The Matrix Reloaded: Computations for large spatial data sets

Doug Nychka National Center for Atmospheric Research

- The spatial model
- Solving linear systems
- Matrix multiplication
- Creating sparsity

Sparsity, fast matrix multiplications, iterative solutions.

The Cast

Reinhard Furrer and Marc Genton

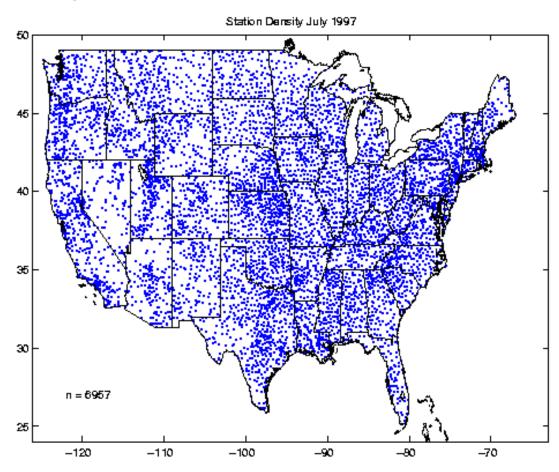
Chris Wikle and J Andrew Royle

Tim Hoar Ralph Milliff and Mark Berliner

Craig Johns

A large spatial dataset

Reporting precipitation stations for 1997.



Spatial Models

We observe a random field, $u(\mathbf{x})$, e.g. ozone concentration at location \mathbf{x} , with covariance function

$$k(\mathbf{x}, \mathbf{x}') = COV(u(\mathbf{x}), u(\mathbf{x}'))$$

There are other parts of u that are important:

- $E(u(\mathbf{x}))$, fixed effects and covariates
- $u(\mathbf{x})$ is not Gaussian
- Copies of $u(\mathbf{x})$ observed at different times are correlated, e.g ozone fields for each day.

I really don't want to talk about these today!

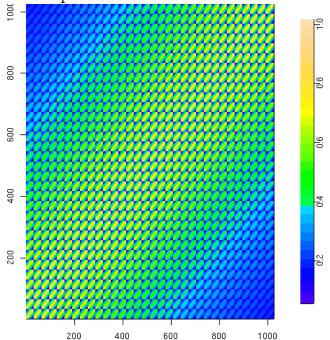
Spatial Models (continued)

Let **u** be the field values on a large, regular 2-d grid (and stacked as a vector). This is our universe.

$$\Sigma = COV(\mathbf{u})$$

The monster matrix Σ

An exponential covariance with range 340 miles for the ozone example.



Observational model

We observe part of \mathbf{u} , possibly with error.

$$Y = Ku + e$$

K is a known "observational functional"' such as an incidence matrix of ones and zeroes for irregularly spaced data or weighted averages ... or both.

K is usually sparse ...

$$COV(\mathbf{e}) = R$$

(where part of the variability may be due to discretization error.)

Kriging

Assuming Y has zero mean.

