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ABSTRACT

The estimated range of climate sensitivity has remained unchanged for decades, resulting in large un-
certainties in long-term projections of future climate under increased greenhouse gas concentrations. Here
the multi-thousand-member ensemble of climate model simulations from the climateprediction.net project
and a neural network are used to establish a relation between climate sensitivity and the amplitude of the
seasonal cycle in regional temperature. Most models with high sensitivities are found to overestimate the
seasonal cycle compared to observations. A probability density function for climate sensitivity is then
calculated from the present-day seasonal cycle in reanalysis and instrumental datasets. Subject to a number
of assumptions on the models and datasets used, it is found that climate sensitivity is very unlikely (5%
probability) to be either below 1.5–2 K or above about 5–6.5 K, with the best agreement found for
sensitivities between 3 and 3.5 K. This range is narrower than most probabilistic estimates derived from the
observed twentieth-century warming. The current generation of general circulation models are within that
range but do not sample the highest values.

1. Introduction

Projections of future increases in global temperature
for a given emission scenario are uncertain, with recent
quantitative methods estimating a spread of the models
of about 30% around the best-guess projection (Knutti
et al. 2002; Stott and Kettleborough 2002). This spread
arises mainly from uncertainties in the carbon cycle,
radiative forcing for given atmospheric concentrations,
climate sensitivity, and how the ocean mixing affects
the transient ocean heat uptake. The current range of
climate sensitivity is the dominant contribution to the
total uncertainty in future warming projections after
about the year 2050 (Knutti et al. 2002). Climate sen-
sitivity is usually referred to as the global mean equi-
librium near-surface warming for doubling the atmo-

spheric CO2 concentration, equivalent to a radiative
forcing of about 3.7 W m�2 (Myhre et al. 1998). It is
used to quantify all important feedbacks, including al-
bedo, cloud, and water vapor feedbacks, which poten-
tially amplify the warming. Both global temperature
increase and its uncertainty on time scales of centuries
scale almost linearly with sensitivity.

The almost canonical range of 1.5–4.5 K for climate
sensitivity was derived from the range covered by dif-
ferent atmosphere–ocean general circulation models
(AOGCMs) and has remained virtually unchanged for
decades (Charney 1979; Houghton et al. 1996, 2001).
No probability was ever formally attached to this range,
but sometimes assumed ad hoc due to the lack of better
knowledge (Wigley and Raper 2001). However, if we
are interested for example in the likelihood of exceed-
ing a certain temperature threshold for a given forcing,
a probability density function (PDF) for sensitivity is
inevitably needed.

A number of methods were proposed to constrain
climate sensitivity from observations in a probabilistic
way. Studies based on a combination of the recon-
structed radiative forcing and the observed surface
warming and ocean heat uptake (Andronova and
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Schlesinger 2001; Forest et al. 2002; Gregory et al. 2002;
Knutti et al. 2002, 2003; Forest et al. 2006; Frame et al.
2005) find ranges of sensitivity consistent with observa-
tions that are much larger than the range of 1.5–4.5 K
given by the Intergovernmental Panel on Climate
Change (IPCC) Third Assessment Report (TAR;
Houghton et al. 2001). In particular, the upper end is
difficult to constrain, and several studies have high-
lighted the possibility of sensitivity being 8 K or more.
Ensembles of climate models with perturbed physics
evaluated against present-day climatology also yield
wide sensitivity ranges (Murphy et al. 2004; Stainforth
et al. 2005). Paleoclimate data seems to provide some
constraints on climate sensitivity (Hoffert and Covey
1992; Lea 2004) but attempts are hampered by an often
poor quantification of the uncertainties associated with
paleoclimate data, and more recent estimates based on
climate models (Annan et al. 2005; Hegerl et al. 2006;
Schneider von Deimling et al. 2006) are not conclusive.
The fact that only proxies of temperature are available
and that those can be found only in some locations,
makes expert judgement inevitable. Thus, it seems that
recent quantitative attempts to constrain climate sensi-
tivity have rather increased than decreased the likely
range compared to IPCC TAR (Houghton et al. 2001).
In particular, the low probability but high impact case
of very large sensitivities is a reason for concern in
adaptation or mitigation planning of future climate
change.

