Models for Spatial-Temporal Covariances

Michael Stein and Mikyoung Jun

Department of Statistics, University of Chicago

Based on: http://www.stat.uchicago.edu/~cises/research/cises-tr4.pdf

SPATIAL-TEMPORAL COVARIANCES

 $Z(\mathbf{x},t)$ stationary spatial-temporal process, so that

$$\operatorname{cov}\left\{Z(\mathbf{x}_{1}, t_{1}), Z(\mathbf{x}_{2}, t_{2})\right\} = K(\mathbf{x}_{1} - \mathbf{x}_{2}, t_{1} - t_{2})$$
$$\gamma(\mathbf{x}, t) = K(\mathbf{0}, 0) - K(\mathbf{x}, t).$$

GOAL: $K(\mathbf{x}, t)$ should accurately describe the variances and correlations of all linear combinations of Z.

Monitoring data often collected at (\mathbf{x}_i, t) for i = 1, ..., n and t = 1, ..., T.

Does K accurately describe

$$\operatorname{var}\left\{Z(\mathbf{x}_{1},t)-Z(\mathbf{x}_{2},t)-Z(\mathbf{x}_{1},t+1)+Z(\mathbf{x}_{2},t+1)\right\}?$$

$$t+1 \uparrow -1 \qquad 1$$

$$t \mid \underbrace{1} \qquad -1$$

$$x_{1} \qquad x_{2}$$

Example: Isotropic v. separable models

Suppose Z process on plane with

$$K(x,y) = \exp\left\{-(x^2 + y^2)^{1/2}/10\right\}$$

(isotropic), but fit the separable model

$$K(x,y) = \theta_1 \exp \{-(|x| + |y|)/\theta_2\}.$$

Simulate isotropic process on 20×20 square grid with spacing 1.

MLE: $(\hat{\theta}_1, \hat{\theta}_2) = (0.656, 2.93)$.

Visual fit to empirical variogram: $(\hat{\theta}_1, \hat{\theta}_2) = (1.725, 20.8)$.

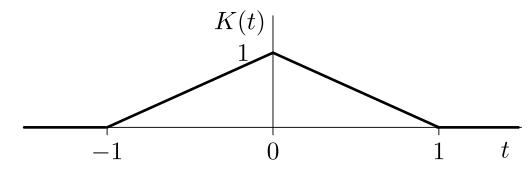
Consider $var\{Z(0,0) - Z(1,0)\} = 2\gamma(1,0)$:

Truth: 0.190 MLE: 0.379 Visual: 0.162

Consider $\operatorname{var}\{Z(0,0) - Z(1,0) - Z(0,1) + Z(1,1)\}$:

Truth: 0.234 MLE: 0.219 Visual: 0.0152

Triangular Covariance Function

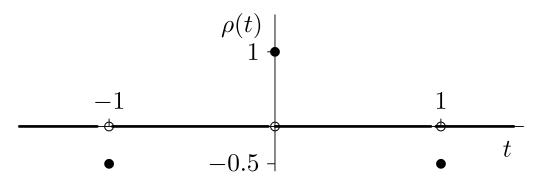


Define $\rho_{\epsilon}(t) = \operatorname{corr}\{Z(\epsilon) - Z(0), Z(t + \epsilon) - Z(t)\}.$

 \bullet \bullet \bullet \bullet \bullet

 $t \quad t + \epsilon$

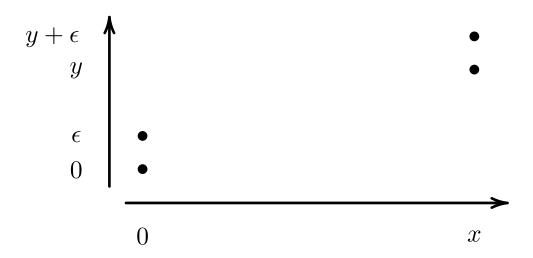
For all t, $\rho(t) = \lim_{\epsilon \to 0} \rho_{\epsilon}(t)$ exists.



SEPARABLE COVARIANCE FUNCTION

Suppose $K(x,y) = e^{-|x|-|y|}$.

Define $\rho_{\epsilon}(x, y) = \text{corr}\{Z(0, \epsilon) - Z(0, 0), Z(x, y + \epsilon) - Z(x, y)\}.$



For all $x, y, \rho(x, y) = \lim_{\epsilon \to 0} \rho_{\epsilon}(x, y)$ exists.

- $\rho(x,0) = e^{-|x|}$
- $\rho(x,y) = 0$ otherwise

RIDGES AND COVARIANCE FUNCTIONS

Can show it is the presence of the ridges along axes that lead to

- Very small value for $var\{Z(0,0) Z(1,0) Z(0,1) + Z(1,1)\}$
- Discontinuity in $\rho(x,y)$ at y=0

Many proposed spatial-temporal covariance models have similar ridges (Cressie and Huang (1999), Gneiting (2002)).

Models without ridges:

•
$$K(\mathbf{x},t) = K((|\mathbf{x}|^2 + \beta^2 t^2)^{1/2})$$

But these models are equally smooth in space and time.

Can we get arbitrary and different smoothness in space and time and avoid ridges?

YES!

