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1. Introduction

� Spatio-temporal data: � ��� ��� � 	

at stations � �
�
� � 


�� � � � (irregular)
and times

� � 

�� � � � (regular)

� Data: sparse in space and rich in time

� Applications:

�Environmental: e.g. air pollution levels at
meteorological stations in a given region/country

�Economics: e.g. socio-economic
measurements made at different geographical
levels, where stations are whole sub-regions or
countries

� Goal: build a simple model for predictions in the
future at the stations with as few assumptions as
possible (e.g. no stationarity or isotropy in space)
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Approaches to space-time modeling

� Direct joint modeling of space-time covariance

� Hierarchical Bayesian models

� Vector of time series

� Vector of spatial random fields

see survey by Kyriakidis and Journel (1999)

Many papers in the literature, for example:

� Wikle and Cressie (1999): Kalman filter

� Stroud, Müller, and Sansó (2001): state space

� Tonellato (2001): Bayesian multivar. time series

� Pfeifer and Deutsch (1980), Stoffer (1986):
STARMAX

� Previous talks...
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2. VAR models with spatial structure
A simple model for ��� � � � �� � � � 	 �� � � � � ��� �� � 	 	 �

is:

�� � �
��� � � �� 	 � 
� �

� � � ��� � 	
�� � � �

��� � 	 	 �

is a vector of spatial
effects (spatial trend)

� �,

� � 

�� � � � �, are unknown �

parameter matrices

� 
� , -dimensional white noise process:
E

� 
� 	 � 


, E
� 
� 
 ��
	 � �, E

� 
� 
 ��
	 � 
 � � �

Vector autoregressive (VAR) model commonly used
in multivariate time series analysis (e.g., Lütkepohl,
1991). However: spatial structure of data typically
has major consequences on � (specific structure)
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Remarks:

� The deterministic dynamic system is stable if:

��� � �� � � � �� � � � � � � 	 � �
� for � � �

	 � 	 


� Stability implies time-stationarity: E

� ��� 	 � ,
for all

�

, and Cov

� ��� � ��� 	 

	 � �

�
��
 	

, i.e. is a
function of 
 only, for all

�
and 
 � �

�



�
�

�� � �

� Covariance matrix
�
�

��
 	
can easily be computed

from � �� � � � � and �. For instance, � � 


:
vec

� �
�

� � 	 	 � �� � � � � � 	 	 �

vec

�
�

	

and

�
�

��
 	 � 
� �
�

� � 	

� A temporal trend needs to be modeled/removed

� No assumption of spatial stationarity/isotropy
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Estimation and inference
Estimation of parameters of our model with:

�maximum likelihood (if distributional assumptions
are made)

�least squares

�moments estimators (Yule-Walker type)
More about estimation and inference in, e.g.,
Lütkepohl (1991)

Robust estimation of the parameters with:
robust estimators of moments (Ma and Genton, 2000)
together with Yule-Walker estimating equations
(de Luna and Genton, 2002)

Estimation of the parameters: all stations
simultaneously or station-wise
Model building must be performed separately
for each station
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Spatio-temporal trends

�Deterministic trend specification:

� ��� � � 	 � � �
��� � � 	 �
��� � � 	

where �
��� � � 	

is a time stationary process

�Often removed by time differencing with

�

:

� �� � � 	 � �
��� � � 	 � �
�� � � � 
 	 �
��� � � 	

where �
��� � � 	

is a time stationary process

� � ��� � � 	

can be modeled by a VAR if�� 	 � �
�� � � 	 � �
��� � � � 
 	

is a function of � only

�Will happen most often in practice, at least
approximately (as soon as �

��� � � 	

is a polynomial
function in

�
with coefficients possibly function of

location � ), e.g. �
��� � � 	 � � � ��� 	

���
��� 	 �
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�Periodic time trends or cycles may also be tackled
by differencing, e.g. observations taken monthly will
typically have to be stationarized with the seasonal
differencing operator

� � � �� � � 	 � � ��� � � 	 � � ��� � � � 
 � 	

�Modeling a deterministic trend with a weighted
sum of known basis functions, where the weights
are typically estimated by regression:
Periodic functions: to account for seasonal effects
along the time axis
Polynomials: to model smooth variations in space
see review article by Kyriakidis and Journel (1999)

�When other variables are observed at the same
locations and time, these may also be used to model
trends by regressing on them
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Model building strategy

