated with the accumulated prediction error
criterion:. T

> (2(s,1) =27 (s,1))’

t=M

where 2t71(s, t) is the prediction of z(s, t) obtained
by applying the model selection strategy on the
sub-sample z¢, ..., z;1

Choosing the model strategy minimizing the above
criterion will eventually identify the best strategy

with probability one
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RAMSE with M = 1,000, T" = 6,570

Station Strategy
AR-BIC AR-AIC SVAR-BIC SVAR-AIC
dist order wind order  distorder  wind order

Roche's Pt. (1) 0.492 0.492 0.474 0.473 0.473 0.473
Valentia (2) 0.503 0.503 0.498 0.498 0.499 0.499
Kilkenny (3) 0.446 0.446 0.424 0.424 0.423 0.424
Shannon (4) 0.461 0.460 0.455 0.454 0.452 0.452
Birr (5) 0.481 0.480 0.470 0.470 0.469 0.468
Dublin (6) 0.461 0.461 0.445 0.445 0.444 0.444
Claremorris (7) 0.488 0.4388 0.485 0.485 0.483 0.482
Mullingar (8) 0.446 0.445 0.433 0.433 0.433 0.433
Clones (9) 0.477 0.477 0.467 0.468 0.467 0.467
Belmullet (10) 0.490 0.490 0.491 0.490 0.489 0.489
Malin Head (11) 0.499 0.499 0.494 0.492 0.493 0.493
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For two strategies S; and .Sy, plot the sums:

[/

> ((2(s,) — 25 (s, 1)) = (2(s,t) — 25, (s,1))*)

t=M

against: = M, ..., T.

AR-AIC vs SVAR-AIC (dist order) SVAR-BIC (dist order) vs SVAR-AIC (dist order)
8 1 ¥
T Z
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SVAR-BIC (wind order) vs SVAR-AIC (dist order) SVAR-AIC (wind order) vs SVAR-AIC (dist order)
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5. Conclusions
Simple predictive model for nonstationary
spatio-temporal data (sparse in space, rich in time)

Spatio-temporal trend handled by time
differencing/weighted sum of known basis functions

Estimation by least squares, Yule-Walker, or
maximum likelihood

Spatio-temporal ordering of the stations
Model building strategy with PCF/AIC/BIC
Each station is modeled separately

Applications: Carbone monoxide in Venice; Irish
wind speed;...
Future research: comparison with other predictive

meth OdS Seminar — p.27/2
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