Consider the spectral density

$$f(\mathbf{w}, v) = \left\{ c_1(a_1^2 + |\mathbf{w}|^2)^{\alpha_1} + c_2(a_2^2 + v^2)^{\alpha_2} \right\}^{-\nu}$$

and the corresponding covariance function

$$K(\mathbf{x},t) = \int_{\Re^d \times \Re} e^{i\mathbf{x}'\mathbf{w} + itv} f(\mathbf{w},v) \, \mathbf{dw} \, dv.$$

- K is an allowable covariance function
- Can get any degree of smoothness in space
- Can get any degree of smoothness in time
- \bullet K is infinitely differentiable away from origin

Can only carry out Fourier inversion for some very special cases.

Moments of spectral densities and smoothness of covariance functions

Well-known results (d = 1):

- f has mth moment $\Longrightarrow K^{(m)}$ exists
- $K^{(2m)}(0)$ exists \iff $K^{(2m)}$ exists \iff f has 2mth moment \iff Z is m-times mean square differentiable

Less well-known result:

• $\lim_{x\to\infty} x \int_x^\infty w f(w) dw = 0 \iff K'(0)$ exists

If f doesn't have moments, can we say anything about derivatives of K other than at the origin?

Moments of derivatives of f

Derivatives away from $\mathbf{0}$ of $K \iff$ Smoothness of $f(\mathbf{w})$ for large $|\mathbf{w}|$ One dimension: If f' integrable, $x \neq 0$, then integrating by parts,

$$K(x) = ix^{-1} \int e^{iwx} f'(w) dw.$$

If wf'(w) integrable, for $x \neq 0$,

$$K'(x) = -\frac{i}{x^2} \int e^{iwx} f'(w) dw - \frac{1}{x} \int w e^{iwx} f'(w) dw.$$

Examples:

•
$$K(x) = e^{-|x|}, f(w) = \frac{1}{\pi(1+w^2)} \Longrightarrow wf'(w) = -\frac{2w^2}{\pi(1+w^2)^2}$$

•
$$K(x) = (1 - |x|)^+, f(w) = \frac{1 - \cos(w)}{\pi w^2} \Longrightarrow wf'(w) = \frac{\sin(w)}{\pi w} + O(|w|^{-2})$$

More than one dimension

Derivatives away from $\mathbf{0}$ of $K \iff \text{Smoothness of } f(\mathbf{w})$ for $|\mathbf{w}|$ large

Suppose $|\mathbf{w}|^m \frac{\partial^k}{\partial w_i^k} f(\mathbf{w})$ is integrable for $j = 1, \dots, d$.

Then for all $\mathbf{x} \neq \mathbf{0}$, $\frac{\partial^{q_1 + \dots + q_d}}{\partial x_1^{q_1} \dots \partial x_d^{q_d}} K(\mathbf{x})$ exists when $q_1 + \dots + q_d \leq m$.

Examples:

- $f(\mathbf{w}, v) = \left\{ c_1(a_1^2 + |\mathbf{w}|^2)^{\alpha_1} + c_2(a_2^2 + v^2)^{\alpha_2} \right\}^{-\nu}$ $\Longrightarrow \left(|\mathbf{w}|^m + |v|^m \right) \frac{\partial^k}{\partial w_j^k} f(\mathbf{w}) \text{ is integrable for } k \text{ sufficiently large.}$
- $K(x) = e^{-|x|-|y|}$, $f(w) \propto (1 + w_1^2)^{-1} (1 + w_2^2)^{-1}$ $\implies w_2 \frac{\partial^k}{\partial w_1^k} f(\mathbf{w}) = \frac{w_2}{1 + w_2^2} \times \text{ function of } w_1. \text{ Not integrable.}$

ASYMMETRY IN SPACE-TIME COVARIANCES

Often find $K(\mathbf{x},t) \neq K(-\mathbf{x},t)$.

Examples:

- N-S and E-W components of wind vector
- Measured sulfate concentrations
- CMAQ sulfate concentrations
- Differences between measured and CMAQ sulfate

Asymmetries in correlations weaker for differences sign that CMAQ is working (?)

EXPLICIT MODELS WITH ASYMMETRY

If $K(\mathbf{x}, t)$ is symmetric, then $K(\mathbf{x} - t\mathbf{v}, t)$ is not.

If K is Fourier transform of $\Psi(|\mathbf{w}|, |v|)$ and K is twice differentiable, then Fourier transform of

$$f(\mathbf{w}, v) = \{a + b(\mathbf{w}'\mathbf{z})v + c_1|\mathbf{w}|^2 + c_2v^2\}\Psi(|\mathbf{w}|, |v|)$$

can be written in terms of derivatives of K.

If $|\mathbf{z}| = 1$, a, c_1, c_2 nonnegative and $b^2 \leq 4c_1c_2$, then f is nonnegative and integrable.

Example: Let $\mathcal{M}_{\nu}(y) = y^{\nu} \mathcal{K}_{\nu}(y)$ (Matérn class), then

$$K(\mathbf{x},t) = (2\nu + d + 1)\mathcal{M}_{\nu}(y) - 2\tau(\beta_1 \mathbf{x}'\mathbf{z})\beta_2 t \mathcal{M}_{\nu-1}(y),$$

is covariance function on $\Re^d \times \Re$ for $y = (\beta_1^2 |\mathbf{x}|^2 + \beta_2^2 t^2)^{1/2}$, ν, β_1, β_2 positive and $0 \le \tau \le 1$.

SUMMARY AND LOOK AHEAD

Little is known about modeling and analysis of space-time processes

- Space-time covariance functions and space-time interactions
- Methods for studying space-time interactions, especially for fixed monitoring networks

Other big issues:

- More sophisticated methods for combining monitoring data and physical models
- Nonstationary, non-Gaussian processes