In this paper we propose that the amplitude of the
seasonal cycle in temperature and its geographical dis-
tribution provides a constraint on climate sensitivity
and can thus be used for the evaluation of model per-
formance. The idea is based on the fact that seasonal
sensitivity (i.e., the local temperature change for the
solar insolation difference between summer and winter
at a given location) is at least partly determined by the
same processes as climate sensitivity, the equilibrium
global temperature response to a global change in forc-
ing. For some feedbacks, it is obvious that their strength
on a seasonal scale will be relevant for global warming
(e.g., how fast the land warms or cools compared to the
ocean). Hall and Qu (2006) also found a strong rela-
tionship of the surface albedo feedback on seasonal and
on decadal time scales for a series of AOGCMs. In this
case, a strong dependence of the surface albedo and
snow cover on temperature results in both a strong sea-
sonal cycle and a strong global warming signal, in par-
ticular in the high-latitude regions. This is in line with
the fact that we find high-latitude Northern Hemi-
sphere regions to provide the strongest constraint on
climate sensitivity. For other feedbacks like water va-
por and clouds, it is not clear how seasonal and decadal

effects are related. Patterns of temperature differences
like the land–ocean contrast, Northern Hemisphere
meridional temperature contrast, interhemispheric
temperature contrast, the seasonal cycle, and the diur-
nal temperature range have been found to correlate
strongly with global temperature (Braganza et al. 2003),
suggesting also that the amplitude of those patterns is
determined at least partly by the same feedbacks as
those that control global temperature. A full quantifi-
cation of all individual relevant feedbacks is impossible
at this stage, but also not needed. We simply argue that
there is (at least in some regions) a relation between the
amplitude of the seasonal temperature cycle and cli-
mate sensitivity if climate model parameters are varied,
and that such a relation can be approximated by a sta-
tistical method. Using that relation and observations on
the amplitude of the seasonal cycle allows us to derive
a PDF of climate sensitivity.

2. Model and statistical procedure

Climateprediction.net (CPDN) is a distributed com-
puting project that runs thousands of climate model
simulations on standard public or home computers
(Stainforth et al. 2005; more information available on-
line at http://climateprediction.net/). Parameters and
initial conditions in a version of the Third Hadley Cen-
tre atmosphere-slab ocean model (HadSM3; Pope et al.
2000; Murphy et al. 2004) are perturbed to explore the
widest possible range of model responses to doubling
atmospheric CO2. First results in this simplified setup
yielded a wide range of responses, with climate sensi-
tivity values from less than 2 to more than 11 K (Stain-
forth et al. 2005). Even model versions with sensitivities
larger than 10 K could not be excluded based on annual
mean climatology.

For the analysis presented here, 2500 CPDN simula-
tions were used. Quality control and the calculation of
climate sensitivity were done as described by Stainforth
et al. (2005). Seasonal amplitude (S) in temperature
was calculated as boreal summer June–August (JJA)
minus winter December–February (DJF) temperature
in 26 regions, the same as used in previous studies
(Giorgi and Francisco 2000; Houghton et al. 2001) plus
hemispheric and extratropical hemispheric averages
(see Fig. 1). Mean values were calculated from years
7–15 for both the control and 2 � CO2 phase and were
taken over the full latitude–longitude box for each re-
gion, and thus can include some ocean area (see Stain-
forth et al. 2005 for details about the experimental
setup and available output from the CPDN project).
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The 5%–95% range for Sco in the control phase across
the ensemble is shown in Fig. 1 (gray solid lines) for
each region. It is important to note that seasonality is
expected to change in a warming world (e.g., in high
northern latitudes, winter temperatures warm faster
than summer temperatures). The 5%–95% range for
S2x in the 2 � CO2 run is given as black dashed lines in
Fig. 1 for comparison. The observed seasonality is thus
neither representative of a preindustrial control nor a 2
� CO2 simulation. We therefore assume here that sea-
sonality changes linearly with global temperature in
each model version, and to be consistent with observa-
tions, interpolate seasonality for present-day climate
Spr linearly between the control and 2 � CO2 case for
each model version using the effectively realized global
temperature increase of years 7–15 in the 2 � CO2 case
relative to the control and assuming 0.35-K warming of
the period 1950–2000 compared to the preindustrial pe-
riod. The effect of using this present-day amplitude of
the seasonal cycle instead of Sco from the control phase
is small and does not change any of the conclusions. An
example of the interpolated present-day amplitude of

