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Adaptive ↔ Routine Network Design

ADAPTIVE ROUTINE

"One-time events"

Hurricanes

Winter Storms

Thunder Storms

Tornadoes

E(ADAPTIVE)

 Goal: Improve

   Time Mean 

  Predictability
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Routine network design ...

1. Define the problem

2. Observing System Simulation Experiments

3. My novel solution - Retrospective Design
Algorithm - theory, issues, computational
scaling

4. Demonstrate the utility of the RDA in an
Atmospheric GCM
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The background observing network

Lat

Lon

What type of problem is of interest?
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The problem

Lat

Lon

For X dollars - can purchase 8 new RED
TYPE instruments

– p.5/24



The problem

Lat

Lon

To assess the value - must find the optimal
locations of the NEW-FIXED observations
given the FIXED network
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The problem

Lat

Lon

Field experiments are often impractical,
expensive and time consuming
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The problem

Lat

Lon

Use simulations of the
forecasting/assimilation cycle (can include
economic benefit models)
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The problem

Lat

Lon

The goal is to use the simulations as a guide
in designing real networks of observations
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The problem

Lat

Lon

To assess value - we must have a suitable
framework for optimizing networks
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The problem

Lat

Lon

This type of problem is central to THORPEX
(a current 10 year international predictability
experiment)
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The problem

Lat

Lon

These design problems are of interest to
many types of prediction problems
(Synoptic/Meso, Ocean/Climate, Carbon
problems, ...)
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The trial network H1

Lat

Lon

H1 = [Hfixed; Hnew−fixed]
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Next ...

1. Define the problem

2. Observing System Simulation Experiments

3. My solution - Retrospective Design
Algorithm - theory, issues, computational
scaling

4. Demonstrate the utility of the RDA in an
Atmospheric GCM
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Evaluating the value of H1 using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

F

Error

H1 includes both NEW-FIXED and FIXED
observations
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Evaluating the value of H1 using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

F

Error

Averaging independent error estimates
amounts to an evaluation of an objective
function F (H1)
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Evaluating the value of H1 using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

F

Error

Our objective - minimize F
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Evaluating the value of H1 using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

F

Error

Simple optimization method - try all
conceivable configurations of H1 and pick the
minimum
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Evaluating the value of H1 using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

F

Error

For more advanced optimization techniques -
still need to evaluate F many times and it
should be smooth
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Evaluating the value of H1 using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

F

Error

For realistic GCMs - using OSSEs to optimize
F is PROHIBITIVELY EXPENSIVE
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Approximating information derived from OSSEs

Error

Observation Location

OSSE
Approximate

Similar Optimal Solutions

How can we obtain a statistically and dynamically
significant approximation of information derived from
OSSEs?
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Next ...

1. Define the problem

2. Observing System Simulation Experiments

3. My solution - Retrospective Design
Algorithm - theory, issues, computational
scaling

4. Demonstrate the utility of the RDA in an
Atmospheric GCM
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My solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
         H_fixed

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Trial network H1 made up of Hfixed and
Hnew−fixed
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My solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
         H_fixed

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Begin by running OSSEs with Hfixed and
store ensemble forecasts
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My solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
         H_fixed

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Need to assess added information if network
is switched to H1
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My solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
         H_fixed

         SAVE
   FORECASTS

T_i-m

T_m

T_i

For each initial time - could begin an OSSE
under the influence of H1 - still expensive
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My solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
         H_fixed

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Some approximation needs to be introduced
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My solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
         H_fixed

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Technique makes use of ensembles
generated from the OSSE with Hfixed
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Retrospective Design Algorithm II

t_i

  H_fixed

An ensemble forecast generated at t_i during 

the OSSE with H_fixed
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Retrospective Design Algorithm II

t_i

     H_fixed H_1 = H_fixed + H_new-fixed
From t_i+1 onward, assume the observing network
is H_1 - the trial network

Want to compute the covariance of the atmosphere
given H_1 for some time t > t_i
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Retrospective Design Algorithm II

t_i

     H_fixed H_1 = H_fixed + H_new-fixed

Without re-running the forecast model - an EnKF
based algorithm exists for computing  the atmosphere’s
covariance at t > t_i given trial network
H_1 = H_fixed + H_new-fixed - KEY POINT
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Retrospective Design Algorithm II

t_i

     H_fixed H_1 = H_fixed + H_new-fixed

Theory says that:
Covariance at t > t_i equivalent to what would be obtained
via a sequential in time filtering procedure for linear dynamics

Useful information for weakly nonlinear evolution
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Retrospective Design Algorithm II

t_i

     H_fixed H_1 = H_fixed + H_new-fixed

- Must consider linear dynamical time scale
- Mapping of perturbations between assimilation
  times should remain weakly nonlinear - otherwise
  influence of dynamics poorly ascertained 
- Space/time sampling errors must be handled properly
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Retrospective Design Algorithm II

t_i

     H_fixed H_1 = H_fixed + H_new-fixed

Computational cost
~ Cost of assimilating number of MOVABLE obs 
*Again, no repeated integrations of model equations
required - radically different from OSSEs*
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Evaluate the objective function using the RDA

X2

X1

     *UPDATED*
Archived Ensemble
   Forecasts with
    Trial Network 
           H_1

T_i-M

T_m

T_i

Error

F

– p.13/24



Next ...

1. Define the problem

2. Observing System Simulation Experiments

3. My solution - Retrospective Design
Algorithm - theory, issues, computational
scaling

4. Demonstrate the utility of the RDA in an
Atmospheric GCM
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PS network design in a GCM
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FIXED network of surface pressure
observations - 7 mb observational standard
deviation - assimilate every 12 hours
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PS network design in a GCM
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Run an EAKF with N = 20 ensemble
members (with localization and no inflation) in
a Held-Suarez configuration of an AGCM
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PS network design in a GCM
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Forcing - Newtonian cooling, Damping -
Rayleigh Friction

– p.15/24



PS network design in a GCM
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6 degrees horizontal resolution (60 × 30) - 5
vertical levels
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PS network design in a GCM
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Temperature gradient drives a baroclinically
unstable flow in the mid-latitudes

– p.15/24



Assimilation results: posterior PS uncertainty
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Assimilation results: posterior PS uncertainty

−80−60−40−20020406080
0

1

2

3

4

5

6

7

8

9

10

LATITUDE

S
T

D
 [P

S
] (

m
b)

EQUILIBRATED [PS] UNCERTAINTY

– p.16/24



The experiment
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Find the optimal placement of one additional
accurate PS observation along the 33 degree
latitude band
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The experiment

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

LONGITUDE

LA
T

IT
U

D
E

VERIFICATION REGION

Strong time mean winds at 33 degrees lat.
ensures a strong dynamical signal in this
problem
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Comparison of cost functions I
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Comparison of cost functions II
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Comparison of cost functions III
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Comparison of cost functions IV
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Comparison of cost functions V
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Summary and conclusions

A method (RDA) for approximating information
regarding relative placement of fixed observations
derived from OSSEs has been outlined

The statistical/dynamical significance has been
demonstrated in an AGCM for a large variety of
design problems

Computational scaling of the RDA is *EXTREMELY
FAVORABLE* - sophisticated optimization can be
used to minimize cost functions derived from the
RDA
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Key future areas in routine network design

Multiple observation design problems in GCMs
using optimization

Applying the RDA to archived operational ensemble
forecasts

Economic considerations (THORPEX)

Assessing value of different instrument purchases
(THORPEX)

Dealing/coping with model errors when using
simulations
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