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Outline

1. Sequential DA using ensemble Kalman filter.
2. ensemble Kalman filter — “full” Bayes DA.
3. Traffic example: DA in non-linear & non-Gaussian system.

4. DA in high-dimensional systems: what is reasonable?



Some to live by...

1. “Better to have the approximate solution to the correct problem than
the exact solution to the wrong problem” -J. Tukey
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Some to live by...

1. “Better to have the approximate solution to the correct problem than
the exact solution to the wrong problem” -J. Tukey

2. “Flying is like milk, everybody needs it’ -D. Nychka.

3. “It is easier to solve a problem if you know a lot about it” -G. W. Bush.
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Data Assimilation & Atmospheric State Prediction

Approximation to reality:

Weather observations — y; = H(x;) + €
Atmospheric State —  x;, = G(x_1) + M,
y;, data
X;, unobserved
H maps state to observation (linear or non-linear)
G highly nonlinear (chaotic, approximate, known)
n, (parameterized) model error, stochastic forcing

€; (gaussian) observation error, cov(€;) = R

Goal: Real-time sequential asstmilation and forecasting:

_ Bayes G() Bayes
p(Xt‘Yt 1)»Yt - p(Xt‘Yt) - p(Xt+1‘Yt)7Yt+1 s p

(K [YT)



Ensemble Kf algorithm

o Let th’i ~ p(x/|Y"™ ) (i=1,..., M) be a sample from the prior.

- EnKF: With f’f the sample covariance of {X{ .}, generate the posterior
by

Xy = X{,i +K, <Yt € — HtX{,i), e, ~ (0,R).
- EnKf asymptotically optimal if p(x;[Y*™!) and p(y,|x;) Gaussian;

e Common misconceptions about EnKf:

1. Won't work if p(x;|Y'™!) is non-Gaussian or G non-linear;
- will provide BLUP as M — oc.

- EnKf “respects” non-Gaussian properties in prior sample,
2. Must have M ~ O(dim(x;));

- sample error depends on spectrum of P;f ;
- localization /tapering and square-root Kfs effectively remove errors
due to sampling (Furrer € Bengtsson, 2005).



EnKF applied to Lorenz 96

e Atmospheric system with variables as k longitudes: zi,..., z4. (Sub-
script denotes spatial location.)

e Equations: for j =1,...,40,
¢ = zi1(Zim — 2j-2) — %4+ F,

where F' represents forcing.

e The equations contain quadratic nonlinearities mimicking advection:

8ui ~

e UZ'(UZ'/ — ul*)/(Sa:

e F' is chosen so that phase space is bounded and the system exhibits
chaotic behavior.

o Simulations: m = 10, ’short’ lead time (§; = .05),
‘observe’ 21, 23, . . ., 239" Y; = 2j + €5, € ~ N(0,4),
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Particle Filter Approximation - I

e Consider the general state-space model

Oy (o ) (. = H(x) +€)
State evolution: X1 ~ p(Xyi1]X¢) (x; = G(x¢_1) + 1)

e (The numerator of) Bayes theorem in the sequential DA setting:

P(Yer1, Xe1) o€ p(Yera[Xiia) /p(Xt+1|Xt>Yt)p(Xt|Yt)dXt-

- With x{; ~ p(x¢|Y"), the numerator (and posterior) is approximated

by

P(Yer1s Xep1) € P(Yir1 [Xer1) ZP Xt+1|Xm



Particle Filter Approximation - II

(continued) p(xp1| Y1) p(yt+1\Xt+1)ﬁ Zﬁl p(Xe41/x7;)

- When the densities on RHS are Gaussian, this “yields” the EnKf.

- Implements Kf recursion as M — oo

e Generalization to non-Gaussian case:

Draw x/,;; ~ p(Xeu|x{;), and let w; o¢ p(yilxis,)

- We could:
1. Accept th 114> as a draw from posterior, with probability w;; or,

2. Approximate p(x;,1|Y') = Zf\il w;0 (X — X{—H,i); or,

3. Develop further to produce: wy; — w1, (particle filter).

- Implements Bayes theorem as M — oo



Particle Filter Approximation - III

e Particle filters/rejection/importance sampling algorithms are problem-
atic in high-dimensions:

- manifestation of the curse-of-dimensionality

e A particular remedy - The Auxiliary PF":

ool oo e / p(%0 (o [Y)dx,

~ D(Yir1|Xern) ZP(XtH’XZj)

J

P(Yi1]Xei1) a
Z R ) p(y t+1|Mt+1,j)p(Xt+1|Xt,j)

P(Yi1 ‘:LLH—l Jj

Z p Yt+1|Xt+1 p(X 1‘Xa )
Gt t+ '
Yt+1‘Ut+1 ]> ! K

- Here, p(yii1|pte114) is a “high-density” area of the likelihood.
- Will not “solve” problem of uneven weights.
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State-Space Dynamics

e We use the simple model of Nagel and Schrekenberg (1992) as described
in Helbing (2001):

A road stretch:

Cell#1 Cell #2 Cell #3 Cell#L
Xy | | Xpol - . X | . . X,
—— —_— e — —
Vg Vi Vi Vi

— Let there be L cells numbered left to right.