�Identify zeroes in the � matrices

�Each station is modeled separately: covariate
selection problem, where the available predictors
are the lagged values at each station
Complex model selection problem

�From the spatio-temporal structure: define an
ordering to sequentially introduce the predictors
in the model for � ��� � � 	

say

�Such ordering is used in purely time series models:
to explain �� the lag one variable �� 	 � is considered
first, then lag two �� 	 � , etc...
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�To explain � �� � � 	

, consider predictors in the
following order:

� ��� � � � 
 	
� � ��� � 
 	
� � � 
 	
� � ��� � � 	
� � � 
 	
�� � �

� ��� � � � � 	
� � ��� � 
 	
� � � � 	
�� � �

where � � 
 	
� � � � 	
�� � � � � � � 
 	

is an ordering of the
stations, e.g., in ascending order with respect to their
distance (using a given metric) to �

�Other ordering motivated by physical knowledge
about the underlying process, e.g. Irish wind speed
application

�Predictors can be entered in the model sequentially:
simplification of the model building stage
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Spatio-temporal ordering of the
stations

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

t

t−1

t−2

s

Several strategies to decide on the number of
predictors to be used

Seminar – p.12/28



�Popular technique in time series modeling: partial
autocorrelations
Generalization to space-time: look at partial
correlation along the ordering of predictors

�Three random variables: �, �, and �
The partial correlation of � and � given �:

Corr

� �� � 	 � 	 � Corr

� � � � � 	 � 	
� � � � � 	 � 	 	

where

� � 	 � 	

is the best linear predictor of � 	 �

This partial correlation has the property that it is
zero when � & � are independent conditional on �

�Renaming:

� � � � ��� � 
 	
� � � 
 	
�� � � � � � � � �� � 	
� � � 
 	

� �� � � � ��� � 
 	
� � � � 	
�� � � � � � � � � ��� � 	
� � � � 	

� � � Seminar – p.13/28



Partial correlation function (PCF) for station � :

��� � � 	 � Corr

� � ��� � � 	 � ��� 	 � � �� � � � �� 	 � 	

�PCF is useful for model selection
Define

� � to be such that � � � � � 	 � �
and � � � � 	 � �

for

� � � �

Similarly,

� � can be defined for each time lag

�

, such
that ��� � � � 	 � �

and ��� � � 	 � �
for

� � � � �

�Identify the

� � with the sample PCF:

� ��� � � 	 �

	
Corr

� � �
� � � 	 �
	

� � �
� � � 	 �
	 	

�Test for ��� � � 	 � �

: under joint normality� �
� � � 	 ��� � � 	
 � 
 � � �
� � � 	 � 	

is

��� 	 � -distributed

see e.g. Krzanowski (1988, Sec. 14.4)
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Strategy
Step 1: Identify

� � by looking at the sample PCF� �
� � � 	

,

� � 

�� � � � .

Step 2: Identify

�
� by looking at the sample PCF� ��� � � 	

,

� � 

�� � � �

�

when ���� � � �� � � � � �

have been put to zero

Step 3: Identify

� � by looking at the sample PCF� ��� � � 	

,

� � � 

�� � � �

�
when

���� � � �� � � � � �, �� � � � �� � � � � � � have been put to
zero

Step 4: Step 3 is repeated in a similar manner for
all necessary time lags in order to identify��� ,

��� , etc.

Deletion of uninteresting predictors
Use model selection criterion: AIC, BIC,...
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Carbone monoxide in Venice
Implementation of the methodology using Splus

� � � �

hourly observations of atmospheric
concentrations (micrograms per cubic meter) of
carbon monoxide (CO) recorded in September
1995 at � �

monitoring stations located
in Mestre (Venice, Italy)

Locations of the 4 stations

•

•

•

•
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Time series of CO concentrations
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Stations 2 and 4 are located along streets with high
intensity traffic, whereas station 1 is in a garden and
station 3 in a pedestrian area
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Data set has been analyzed by Tonellato (2001) in a
Bayesian dynamic linear model framework

Our methodology is appropriate for this application:

�Italian law requires public authorities to produce
short-term forecasts of air pollutant concentrations at
locations where monitoring stations are present

�With so few stations, it is not possible to model the
spatial dependence adequately, therefore, the use of a
spatial stationary isotropic exponential correlation
function suggested by Tonellato (2001) seems
questionable

�Wind speed and direction can influence air pollutant
concentrations in a nonstationary and anisotropic way