the seasonal cycle in temperature Spr over four regions
as a function of climate sensitivity from 2500 simula-
tions of the CPDN dataset is shown in Fig. 2. Averages
over the years 1950–2000 obtained from all forcing
simulations of the twentieth-century simulations from
17 coupled AOGCMs (available online at http://www-
pcmdi.llnl.gov/ipcc/about_ipcc.php) participating in the
IPCC Fourth Assessment Report (AR4) are shown as
circles for comparison. The mean seasonal cycle from
the 40-yr European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA-40;
Simmons and Gibson 2000) and the National Centers
for Environmental Prediction–National Center for At-
mospheric Research (NCEP–NCAR; Kalnay et al.
1996) reanalysis datasets and from the Hadley Centre/
Climatic Research Unit instrumental dataset (HadCruT2v;
Jones and Moberg 2003) are shown as horizontal lines
for comparison. In most of the extratropical Northern
Hemisphere regions (e.g., Figs. 2a,b), there is signifi-
cant positive correlation, with the low sensitivity model
versions underestimating and the very high sensitivity
model versions strongly overestimating the observed

FIG. 1. The 5%–95% ranges (lines) and medians (crosses) of the boreal summer � winter (JJA � DJF) temperature covered by all
CPDN simulations, for the control (gray solid) and 2 � CO2 simulations (black dashed) and for each region considered. Observed mean
values for the ERA-40, NCEP–NCAR, and HadCruT2v datasets are given as black dots for comparison.
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seasonality. Correlation varies strongly by region, with
some regions showing no correlation at all or showing a
rather complicated pattern (e.g., Figs. 2c,d). From Fig.
2c and Fig. 1 it becomes clear that seasonality does not
change at all or is not correlated with sensitivity in some
regions, and thus does not provide any constraint.

To find the relation between climate sensitivity and
the seasonality Spr in different regions, we use a neural
network. Neural networks are used to solve a variety of
problems in pattern recognition and classification,
tracking, control systems, fault detection, data com-
pression, feature extraction, signal processing, optimi-
zation problems, associative memory, and more. There
are many different types of neural networks, each suit-
able for specific applications.

A feed-forward neural network with 10 neurons and
sigmoid transfer function in the input layer and one
neuron with linear transfer function in the output layer
is used here to predict climate sensitivity from the sea-
sonality Spr. The Levenberg–Marquardt algorithm
(Hagan and Menhaj 1994) is the most efficient learning

algorithm for this application. The choice of the net-
work type and size as well as the learning algorithm
depend on the problem considered. A detailed intro-
duction to neural network architectures, learning rules,
training methods, and applications was written by
Hagan et al. (1996). In this study, 60% of the simula-
tions are used for training, the rest is used for validation
to test against overfitting. First, the neural network is
trained using a random subset of simulations as the
training set. Essentially, this procedure minimizes the
error between predicted and true sensitivity in the
training set by adjusting the weights in each neuron.
Thus, instead of following a specified set of rules, the
neural network learns the underlying input–output re-
lationship between the seasonality (input) and climate
sensitivity (output) from the examples presented in the
training set. If training is successful, the neural network
will later be able to predict the climate sensitivity values
for a pattern of seasonality to the extent the latter con-
tains information about the former. The training en-
sures that the regions that have a strong relation to

FIG. 2. The amplitude of the seasonal cycle in near-surface temperature in (a) western North America, (b) north
Asia, (c) the SH, and (d) the Amazon basin vs climate sensitivity. Each gray dot represents a simulation from the
CPDN project. Black horizontal lines mark the means from the ERA-40, NCEP–NCAR, and HadCruT2v datasets
over the same region. The uncertainties in each of the mean climatologies are smaller than the spread of the three
datasets. Black circles mark amplitudes of the seasonal cycle in the IPCC twentieth-century simulations.
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sensitivity are given more weight than those that have a
weak relation. Decision neurons (sigmoid transfer func-
tions) effectively lead to a piecewise approximation of
the relation in parameter space. In the absence of noise,
if enough information in the training set and sufficient
neurons and layers are provided, a neural network is
able to fit any relation, nonlinear or even discontinu-
ous, to arbitrary accuracy. The remaining 40% of the
simulations are used to prevent overfitting by an early
stopping mechanism, but overfitting is not a problem
here. Overfitting refers to the situation when the neural
network has too many degrees of freedom and starts to
approximate the noise in the training subset, which is
not robust throughout the whole dataset. Checking the
neural network in each training step against an inde-
pendent set of simulations allows the detection of this
problem and training can be stopped if overfitting starts
to occur. For a given training set, multiple training at-
tempts are done with random initial weights in the neu-
rons to ensure the best possible performance, measured
as rms difference between predicted and true climate
sensitivity on the rest of the simulations not used for
training. The predicted versus true sensitivities of an
independent set of simulations not used for training are
shown in Fig. 3. In general, we find good agreement,
with a correlation coefficient r � 0.88. However, the
agreement is far from perfect, indicating that the sea-
sonality contains not all information needed and is only
partly successful in predicting climate sensitivity. The
mean absolute error (predicted minus true sensitivity)
is about 0.5 K for sensitivities around 3 K, and increases