$$\hat{\mathbf{u}} = COV(\mathbf{u}, \mathbf{Y})COV(\mathbf{Y})^{-1}\mathbf{Y}$$

or with $Q = COV(\mathbf{Y}) = K\Sigma K^T + R$

$$\hat{\mathbf{u}} = \Sigma K Q^{-1} \mathbf{Y}$$

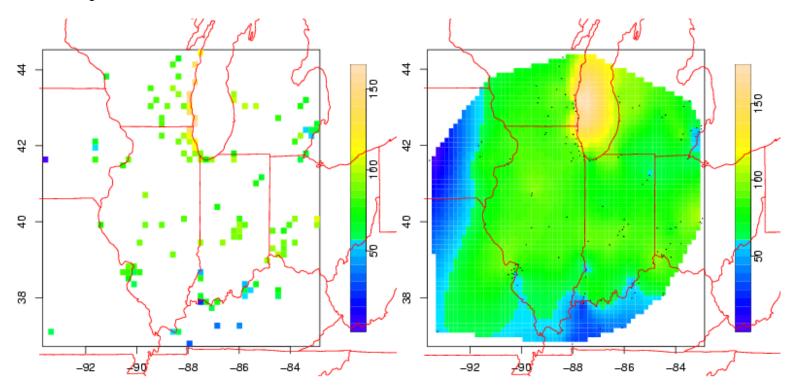
and the covariance of the estimate is

$$\Sigma - \Sigma K Q^{-1} K^T \Sigma$$

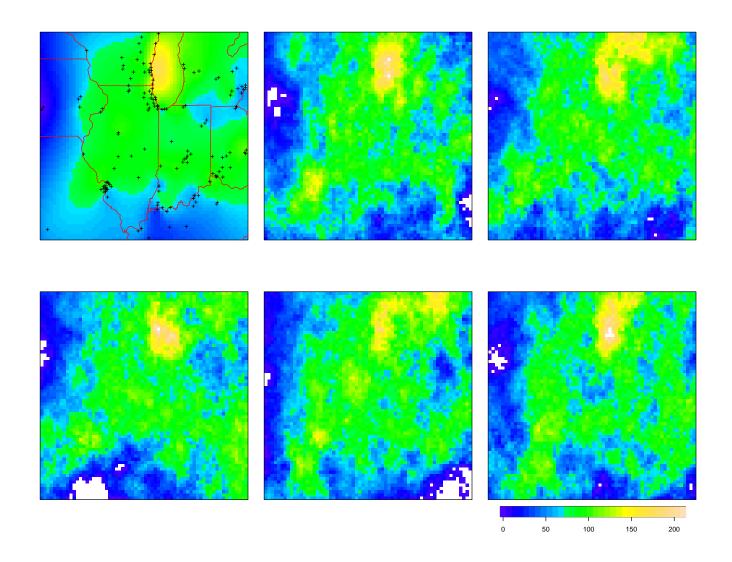
I like to think of the estimate as based on the conditional multivariate normal distribution of the grid points given the data: $[\mathbf{u}|\mathbf{Y}]$ An approximate posterior.

Surface Ozone Pollution (YAOZE)

8-hour average ozone measurements (in PPB) for June 19,1987, Midwest US and the posterior mean surface.



Five samples from the posterior



The problems

 Σ is big and so are Q and \mathbf{Y} !

Simplistic implementations will take too long or involve matrices that are too big.

Some ideas for computation

Don't invert the matrix $Q = (K\Sigma K^T + R)$!

Instead solve the linear system

$$Q\omega = \mathbf{Y}$$

for ω and then

$$\hat{\mathbf{u}} = \Sigma K \omega$$

Estimate variability by generating samples (an ensemble) from the conditional distribution.

To obtain a realization:

- $\mathbf{u}^* \sim N(0, \Sigma)$.
- $\bullet \mathbf{Y}^* = K\mathbf{u}^* + \mathbf{e}^*$
- perturbation= $\hat{\mathbf{u}} + \mathbf{u}^* \Sigma KQ^{-1}\mathbf{Y}^*$
- $\hat{\mathbf{u}}$ + perturbation

Note that the key step in generating ensemble members is just a Kriging estimate.

Solving linear systems

Our job is to find ω for

$$Q\omega = \mathbf{Y}$$

Conjugate gradient algorithm (CGA) is an iterative method for finding a solution.

- If Q is $n \times n$ it will find the exact solution in n steps but one can stop in much fewer steps to obtain an approximate solution.
- \bullet Each iteration only requires two multiplications of Q by a vector.

So CGA never needs to create Q, one only needs to only multiply Q by vectors a limited number of times.

But how do we multiply matrices fast?

Fast multiplication

convolution: If Σ is formed from a stationary covariance matrix then $\Sigma \mathbf{v}$ has components

$$\sum_{j} k(x_i, x_j) v(x_j) = \sum_{j} \psi(x_i - x_j) v(x_j)$$

so the multiplication is just a convolution to the covariance with the vector (actually an image).

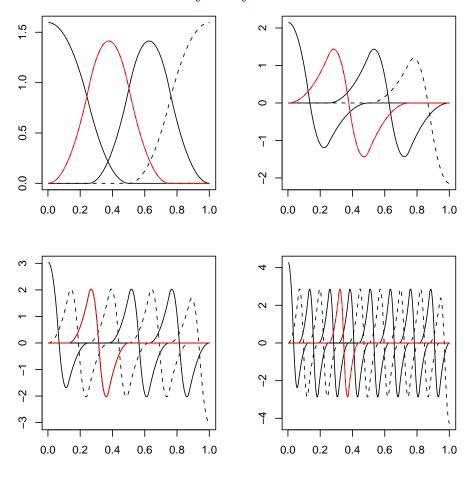
Convolution of an image can be done very quickly using a 2-d fast Fourier transform.

sparsity: If K or K^T are sparse (mostly zeroes) then multiplications can be done quickly by skipping zero elements.

multi-resolution: If $\Sigma = WDW^T$ where $W\mathbf{v}$ is the (inverse) discrete wavelet transform and D is sparse then the multiplication is fast.

