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The Large Eddy Simulation (LES) turbulence model of Misra and Pullin [1] is based on alignment
dynamics, in which each fluid parcel carries an unit vector that responds to the mean flow as a Lundgren
spiral vortex. We analyze this model in the framework of its constrained variational principle and Ertel
theorem (equality of cross derivatives with respect to Lagrangian coordinate and time.)

Outline:

(1) Define Ertel’s theorem, Ohkitani’s relation, vorticity frame dynamics and alignment dynamics for Euler’s
equations.

(2) Use Ertel’s theorem to derive Lagrangian dynamics of the Frenet-Serret curvature and torsion of vortex
lines

(3) Represent Euler vorticity alignments with strain rate S & pressure Hessian P as quaternions. These
yield the Cayley-Klein parameters of S© & P&

(4) Recover evolution of S-alignment ¢ = [, x| driven by P-alignment ¢, = [ay, Xx,] as dynamics of
quaternions

(5) Apply this structure to LES models (Misra-Pullin [1], LANS—a [2]) and ideal MHD.

Theorem: (Ertel 1942) If w satisfies the 3D incompressible Euler equations then any differentiable function
 satisfies
D Du

Proof: In characteristic (Lie-derivative) form, the vorticity equation is,
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So w - aa_m(t) =w- aa—m(()) = d/ds is a Lagrangian invariant (Cauchy 1859) That is, the derivatives commute
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and Ertel’s theorem follows. Hence, a vortex line with arclength derivative w - V = d/ds is frozen into the
flow of the fluid velocity u(a,t), and Ertel’s theorem follows by equality of cross derivatives in ¢ and s.

Corollary: Du/Dt = 0 implies D(w - Vu)/Dt = 0 (e.g. PV in GFD).
Theorem: (Ohkitani 1993) The vortex stretching vector w - Vu = Sw obeys
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where P the Hessian matrix of the pressure P = {p;;} = {%} Thus,
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Remark: Ohkitani’s relation shows how P-alignments drive the dynamics of S-alignments.



Proof: Take y = wu in Ertel’s theorem.

Definitions: Vorticity growth rate () and swing rate (x)
The material rates of change of magnitude |w| and direction & are given by

D
% = Sw with S&=ad+xxd= () +(5&).,
o The scalar o = & - Sw is the vorticity growth rate
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o The 3-vector x = @ x S@ is the vorticity swing rate
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Remark: If w aligns with an eigenvector Sw = A @, then x = 0.

For such alignment, the vorticity direction is frozen into the flow.
We decompose the statement “P-alignment drives S-alignment” into parallel and perpendicular components:
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=—Pw with SO=a0+xx® & PO=a,0+x,X®
We then find Lagrangian dynamics for the orthonormal co-moving frame {@, x, ® X X}

D
Dt

~

@
=D x X
X

X o &

@

The “Darboux vector” D is defined as D = x —c1@/x and ¢; = &-(X X X,,) depends on the pressure Hessian.
Furthermore, the P-parameters [a,, x| drive S-parameters [, x] in the Lagrangian alignment-parameter
dynamics
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Vorticity frame dynamics for the three-dimensional incompressible Euler equations also has an elegant
representation in terms of quaternions. In this representation, alignment-parameter dynamics is unified into
a single equation and Ertel’s theorem relates the Lagrangian evolution in time of the orthonormal frame
{@, X, @ x X} to the Frenet-Serret equations for the curvature and torsion of a vortex line. The equations
for ideal MHD also fall naturally into this framework.
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