GEOSTATISTICAL MODELING

Richard L. Smith

University of North Carolina, Chapel Hill

rls@email.unc.edu

www.stat.unc.edu/faculty /rsmith.html

SAMSI/GSP WORKSHOP ON

SPATIAL-TEMPORAL STATISTICS

JUNE 2 2003

1. Spatial covariances

2. Model identification and
estimation

3. Prediction and interpolation
4. Spatial-temporal models

5. Application to data on
fine particulate matter

Major references

Cressie (1993)

Stein (1999)

Chiles and Delfiner (1999)
Matérn (1986)

My own course notes:

http://www.stat.unc.edu/postscript
/rs/envstat /env.html

Software
S-PLUS Spatial Statistics module

SAS PROC MIXED (for ML or REML esti-
mation of variogram models; there are also
variogram plotting and kriging procedures

within SAS)

The GeoR package (includes instructions
for downloading R):

http://www.est.ufpr.br/geoR/
GSP’s “Fields” package:

http://www.cgd.ucar.edu/stats/Software/
Fields/

My own programs and data sets:

http://www.unc.edu/depts/statistics
/postscript /rs/envstat /env2.html




1. Spatial covariances

Basic structure: A stochastic process
{Z(s), s € D}, D C RY, usually though
not necessarily d = 2.

Mean function

u(s) =E{Z(s)}, seD.

Covariance function
C(s1,s2) = Cov{Z(s1),Z(s2)}.

Z is Gaussian if all joint distributions are
multivariate normal.

Z is second-order stationary if u(s) = p and
Cov{Z(s1),Z(s2)} = C(s1 — s2),

for all s; € D, sy € D, where C(s) is
Cov{Z(s), Z(0)}.

The Variogram. Assume p(s) is a constant,
which we may without loss of generality
take to be 0, and then define

Var{Z(s1) — Z(s2)} = 2v(s1 — s2).

This makes sense only if the left hand side
depends on s; and s, only through their
difference s; — so. Such a process is called
intrinsically stationary. The function 27(:)
is called the wvariogram and ~(-) the semi-
variogram.

Intrinsic stationarity is weaker than second-
order stationarity. However, if the latter
holds we have

We shall usually assume second-order sta-
tionarity though many of the results hold
just assuming intrinsic stationarity.
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Isotropy. Suppose the process is intrinsi-
cally stationary with semivariogram ~y(h),
h € Re. If v(h) = o(||h]]) for some func-
tion 7, i.e. if the semivariogram depends
on its vector argument h only through its
length ||h||, then the process is isotropic.

Examples:

1. Exponential-power form:

0[O if t =0,
=V o +a(l—e WBPY ift > 0.

Here 0 < p < 2. p=11is called exponential,
p = 2 is Gaussian.

2. Spherical: (for d=1,2,3,)
Yo(t) =

0 ift =0,
{Co-i-cl{%%—%(%)?’} if 0 <t <R,
co+C1 lftZR

3. Power law:

(t) = 0 if t =0,
0 o co + Clt/\ if t > 0.

Valid if 0 < A < 2. X = 1 is linear var-
togram. This case is not second-order sta-
tionary.

4. Matérn:
Co(t) =

1 2¢@t%K: 92/Oat
292_1F(92) 91 b2 91 '

01 > 0 is the spatial scale parameter and
02 > 0 is a shape parameter. I'(-) is the
usual gamma function while Ky, is the mod-
ified Bessel function of the third kind of or-
der 65. 05 = % corresponds to the exponen-
tial form of semivariogram, and the limit
0> — oo results in the Gaussian form.
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Fig. 1. Examples of isotropic variograms.

a) Linear

b) Spherical

c¢) Exponential power, p = 0.5
d) Exponential

e) Exponential power, p = 1.5
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g) Rational quadratic
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h) Wave
i) Power, A\ = 0.5.
j) Power, A =1.5

k)—(o) Matérn with 6, = 0.1, 0.5, 1, 2, 10.
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Fig. 2. Idealized form of variogram func-
tion, illustrating the nugget, sill and range.
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Positive definiteness

Any covariance function must satisfy
Z Z aiajC’(si, Sj) Z 0
v g

for any finite set of points sy, ..., s, and ar-
bitrary real coefficients ay,...,a,. For the
variogram, if »_ a; = 0,

Z Zaiajfy(si —5;) <0.
i g

These conditions are obviously necessary.
That they are also sufficient is a
consequence of Bochner’s theorem.

More complete characterizations follow
through spectral representations (see lec-
tures by Fuentes and Stein at this worksop)
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2. Model identification

and estimation

Assume a process {Z(s), s € D} observed
at a finite number of points s1, ..., sy

The sample variogram is often used as an
initial guide to the form of spatial model. It
can be drawn as either a wvariogram cloud,
or a binned variogram.