In all of these we never need to create the full matrices to do the multiplications!

A 1-d wavelet basis of 32 functions



Back to Q and Kriging

 $Q = (K\Sigma K^T + R)$ If all the intermediate matrices can be multiplied quickly then so can Q.

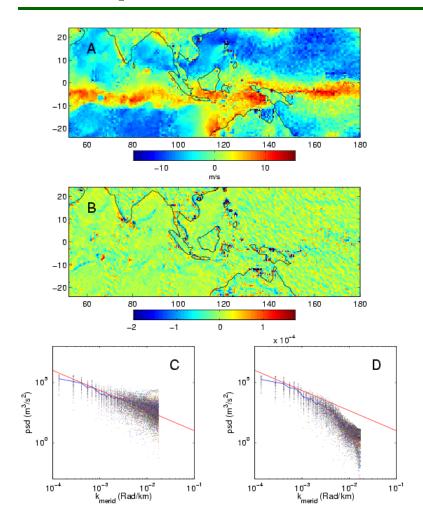
Also note that $\Sigma K\omega$ can also be done quickly.

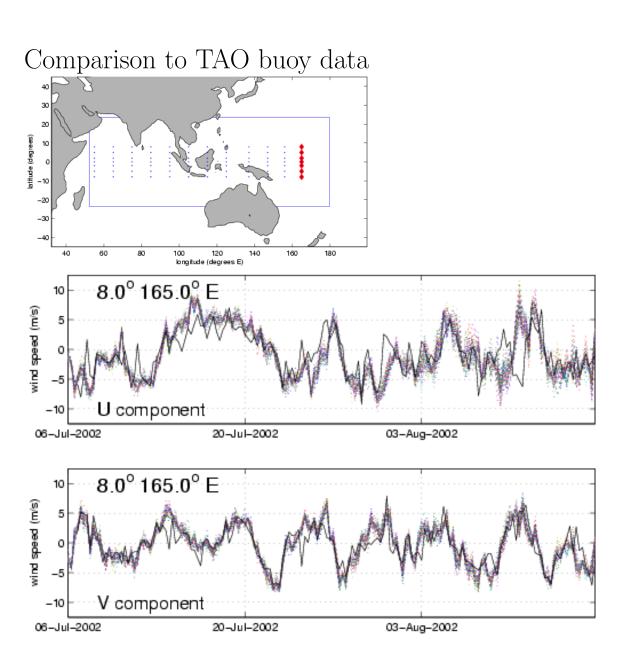
GibbsWinds

A project to create ocean surface wind fields by blending two forms of data. The CGA was used in the core of a Gibbs sampler using multi-resolution-based covariances.

Results are posterior wind realizations for the tropical ocean every 6 hours for three years. 256×96 spatial grid and 4648 time points.

An example of a GibbsWinds realization





Another approach: Enforcing sparsity

Our job is to find ω for

$$Q\omega = \mathbf{Y}$$

If Q is sparse we can.

- Find a sparse (and exact) Cholesky factorization $Q = CC^T$
- Solve using sparsity $C\eta = \mathbf{Y}$
- Solve using sparsity $C^T \omega = \eta$

But how can Q be made sparse?

Tapering Σ

Introduce zeroes by multiplying Σ with a positive definite tapering function, h.

$$\Sigma_{i,j}^* = \Sigma_{i,j} * h_{i,j}$$

(componentwise multiplication)

This certainly introduces zeroes ...

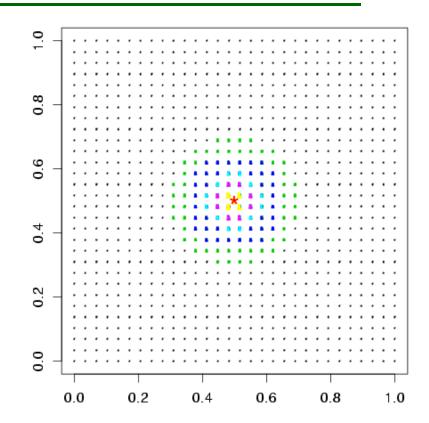
But are we still close to Kriging?

