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e The spatial model
e Solving linear systems
e Matrix multiplication
e Creating sparsity

Sparsity, fast matrix multiplications, iterative solutions.
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A large spatial dataset

Reporting precipitation stations for 1997.

Station Darsity July 1997
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Spatial Models
We observe a random field, u(x), e.g. ozone concentration at location x, with

covariance function
k(x,x') = COV (u(x), u(x')
There are other parts of u that are important:
o F(u(x)), fixed effects and covariates
e u(x) is not Gaussian

e Copies of u(x) observed at different times are correlated, e.g ozone fields
for each day.

[ really don’t want to talk about these today!



Spatial Models (continued)

¥ =COV(u)

Let u be the field values on a large, regular 2-d grid (and stacked as a vector).

This 1s our universe.

The monster matrix X2
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An exponential covariance with range 340 miles for the ozone example.
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Observational model

We observe part of u, possibly with error.

Y =Ku-+te

K is a known “observational functional”’

such as an incidence matrix of ones and zeroes for irregularly spaced data or
weighted averages ... or both.

K is usually sparse ...

COV(e)=R

(where part of the variability may be due to discretization error.)



Kriging

Assuming Y has zero mean.

u=COV(uw,Y)COV(Y) 'Y
or with Q = COV(Y) = KXK' + R

u=YKQ Y
and the covariance of the estimate is

Y —-YKQ K'Y

[ like to think of the estimate as based on the conditional multivariate normal
distribution of the grid points given the data: [u|Y]
An approximate posterior.



Surface Ozone Pollution (YAOZE)

8-hour average ozone measurements (in PPB) for June 19,1987, Midwest US

and the posterior mean surface.
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Five samples from the posterior




The problems

>J is big and so are () and Y'!

Simplistic implementations will take too long or involve matrices
that are too big.



Some ideas for computation

Don’t invert the matrix Q = (KXK' + R) !
Instead solve the linear system

Qu=Y

for w and then
u=>Kw

Estimate variability by generating samples (an ensemble) from the conditional
distribution.
To obtain a realization:

oeu ~ N(0,%).

(] Y* = Ku* —l_ e*

e perturbation= 1 +u* — YKQ'Y*
e U + perturbation

Note that the key step in generating ensemble members is just a Kriging esti-
mate.



Solving linear systems

Our job is to find w for

Qu=Y

Conjugate gradient algorithm (CGA) is an iterative method for finding a solu-
tion.

o If () is n x n it will find the exact solution in n steps but one can stop in
much fewer steps to obtain an approximate solution.

e Fach iteration only requires two multiplications of () by a vector.

So CGA never needs to create (), one only needs to only multiply ¢) by vectors
a limited number of times.

But how do we multiply matrices fast?



Fast multiplication

convolution: If X is formed from a stationary covariance matrix then Xv has
components

? k(i xj)v(x;) = ? Y(w; — xj)v(xy)

so the multiplication is just a convolution to the covariance with the vector
(actually an image).

Convolution of an image can be done very quickly using a 2-d fast Fourier
transform.

sparsity: If K or KT are sparse (mostly zeroes) then multiplications can be
done quickly by skipping zero elements.

multi-resolution: 1f X = W DW? where W is the (inverse) discrete wavelet
transform and D is sparse then the multiplication is fast.
In all of these we never need to create the full matrices to do the multiplications!



A 1-d wavelet basis of 32 functions
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Back to Q and Kriging

Q = (KXK' + R) It all the intermediate matrices can be multiplied
quickly then so can @.

Also note that X Kw can also be done quickly.



GibbsWinds

A project to create ocean surface wind fields by blending two forms of data.
The CGA was used in the core of a Gibbs sampler using multi-resolution-based
covariances.

Results are posterior wind realizations for the tropical ocean every 6 hours for
three years. 256 x 96 spatial grid and 4648 time points.



An example of a GibbsWinds realization
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Comparison to TAO buoy data
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Another approach: Enforcing sparsity

Our job is to find w for

If () is sparse we can.
e Find a sparse (and exact) Cholesky factorization Q = CC7
e Solve using sparsity Cn =Y
e Solve using sparsity CTw =n

But how can ) be made sparse?



Tapering 2.

Introduce zeroes by multiplying > with a positive definite tapering function, h.
2:(’] = ZZ,] * hl,j

(componentwise multiplication)

This certainly introduces zeroes ...
But are we still close to Kriging?

[s it faster?



Some numerical results for MSE

30 x 30 grid predicting at center.
e Ordinary Kriging (OK
e OK with tapering (.2,.15,.1
e Nearest Neighbor OK (4,16
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Matern smoothness .75
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Matern smoothness 1.25
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Some timing results for sparse Kriging
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At 2000 points the difference is more than 100 : 1/



Summary

e One can multiply stationary covariance matrices (and multi-resolution ma-
trices) )quickly if points are on grids.

e CGA can be used to handle large problems.

e Sparsity can be enforced with little penalty and much improvement in speed.
Asymptotic theory of Stein supports these results.

Some open issues:
Companion efficiency in estimating the covariance model.

Relationship to the spatial Kalman filter.



