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• The spatial model

• Solving linear systems

• Matrix multiplication

• Creating sparsity

Sparsity, fast matrix multiplications, iterative solutions.
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A large spatial dataset

Reporting precipitation stations for 1997.
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Spatial Models

We observe a random field, u(x), e.g. ozone concentration at location x, with

covariance function

k(x,x′) = COV (u(x), u(x′)

There are other parts of u that are important:

• E(u(x)), fixed effects and covariates

• u(x) is not Gaussian

• Copies of u(x) observed at different times are correlated, e.g ozone fields

for each day.

I really don’t want to talk about these today!
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Spatial Models (continued)

Let u be the field values on a large, regular 2-d grid (and stacked as a vector).

This is our universe.

Σ = COV (u)

The monster matrix Σ

An exponential covariance with range 340 miles for the ozone example.
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Observational model

We observe part of u, possibly with error.

Y = Ku + e

K is a known “observational functional”’

such as an incidence matrix of ones and zeroes for irregularly spaced data or

weighted averages ... or both.

K is usually sparse ...

COV (e) = R

(where part of the variability may be due to discretization error.)
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Kriging

Assuming Y has zero mean.

û = COV (u,Y)COV (Y)−1Y

or with Q = COV (Y) = KΣKT +R

û = ΣKQ−1Y

and the covariance of the estimate is

Σ − ΣKQ−1KTΣ

I like to think of the estimate as based on the conditional multivariate normal

distribution of the grid points given the data: [u|Y]

An approximate posterior.
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Surface Ozone Pollution (YAOZE)

8-hour average ozone measurements (in PPB) for June 19,1987, Midwest US

and the posterior mean surface.
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Five samples from the posterior
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The problems

Σ is big and so are Q and Y!

Simplistic implementations will take too long or involve matrices
that are too big.
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Some ideas for computation

Don’t invert the matrix Q = (KΣKT +R) !

Instead solve the linear system

Qω = Y

for ω and then

û = ΣKω

Estimate variability by generating samples (an ensemble) from the conditional

distribution.

To obtain a realization:

• u∗ ∼ N(0,Σ).

• Y∗ = Ku∗ + e∗

• perturbation= û + u∗ − ΣKQ−1Y∗

• û + perturbation

Note that the key step in generating ensemble members is just a Kriging esti-

mate.
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Solving linear systems

Our job is to find ω for

Qω = Y

Conjugate gradient algorithm (CGA) is an iterative method for finding a solu-

tion.

• If Q is n × n it will find the exact solution in n steps but one can stop in

much fewer steps to obtain an approximate solution.

• Each iteration only requires two multiplications of Q by a vector.

So CGA never needs to create Q, one only needs to only multiply Q by vectors

a limited number of times.

But how do we multiply matrices fast?
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Fast multiplication

convolution: If Σ is formed from a stationary covariance matrix then Σv has

components ∑
j
k(xi, xj)v(xj) =

∑
j
ψ(xi − xj)v(xj)

so the multiplication is just a convolution to the covariance with the vector

(actually an image).

Convolution of an image can be done very quickly using a 2-d fast Fourier

transform.

sparsity: If K or KT are sparse (mostly zeroes) then multiplications can be

done quickly by skipping zero elements.

multi-resolution: If Σ = WDW T where Wv is the (inverse) discrete wavelet

transform and D is sparse then the multiplication is fast.

In all of these we never need to create the full matrices to do the multiplications!
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A 1-d wavelet basis of 32 functions
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Back to Q and Kriging

Q = (KΣKT +R) If all the intermediate matrices can be multiplied
quickly then so can Q.

Also note that ΣKω can also be done quickly.
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GibbsWinds

A project to create ocean surface wind fields by blending two forms of data.

The CGA was used in the core of a Gibbs sampler using multi-resolution-based

covariances.

Results are posterior wind realizations for the tropical ocean every 6 hours for

three years. 256 × 96 spatial grid and 4648 time points.
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An example of a GibbsWinds realization
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Comparison to TAO buoy data
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Another approach: Enforcing sparsity

Our job is to find ω for

Qω = Y

If Q is sparse we can.

• Find a sparse (and exact) Cholesky factorization Q = CCT

• Solve using sparsity Cη = Y

• Solve using sparsity CTω = η

But how can Q be made sparse?
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Tapering Σ

Introduce zeroes by multiplying Σ with a positive definite tapering function, h.

Σ∗
i,j = Σi,j ∗ hi,j

(componentwise multiplication)

This certainly introduces zeroes ...

But are we still close to Kriging?

Is it faster?
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Some numerical results for MSE

30 × 30 grid predicting at center.

• Ordinary Kriging (OK)

• OK with tapering (.2,.15,.1)

• Nearest Neighbor OK (4,16)
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Matern smoothness .75
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Matern smoothness 1.25
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Some timing results for sparse Kriging

At 2000 points the difference is more than 100 : 1!
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Summary

• One can multiply stationary covariance matrices (and multi-resolution ma-

trices) )quickly if points are on grids.

• CGA can be used to handle large problems.

• Sparsity can be enforced with little penalty and much improvement in speed.

Asymptotic theory of Stein supports these results.

Some open issues:

Companion efficiency in estimating the covariance model.

Relationship to the spatial Kalman filter.
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