�Explanatory variables such as wind and road traffic
information are not available

Seminar – p.18/28



We take the logarithm of the CO concentrations and
we estimate a trend for each station by regressing
on a family of daily harmonics
Fitted models with BIC:
Univariate AR time series models

����� � ��� �����

	

�
�


�
��

��� � � � � �

� ��� � � � �

� � ��� �� �

� � � ��� ��
�

�����
�����

	

�
�


�
��

� � � �

� � � �

� � �� �� �

� � � ��� � �
�

�����
�����

	

�
�


�
��

��� � � � � �

� �� � � � �

� � ��� � � �

� � � �� � �
�

�����
�����

Spatial VAR model

����� � ��� �����

	

�
�
�


��

��� �� � � ��� � �

� ��� � � � �

��� � � ��� � � ��� � � ��� � �

� � � ��� ��
�

�������
���

	

�
�
�


��

� � � �

� � � �

� � �� � � �

� � � ��� � �
�

�������
���

	

�
�
�


��

��� � � �� � � ��� �� �� ��

��� � � �� � � ��� �� �� � �

��� �� �� �� ��� � � �� � �

��� �� �� � � ��� � � �� � �
�

�������
���
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Station 3
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3. Spatio-temporal correlation analysis

�Irish wind data set analyzed by Haslett and Raftery
(1989)

�Daily averages of wind speeds recorded at � 
 


meteorological stations in Ireland 1961-1978

�Square root transformation to stabilize the variance

�Subtraction of an estimated seasonal effect and
spatially varying mean from the data

�Gneiting (2002): assumption of full symmetry of
the spatio-temporal correlation not realistic because
wind patterns are predominantly westerly over
Ireland. We incorporate this physical information by
defining a special ordering of the stations

�With BIC, we fit a spatial VAR(3) model
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Spatial correlation: from fitted VAR(3) (open circles)
and empirical (pluses)
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4. Prediction performance analysis

�Comparison of model selection strategies through
out-of-sample validation based on recursive
prediction errors, see de Luna and Skouras (2003)

�For given �, a model selection strategy can be
evaluated with the accumulated prediction error
criterion: �

� � �
� � � �� � 	 � � �� 	 � � �� � 	 	 �

where

� �� 	 � � �� � 	

is the prediction of � � �� � 	

obtained
by applying the model selection strategy on the
sub-sample � � �� � � � �� 	 �

�Choosing the model strategy minimizing the above
criterion will eventually identify the best strategy
with probability one
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RAMSE with � 

�

� � �

, � �
�

� � �

Station Strategy

AR-BIC AR-AIC SVAR-BIC SVAR-AIC

dist order wind order dist order wind order

Roche’s Pt. (1) 0.492 0.492 0.474 0.473 0.473 0.473
Valentia (2) 0.503 0.503 0.498 0.498 0.499 0.499
Kilkenny (3) 0.446 0.446 0.424 0.424 0.423 0.424
Shannon (4) 0.461 0.460 0.455 0.454 0.452 0.452
Birr (5) 0.481 0.480 0.470 0.470 0.469 0.468
Dublin (6) 0.461 0.461 0.445 0.445 0.444 0.444
Claremorris (7) 0.488 0.488 0.485 0.485 0.483 0.482
Mullingar (8) 0.446 0.445 0.433 0.433 0.433 0.433
Clones (9) 0.477 0.477 0.467 0.468 0.467 0.467
Belmullet (10) 0.490 0.490 0.491 0.490 0.489 0.489
Malin Head (11) 0.499 0.499 0.494 0.492 0.493 0.493
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For two strategies

� � and

�
� , plot the sums:

�
� � �

� � � � �� � 	 � �� 	 ���

� �� � 	 	 � � � � � �� � 	 � �� 	 ���
� �� � 	 	 ��

against

� � �� � � � .
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5. Conclusions

�Simple predictive model for nonstationary
spatio-temporal data (sparse in space, rich in time)

�Spatio-temporal trend handled by time
differencing/weighted sum of known basis functions

�Estimation by least squares, Yule-Walker, or
maximum likelihood

�Spatio-temporal ordering of the stations

�Model building strategy with PCF/AIC/BIC

�Each station is modeled separately

�Applications: Carbone monoxide in Venice; Irish
wind speed;...

�Future research: comparison with other predictive
methods Seminar – p.27/28
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