
GTP Workshop on
Modeling MHD Turbulence; Applications to
Planetary and Stellar dynamos
at NCAR, 27-29 June, 2006, Boulder, CO, USA

Spatially global & local scale-interaction analyses
for nonconforming spectral-element simulations

Aimé Fournier
Institute for Mathematics Applied to Geosciences

National Center for Atmospheric Research, Boulder CO 80307-3000 USA

The classical mathematical tool to analyze scales in spatial functions u(~x) has been the Fourier basis
F~k(~x) := e2πi~k·~x. The wavevector ~k labels global scale content, i.e., if a certain Fourier component û~k := 〈F∗

~k
u〉

is relatively large then on average over the spatial domain the corresponding field u(~x) exhibits relatively
significant structure at the corresponding scale |~k|−1. There is information only about scale but not the ~x
location where the structures occur1, which can be a serious limitation. Several remedies have been developed
to regain that information. Fournier [1, 2, 3], and op. cit. therein, have generalized localized scale interactions
(LSI2) from wavevector components û~k to wavelet components ũ~̀ := 〈ψ∗

~̀u〉 using some basis ψ~̀(~x). These
LSI analyses offer a multiscale analysis tool for which turbulence science has been striving, for a long time
and for many purposes [2, for a review].

Another well known approach to multiscale simulation is adaptive mesh refinement (AMR). All AMR
codes involve partitioning the problem’s spatial domain D into disjoint elements D =

⋃
~̀∈L X~̀, and most AMR

codes use the finite-element method (FEM) or similar discretizations with a small set of values representing
the global solution u(~x, t) locally in each X~̀. Thus most AMR simulations are intrinsically locally low-order
w.r.t. the X~̀ size h~̀. However, a few AMR codes are locally high-order w.r.t. a parameter p~̀ in each X~̀; these
include adaptive spectral-element methods (SEMs, e.g., [6, 7, 8] and op. cit. therein). The combined h-p
analyses built into SEM make it very effective for complicated flows [5, 6, 7, 8]. Using SEM combined with
LSI, we can quantitatively model and analyze many important phenomena that involve scale interactions
localized in parts of the domain, and that heretofore were mainly only described qualitatively or heuristically.

The fundamental cause of scale interactions is the presence of nonlinearities in the governing dynamics.
Nonlinear terms such as ~v·~∇~v at high Reynolds number can generate significant phenomena, such as co-
herent vortices, fronts, tubes etc. Historically, important and insightful diagnostic tools for understanding
these interactions have been linked to “spectral energetics”, e.g., the analysis of Fourier spectra and triad
interactions3

TF
a,b,c := ~̂u∗~ka

·(~̂u~kb
·2πi~kcδ~ka,~kb+~kc

)~̂u~kc
(1)

between modes a, b and c that describe global scale interactions without ~x-location information. Using the ψ~̀

basis, scale resolution of u is degraded,4 from a sharp wavevector value ~k down to approximate wavevector
elements ±~k ∈ K~̀ := supp ψ̂~̀ ≈ ×d

α=1[Kα, 2Kα] (where Kα := 2blog2 `αc), while location information is
augmented, from lack-of-information up to element locations ~X := ~~K−1·(~̀− ~K) (where ~~K := diag ~K). We
obtain new energetics diagnostics describing both scale and location:

Ta,b,c := ~̃u∗~̀
a
·(~̃u~̀

b
·〈ψ∗

~̀
a
ψ~̀

b

~∇ψ~̀
c
〉)~̃u~̀

c
, (2)

1Location information is dispersed among all arg û~k
.

2Apologies to the Shamen.
3In practice, Ta,b,c is symmetrized to isolate boundary-flux or divergent-~v contributions so that “detailed conservation”

Ta,b,c + Tb,c,a + Tc,a,b = 0 holds.
4As required by the Heisenberg uncertainty principle; note that |K~̀| &

∏d
α=1 Kα = |X~̀|−1.
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Figure 1: Schematic illustration of triad interaction in Fourier space (1), left, and wavelet space (2), right.

the triadic interaction among three structures in ~u that have characteristic scales ~Ka, ~Kb, ~Kc and locations
~Xa, ~Xb, ~Xc (Fig. 1). One can see that the triad (2) generalizes the Fourier triad (1). In fact, (2) is even
more general, in that the ψ~̀ can be any orthogonal basis. In order to construct LSI we may use a SEM basis
ψ~̀ built up from a one-dimensional single-element basis ψj(ξ) that can be either Legendre or interpolation
polynomials for 0 ≤ ξ ≤ 1. In the Legendre case the indexes ~ augment the spectral resolution, while in the
interpolation case they augment the spatial resolution.5 Recently it was shown that it is also possible to use
a SEM basis to compute (1) to machine precision [4].
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5One must also high-pass filter to remove the large-scalepolynomial space P~p(X~̀) from the union
⋃

i P~p(X
i,~̀

) of its subdivided

spaces, where
⋃

i X
i,~̀

= X~̀ and X
i,~̀

⋂
X

i′ 6=i,~̀
= ∅.