NW stations: MoM
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Fig. 3. Two forms of variogram plot su-
perimposed.
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Fitting parametric models

Sample variogram not negative definite:
therefore, not acceptable as an estimate of
population variogram

Solution: fit a parametric model

e curve fitting to the variogram,

e maximum likelihood (ML),

e restricted maximum likelihood (REML),
e Bayesian estimators.

We concentrate here on the ML and REML
procedures. They are generally practical for
numerical fitting, and can be combined with
various model selection measures (e.g. AIC,
BIC, likelihood ratio testing) to choose
among parametric models.
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Mazimum likelihood estimation
(Mardia and Marshall 1984)

Assume Gaussian process. General model
(includes regression terms):

Z ~ N, (X3, %),
Y =aV(0),

X a n x ¢ matrix of covariates, o a scale
parameter and V' (0) determined by 6, pa-
rameters of spatial model.

Minimize the negative log likelihood func-
tion:

(B, a, 0) =
g log(27'r) + g log o + % log |V(0)|
A (Z - XBTV(0) " (Z - XP).

200
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The minimization w.r.t. S and then « can
be carried out analytically, so the only func-
tion that has to be minimized numerically
is the profile neg log likelihood of 0,

2
0*(0) = const + g log G'(9) + % log |V (0)].
n

where G2(0) = (Z—X3)TV(0)"Y(Z-X}),
B the GLS estimator of 3.

The numerical methods use Cholesky de-
composition of V' to facilitate computations
of 3 and also |V|, then optimize using a
standard nonlinear optimization method,
typically quasi-Newton.
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Restricted mazimum likelihood
(Patterson & Thompson 1971, Harville 1974)

Let W = ATZ be a vector of n — ¢ lin-
early independent contrasts, i.e. the n — ¢
columns of A are linearly independent and
AT X =0, then we find that

W ~ N(0,ATXA).

The density of W is taken to define the neg
log likelihood function. After some manip-
ulation, this reduces to

EW (Od, (9) =

n—q n—q

log(27) +

log av
1 1
~ 3 log | XT X | + 5 log | XTV ()1 X|

1 1
—1 0 —G2(9).
+ 5 1og[V(O)] + 5-G(0)

This formula also has a Bayesian interpre-
tation (Harville).
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3. Prediction and interpolation

Consider the universal kriging model

where Y is a vector of observations, (3 is
an unknown vector of regression coefficients
and 7 is a vector of correlated random er-
rors with mean 0 and covariance matrix X.
Suppose we wish to predict a value y,, given
by

Ya = %,Tﬁ + Nas

where x, is known, 7, has mean 0 and vari-
ance o2, and E{n,n} = 7,.
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The GLS estimator of 3 is given by

B=(XTe'x)"'xTx 1y,
and the covariance matrix of B is
(XTy=1x)-1.

From standard theory of the multivariate
normal distribution, the conditional expec-
tation of 1, given 1 is 7, = 72 X~ 11n. There-
fore, the logical predictor of y, is

Jo =23+ 78" YY — X3)
so that

:l)a — Yo = (373 - ng_lX)(B - ﬁ)

1
+ (73127177 —Na)- .

However, the two terms of (1) are uncor-
related (direct calculation). This facilitates
computation of prediction error variances.
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If we are considering the covariance of two
predictions y, = 27 + na, yp = 2 5+ s,
and denoting the covariance vectors of Y
with y, and y; respectively by 7., 7, we
calculate

Cov{Ua — Ya:Ub — Yb}
= Cov{(z] — rIY71X) (3 - B),
(wy —m 271 X)(B-8)}
+Cov {(77 =7 ' —na), (7 S —mp) }
(zh =7 ST X)(XTSTX) oy — XTE )

— 7057 + Cov{na, b} (2)

When a = b we call this the mean squared
prediction error, abbreviated MSPE.
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Extensions

1. Computing an areal average (e.g., esti-
mating the average concentration of ozone
over a given region)

Usually compute on a grid, so we predict
1 1 ~

TA] ZaGA Ya by TA] ZaGA Ya-

The MSPE in this case is

1
A2

Z Cov {ga _yaagb _yb}a
acA,beA

which is readily calculated from (2).
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Computing a temporal average

(This is a less “standard” application, but
it’s needed for our example in Section 5.)

Suppose we have independent replicates of
the random field Y; at each timet =1, ..., T,
and moreover, the regression component
X3 has the same coefficients at each ¢, but
it’s possible the covariance matrix »; and
the vector of cross-covariances 7, may be
different for each t (in particular, this will
be the case if the network changes during
the observation period)

For each time ¢ and location a predict
Jar = B+ 7557 (Vi — X B)

where B is the GLS computed from the
whole data set.
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We again have (in obvious notation)
Yat — Yat = (th - Tcﬂzt_lXt)(ﬁ - 0B)
+ (Tcr{;z;lnt - 77(115)7
where the two components are independent.