to about 1.5 K for sensitivities larger than 8 K. The
distribution of the error � between predicted and true
sensitivity is assumed to be normal (but dependant on
sensitivity) and will be used in the next steps. Second,
NCEP–NCAR and ERA-40 reanalyses and the
HadCruT2v instrumental datasets are used to calculate
a climatology and its uncertainty due to interannual
variability (the uncertainty of the mean climatology is
the standard deviation of the individual years divided
by the square root of the number of years). Ten thou-
sand sets of the 26 regional amplitudes of the seasonal
temperature cycle are then generated assuming a nor-
mal distribution of the uncertainty in the climatology of
each region. Third, each of these perturbed climatology
sets is taken as an input into the neural network, pre-
dicting one value for climate sensitivity. A random er-
ror is added to the predicted sensitivity according to the
error � estimated from simulations with similar sensi-
tivity in the CPDN validation set. Fourth, this proce-
dure is repeated 50 times using other random training
subsets, accounting for the fact that the neural network
training will not always converge to the same solution
when using a different training set.

The final probability density functions is therefore a
composite of 500 000 simulated climate sensitivity val-
ues. It takes into account the uncertainty due to inter-
annual variability in the climatological dataset and the
fact that the neural network is not a perfect predictor,
and it uses both different subsets for training and mul-
tiple initial values for the weights in the neurons. The
total uncertainty in the predicted climate sensitivity de-
pends on the uncertainty assumed for the mean clima-
tology. The assumptions made for the observational un-
certainty as well as the assumptions in this statistical
method are discussed in a separate section below.

3. Results and discussion

The median and 5%–95% ranges for climate sensi-
tivity derived from observations and reanalysis clima-
tology are shown in Fig. 4. Median values for sensitivity
using the land regions only are found at 3.2, 3.3, and 3.4
K for ERA-40, NCEP–NCAR, and HadCruT2v, re-
spectively. Under the “zero structural uncertainty” as-
sumption in which the only sources of error considered
are the uncertainty in the neural network model and
uncertainty in the true amplitude of the seasonal cycle
due to internal climate variability, the lower (5%)
bounds are 2.2, 2.2, and 2.3 K for ERA-40, NCEP–
NCAR, and HadCruT2v, respectively. The upper
(95%) bounds are 4.3, 4.6, and 4.4 K, respectively. The
average of the three ranges is 2.2–4.4 K, the median is
3.3 K. The solid lines in Fig. 4 denote the PDFs in the

FIG. 3. Climate sensitivity predicted with the neural network
from seasonality of temperature vs true sensitivity from a subset
of 1000 CPDN simulations not used for training (gray dots) and
for the 17 IPCC AOGCMs (black circles). Correlation for the
CPDN simulations is r � 0.88.