— Vehicles at locations x4, ..., xy, with velocities vy, ..., vy.

— Location of the lead vehicle is x¢; location of last vehicle is x .
— The state of the system is x = {N,zy,..., TN, V1,...,Un}-

— The v; € {0, 1,...,5} and they satisfy z; + v; < x;; — 1.



State-Space Dynamics

The state transition mechanism x — X’ is as follows:

1. Change velocities:
Vi — ”UZ/» = maX{O, min(’ui -+ 1, Ti1 — X; — 1, 5) — 51}7

where & ~ Bernoulli(p).

2. Move vehicles:
T, — T, =T + U,

3. Adjust N: Remove lead vehicle and/or add new vehicle: e.g.,

— If 1 +v] > L, the lead car is removed W.p. Deyit-

— a new car is added with probability p,.., at location xy,; chosen
uniformly in {1,2,... min(5, 2%y — vy — 1)}.

e The above defines p(x;,1|x:, ).



Density Field

[Mustration using L = 200, N(start) =50, p = .5, T" = 500.
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Density and Average Velocity

[Mustration using L = 200, N (start) = 50, p = .5, T" = 500.
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Observation Model

e A simple model for the observations: with €; <> N(0, o2),

; 1+ ¢;, cell ¢ occupied;
Y' = : :
€; cell 7 not occupied.

— Assumption of independence (and normality) can be relaxed, but yields
more complicated updating mechanism.

e The above defines p(y,41]x;, 02).



Particle Filter Approach

e A sequential importance sampler (e.g., particle filter) is obtained by a
recursion on the weights w!_, X p(y|x!) — w:

prior likelihood Posterior
_A\

Bayes

— — - : ~
{zt, w1} and p(yelxi;) —  {xwiwiy X p(yelxei)}
— This produces a likelihood filter.

e We will adapt the PF to include observations from one-step ahead.



Our Scheme/Trick

e The particle approach:

p(xea[YH) o p(YH—l‘XH—l)/p<xt+1‘xt)p(xt‘Yt)dXt

M
1 |
~ Z P(Xe 41X (Y1 [Xe41) (1)

1=1

— Because of the system properties, we can sample from (1) directly,
without using a rejection method or importance sampling.

Trick: Multiplying and dividing (1) by p(y;1|2!)

M o
1 \P(Xi1 %) Py [Xes1)
(x| YY) oc — ) plypax .
e YT o< 37 ; e Py )
M

1 . .
= > By KPRl Vi) 2)

j=1

— Both densities in (2) are computable.



Sampling Procedure

Want: p(xp|[YH) = Zﬁlp(}’tﬂ‘xi)p(XHﬂXi, Y1)

e Assume a random sample x! ~ p(x;/Y?) and generate a draw from
posterior:

1. Sample x! = x! with probability proportional to p(y;,1|x!)
2. Drawing x;,; ~ p(X;11/X;, yes1)

~ We do this M times to obtain updated particles {x},,, =+ }.



Evaluating p(y:1|x]): Strategy

e In our setting, there are two aspects of the state-transition dynamics that
drastically simplify simulation and particle filter approximations:

1. vehicles are moved independently of one another; and, each vehicle
can only move to one of two possible positions

2. dependence of blocks of the y,;’s (measurement on cell 4) on vehicle
locations is very simple.

e [llustration: for particle j, let b(i) be the set of possible locations for
vehicle ¢ at time ¢ + 1

X nG)-1 n(i) | X.

~
b(i)

e Allows evaluation of p(ytﬂ\xg ) = HZ p(yfﬁ!Xi)



Evaluating p(y1|x7): Specifically

X

N

X

N-1

b(0)

b(N)

\—Y_)\—\F_)\—Y—/

b(N-1)

b(2)

b(1)

e Let b(7) index the data which depends on vehicle i. We want to evaluate

— After much cancelation,

p(yt—i—l |Xt)

p(Yt—H’Xg) X

e Draw state x] with probability Z
k

erb(l) ¢ (

Yix1
g

)

p(ym\X‘Z) =

1|

N

1=1

[1— p) exp (ya

Yt+1|Xt)

p(Yt+1!Xt)

b(7 ]
[T pw ).

n(i)
t+1

) + pexp (y

n(i)—1
t+1
0-2



Moving vehicles according to Xy, ~ p(Xi+1|X7, ¥i+1)

e Consider drawing x7,, ~ p(X;41|%X/, y:+1). This can again be done vehicle
by vehicle:

X nG)-1 nG) | X.

v
b(i)

— for vehicle 7, we randomly choose the move corresponding to n() or
n(i) — 1, by evaluating the ratio

Y41

n(i)—1
b(i
e =g =1 _ e ()

i ONE
P(yfii’fz = 0)p(& =0) (1 —p)exp <y;%1>

and & is then chosen to be 1 with probability «;/(1 + ;).



Filter Performance

e Left: Density and estimated density.

e Right: Probability forecast verification:
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What now?

e Remains to be done

-Initialization.

-Recursive parameter estimation.
e For realistic application:

-Extend to correlated measurement errors.
-How general is sampling scheme when model is more complex?