For the temporal average we have

1 T
T Z(Qat - Zyat)
t=1

T
1 B R
=7 D (g — 7 X (B - 6)
t=1
1 T
tr Z(T(Z;Zt_lnt — Nat)-

t=1

The variance of the first component is de-
rived directly from that of ﬁA , while the vari-
ance of the second component is also a sum
of independent components and therefore
easily calculated.
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4. Spatial-temporal models

The direct generalization of spatial statis-
tics to spatial-temporal data is based on
finding classes of spatial-temporal covari-
ance functions that obey the positive def-
initeness property, for which the preceding
theories of estimation, interpolation etc., go
through directly.

We concentrate here on two specific classes,
separable models and the repeated measure-
ments model. These are the simplest cases
and often dismissed as too simple for real
applications, but their mathematical prop-
erties make them appealing when they are
applicable.
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The separable model is defined by
C(h,u) = Co(h)y(u)

where C(h,u) denotes the covariance be-
tween two space-time coordinates with spa-
tial separation h and temporal separation
u, Co(h) is a pure spatial covariance and
~v(u) is a temporal autocovariance. Since
we may always transfer a constant between
the functions Cy and -y, there is no loss of
generality in assuming y(0) = 1, in other
words, that ~ is a temporal autocorrelation
function.

The special case where vy(u) = 0 for all
u # 0 was called the repeated measurements
model by Mardia and Goodall (1993).
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5. Application to data on

fine particulate matter
Ref.: Smith, Kolenikov and Cox (2003).

In 1997, the U.S. Environmental Protec-
tion Agency (EPA) proposed a new air pol-
lution standard for fine particulate matter
(PMs5). One of the requirements is that
the mean level of PMs 5 at any location
should be no more than 15 ug/m?. A net-
work of several hundred monitors has been
set up to assess this.

26

The present study is based on a small por-
tion of this network, 74 monitors in North
Carolina, South Carolina and Georgia. Fig.
4 is a map of the monitor locations. We con-
verted the raw values to weekly averages,
but even so more than % of the data are
missing. The EPA also recorded a “land-
use” variable, classified as one of five types
of land-use: agricultural (A), commercial
(C), forest (F), industrial (I) and residen-
tial (R).
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\

Fig. 4. PMs 5 monitors in North Carolina,
South Carolina and Georgia: Map of spatial
locations
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Ezxploratory data analysis

The first issue considered is whether to
make any transformation, such as square
roots or logarithms, of the raw PMs 5 val-
ues. Fig. 5 shows a plot of sample vari-
ance against sample mean, across all 74 sta-
tions, for each of three transformations, (a)
no transformation, (b) square root trans-
formation, (c) logarithmic transformation.
On the basis that (b) is the closest fit to
a constant-variance model, the rest of the
analysis is based on the square root of
PM, 5 as a variance-stabilizing transforma-
tion.
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Fig. 5. Variance vs. mean plots for each
monitor in PMs 5 data. (a) Original scale
of data. (b) Mean and variance computed
after square root transformation. (c) Mean
and variance computed after logarithmic
transformation.
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Time trend:

The time trend was estimated both as a B-
spline smooth curve and (more simply) by
using a weekly indicator variable to repre-
sent the overall mean level for that week.

Fig. 6(a) shows both versions of the fit-
ted time trend, with all data points super-
imposed. Also shown on Fig. 6 are the
same fitted time trend curves, but with dif-
ferent portions of the data superimposed,
(b)—(d) corresponding to each of the three
states, (e)—(i) corresponding to each of the
five land-use variables. The results show a
significant discrepancy between states, with
Georgia values generally higher than the
overall mean, while the land-use variables
show significant variations in the directions
one would expect.
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Fig. 6. Fitted common temporal trend
with data values from (a) all sites, (b) NC,
(c) SC, (d) GA, (e)—(i) five landuse types
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These comparisons suggest the model

Yot = Wt + wsc + Hw + Nt (3)

in which y,; is the square root of PMs 5 in
location x in week t, w; is a week effect, 1,
is the spatial mean at location z (in prac-
tice, estimated through a thin-plate spline
representation), 6, is a land-use effect cor-
responding to the land-use as site x, and
Nzt 18 @ random error.

So far we have ignored temporal and spatial
correlations among the 7, but we consider
these next.
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Spatial and temporal dependence

Take residuals from preceding linear regres-
sion.

