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The Large Eddy Simulation (LES) turbulence model of Misra and Pullin [1] is based on alignment
dynamics, in which each fluid parcel carries an unit vector that responds to the mean flow as a Lundgren
spiral vortex. We analyze this model in the framework of its constrained variational principle and Ertel
theorem (equality of cross derivatives with respect to Lagrangian coordinate and time.)

Outline:
(1) Define Ertel’s theorem, Ohkitani’s relation, vorticity frame dynamics and alignment dynamics for Euler’s
equations.
(2) Use Ertel’s theorem to derive Lagrangian dynamics of the Frenet-Serret curvature and torsion of vortex
lines
(3) Represent Euler vorticity alignments with strain rate S & pressure Hessian P as quaternions. These
yield the Cayley-Klein parameters of Sω̂ & P ω̂
(4) Recover evolution of S-alignment ζ = [α, χ] driven by P -alignment ζp = [αp, χp] as dynamics of
quaternions
(5) Apply this structure to LES models (Misra-Pullin [1], LANS−α [2]) and ideal MHD.

Theorem: (Ertel 1942) If ω satisfies the 3D incompressible Euler equations then any differentiable function
µ satisfies
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Proof: In characteristic (Lie-derivative) form, the vorticity equation is,
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So ω · ∂
∂x (t) = ω · ∂

∂x (0) = d/ds is a Lagrangian invariant (Cauchy 1859) That is, the derivatives commute
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and Ertel’s theorem follows. Hence, a vortex line with arclength derivative ω · ∇ = d/ds is frozen into the
flow of the fluid velocity u(x, t), and Ertel’s theorem follows by equality of cross derivatives in t and s.

Corollary: Dµ/Dt = 0 implies D(ω · ∇µ)/Dt = 0 (e.g. PV in GFD).

Theorem: (Ohkitani 1993) The vortex stretching vector ω · ∇u = Sω obeys
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where P the Hessian matrix of the pressure P = {p,ij} =
{

∂2p
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}
Thus,
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= −Pω (Ohkitani’s relation)

Remark: Ohkitani’s relation shows how P -alignments drive the dynamics of S-alignments.



Proof: Take µ = u in Ertel’s theorem.

Definitions: Vorticity growth rate (α) and swing rate (χ)
The material rates of change of magnitude |ω| and direction ω̂ are given by
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= Sω with Sω̂ = α ω̂ + χ × ω̂ = (Sω̂)‖ + (Sω̂)⊥

• The scalar α = ω̂ · Sω̂ is the vorticity growth rate
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= α |ω| α > 0 stretching
α < 0 shrinking

• The 3-vector χ = ω̂ × Sω̂ is the vorticity swing rate

Dω̂
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= χ × ω̂ , ω̂ × Dω̂

Dt
= χ (frequency)

Remark: If ω aligns with an eigenvector Sω̂ = λ ω̂, then χ = 0.
For such alignment, the vorticity direction is frozen into the flow.

We decompose the statement “P -alignment drives S-alignment” into parallel and perpendicular components:
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= −Pω with Sω̂ = α ω̂ + χ × ω̂ & P ω̂ = αp ω̂ + χp × ω̂

We then find Lagrangian dynamics for the orthonormal co-moving frame {ω̂, χ̂, ω̂ × χ̂}
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The “Darboux vector” D is defined as D = χ−c1ω̂/χ and c1 = ω̂ ·(χ̂×χp) depends on the pressure Hessian.
Furthermore, the P -parameters [αp, χp] drive S-parameters [α, χ] in the Lagrangian alignment-parameter
dynamics
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Vorticity frame dynamics for the three-dimensional incompressible Euler equations also has an elegant
representation in terms of quaternions. In this representation, alignment-parameter dynamics is unified into
a single equation and Ertel’s theorem relates the Lagrangian evolution in time of the orthonormal frame
{ω̂, χ̂, ω̂ × χ̂} to the Frenet-Serret equations for the curvature and torsion of a vortex line. The equations
for ideal MHD also fall naturally into this framework.
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