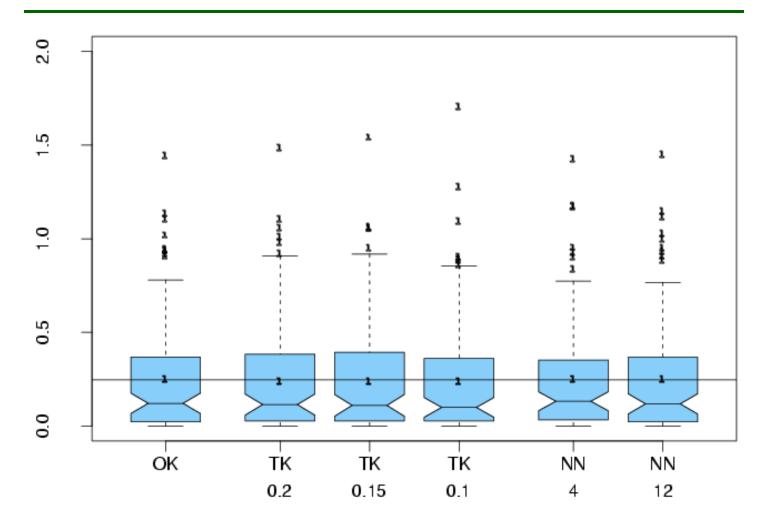
Is it faster?

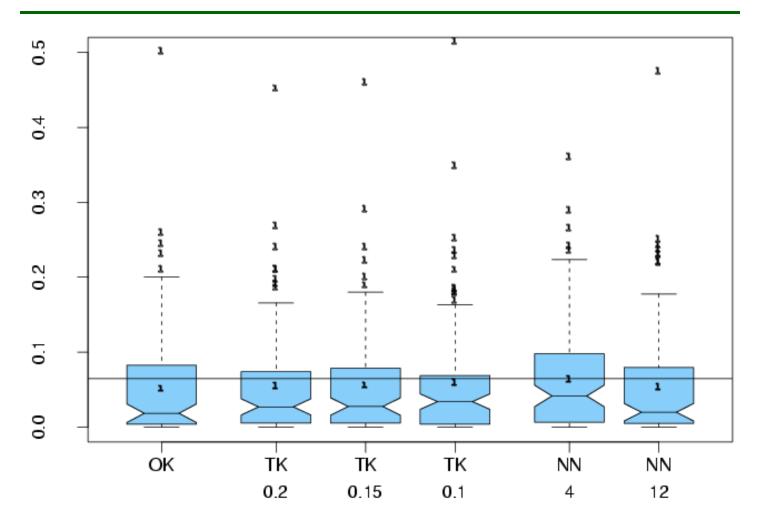
Some numerical results for MSE

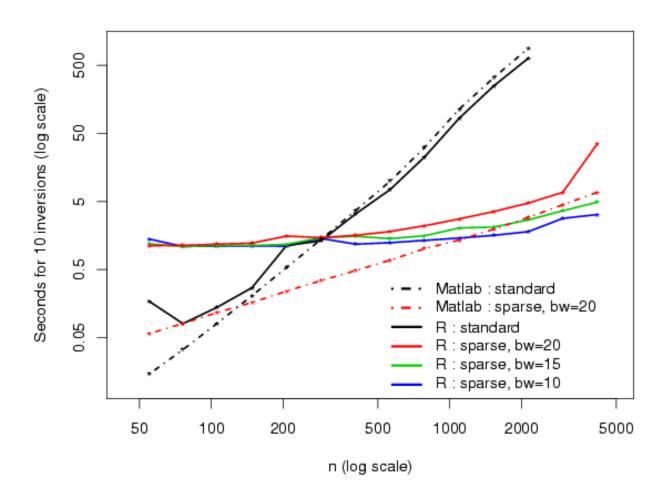
 30×30 grid predicting at center.

- Ordinary Kriging (OK)
- OK with tapering (.2,.15,.1)
- Nearest Neighbor OK (4,16)









At 2000 points the difference is more than 100:1!

Summary

- One can multiply stationary covariance matrices (and multi-resolution matrices) equickly if points are on grids.
- CGA can be used to handle large problems.
- Sparsity can be enforced with little penalty and much improvement in speed. Asymptotic theory of Stein supports these results.

Some open issues:

Companion efficiency in estimating the covariance model.

Relationship to the spatial Kalman filter.