Fig. 7 shows the first five autocorrelations
for residuals from each of the 74 stations,
superimposed on one graph. Also shown
(as horizontal straight lines) are the approx-
imate bounds of the critical region for a hy-
pothesis test of size 0.05 for the null hy-
pothesis that there is no temporal autocor-
relation. Very few of the sample autocor-
relations are outside the critical region de-
fined by the horizontal straight lines; based
on this, we accept the null hypothesis that
there is no temporal autocorrelation.
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Fig. 7. First 5 autocorrelations for residu-
als from linear regression in each of the 74
spatial locations, with approximate bounds
for the critical region of a hypothesis test of
size 0.05 for the null hypothesis that there
is no autocorrelation (horizontal lines)
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Spatial correlations:

Fig. 8 shows variograms of residuals from
simple linear regression, where a number
of subsets of the data (classified by state
and also by season) have been identified to
look for comparability of the estimated var-
iogram among different subsets of data.

Features include

(a) substantial inhomogeneity among sub-
groups despite initial variance stabilization

(b) does not seem to follow standard
nugget-range-sill shape

We fit the power law variogram

0 it h =0,
Wm_{%+mm ith>0 Y

where 6y >0, 61 >0, 0 < A < 2.
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Fig. 8. Spatial variograms computed for
various subsets of the data.
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To fit this model by maximum likelihood,
we need to concept of generalized covari-
ances, introduced by Matheron (1973). For
modern references see Cressie (1993), Chiles
and Delfiner (1999) or Stein (1999). In the
present context the key formula is the fol-
lowing: for an intrinsically stationary pro-
cess defined by a semivariogram -,

Cov {Z VNt Z K/x’n:c’,t}
T x’
=33 vk Gllz =),

provided ) vy, = Y, Ky = 0. Here G is
known as the generalized covariance func-
tion: however for an intrinsically stationary
process, it suffices to take G = —~.
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Practical implementation:

In (3), replace each yu: by yi; = Yut —
1

= . Yzt Where the second sum is over all
2’ values available in week ¢; n; is the num-
ber of such z’ values in a given week. With
some further simplifications we replace (3)
by

Yor = Yz + 05 + 10y (5)

where
* * 1
Cov{n; 1M ¢} = - > (|l — a])
1 , ,
g s =l =l =)o
1
- n—?ZZV(Hl‘l — z2]).

The model defined by (4)—(6) may now be
fitted by maximum likelihood.
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There are additional complications because
of the missing values, which mean that n;
and the fitted covariance matrix are differ-
ent from week to week. The present data
set is relatively small and we were still able
to compute exact maximum likelihood, but
some variants of the EM algorithm (Little
and Rubin 1987, McLachlan and Krishnan
1997) were also used, and remain the focus
of further research.
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Results

The model (5) was fitted to the data values
from which each weekly mean had been sub-
tracted. The residuals 7, were assumed in-
dependent at different time points but with
spatial covariances given by (6) with (4).
As an example of the results, the maximum
likelihood of the parameter 6 was 0.92 with
standard error 0.097. Since a linear vari-
ogram corresponds to #s = 1, this shows
that the spatial dependence is not signifi-
cantly different from a linear variogram.

The fitted model was then used to construct
a predicted surface, with estimated root
mean squared prediction error (RMSPE),
for each week of the year and also for the av-
erage over all weeks. The latter is of great-
est interest in the context of EPA standards
setting.
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Fig. 9 shows the predicted surface and RM-
SPE for week 33 (the week with highest
average PMs 5) and overall for the annual
mean. Fig. 10 shows the estimated prob-
ability that any particular location exceeds
the 15 ug/m? annual mean standard. These
maps are based on kriging the residuals 7,
in (4) and then combining them with the
estimated fixed effects for ¢} and 67, trans-
forming back to the original scale of the
data for the actual plots. The RMSPE val-
ues used here take into account the averag-
ing of kriged values, but do not take account
of the additional uncertainty in estimating
the parameters #; and 6. Fig. 10 is based
on the assumption that (on a square root
scale) the difference between the predicted
and true values, scaled by the RMSPE, has
a standard normal distribution.

10 15 20

Fig. 9. (a) Map of estimated PMs 5 sur-
face in r681dent1al locations for week 33 of
data. (b) RMS prediction errors for map in
(a). (c) Map of estimated PMj 5 surface in
residential locations averaged over all weeks
of data. (d) RMS prediction errors for map
in (c).
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Fig. 10. Estimated probability that the
annual average PMs 5 exceeds the EPA
standard of 15 pug/m3 at each location; the
letters A, C and R indicate the positions of
Atlanta, Charlotte, and Raleigh.
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It can be seen that substantial parts of the
region, including the western portions of
North and South Carolina and virtually the
whole of the state of Georgia, appear to be
in violation of the standard. Of the three
major cities marked on Fig. 10, Atlanta
and Charlotte are clearly in the “violation”
zone; Raleigh is on the boundary of it.

In future work, we hope to extend this anal-
ysis to other parts of the country (this will
certainly involve consideration of nonsta-
tionary spatial models), to analyze more re-
cent data, and to consider the associated
“network design” questions.
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