4228 J O U R N A L O F C L I M A T E VOLUME 19



standard case where all land regions were used, except
for those regions where the climatological value was
found to be outside the range covered by the CPDN
dataset. Since there is a high degree of correlation be-
tween the seasonal temperature amplitude in different
regions, omitting a few regions does not affect the fit-
ting procedure. The dashed lines show the cases where
the total Northern Hemisphere (NH) and the extratro-
pical NH were used as an additional input. While the
median and lower limit are similar, the upper limit is
harder to constrain. We believe that the use of a slab
ocean model in CPDN means that temperature over
ocean follows the sea surface temperature dataset used
in the spinup phase very closely, almost independent of
the model parameters used, so the relationship (if any)
between parameters and seasonal cycle over the ocean
becomes arbitrary. This is supported by the fact that the
climatology of the whole Southern Hemisphere (SH)
and the extratropical SH of all model versions only
covers a very small range, and that seasonality shows no
correlation to climate sensitivity in these ocean domi-
nated regions. Thus, Fig. 4 shows that the best guess
and lower limit are quite robust for different assump-

tions and different climatologies, while the upper limit
is more sensitive. Thus our most optimistic scenario of
(unrealistically) assuming no structural uncertainty sug-
gests that climate sensitivities below about 2 K and
above 4.5 K can be ruled out at the 5% percentile, with
a best guess around 3–3.5 K, in very good agreement
with most AOGCMs. The lower bound is robust
against all assumptions. This suggests strong evidence
for a substantial net positive net feedback in the climate
system and provides a lower bound on the expected
climate change of the future. The upper bound, how-
ever, depends on how structural uncertainty is ac-
counted for. This is further discussed in the section be-
low.

4. Caveats

The results presented here depend on a number of
assumptions. First, the HadSM3 model used in the
CPDN project could have a bias in seasonality (i.e.,
over- or underestimate seasonality systematically in
certain regions regardless of the parameters chosen),
causing the PDF of sensitivity to be shifted by an un-
known amount. Second, the neural network could fit a
relation between seasonality and sensitivity that only
exists in the HadSM3 model. As a weaker statement,
one could argue that although there is a general rela-
tion between the two, the neural network might fit cer-
tain HadSM3 specific patterns that are not found in the
real world, thus causing the uncertainty to be underes-
timated. Those uncertainties and all aspects of the
model that cannot be varied by changing parameters
(e.g., grid type and resolution, numerical schemes,
forms of parameterizations, and processes resolved or
neglected) are summarized here as “structural uncer-
tainties.” They are difficult to estimate quantitatively;
however, the following arguments point to the validity
of the approach.

We provide an evaluation of the method by predict-
ing climate sensitivity for other independent
AOGCMs, using the exact same statistical procedure.
In contrast to the real world, the sensitivity predicted
from the seasonal cycle of an AOGCM can be com-
pared to the true sensitivity obtained from a 2 � CO2

simulation. Instead of reanalysis or observational data,
output from coupled climate models from the years
1950–2000 is taken from transient twentieth-century
simulations calculated for the upcoming IPCC AR4.
The simulations include all radiative forcing compo-
nents implemented by the modeling groups. Ensemble
means are used for models where multiple simulations
are available. The predicted median sensitivities and
5%–95% uncertainty ranges for the 17 models or model
versions available are shown in Fig. 5, the predicted

FIG. 4. PDFs for climate sensitivity derived from the ERA-40,
NCEP–NCAR, and HadCruT2v datasets using all possible re-
gions (“all”) or only those over land (“land”). Lines mark 5%–
95% ranges; circles mark medians. The constraints are stronger if
only the land regions are used (solid lines) compared to when
hemispheric averages are included (dashed lines). The solid black
PDF is the mean of the three PDFs using land regions only and is
considered to be the standard case when neglecting structural
uncertainties. The median in this case is 3.3 K; the 5%–95% range
is 2.2–4.4 K.
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medians versus true sensitivities are also shown as
circles in the scatterplot in Fig. 3. In general, the pre-
dicted median sensitivity from the transient simulation
is within less than 0.7 K (rms) of the true sensitivity
calculated from the corresponding 2 � CO2 slab model
versions. Exceptions are the two National Aeronautics
and Space Administration (NASA) Goddard Institute
for Space Studies (GISS) and the Canadian CGCM
models where the pattern of seasonality is unlike any of
the CPDN simulations. In such a case, the neural net-
work is unable to extrapolate from what it has been
trained for. The three models are excluded for the rest
of the discussion. Not surprising, the predicted uncer-
tainty is smallest and agreement of the median with the
true sensitivity is excellent for the coupled Third Had-
ley Centre Coupled Model (HadCM3), which shares
the atmospheric component with the HadSM3 model

used by CPDN. We consider this to be a powerful test
of our method. It shows that the relation between sea-
sonality and sensitivity derived from slab control and
2 � CO2 runs can be applied to output from a transient
twentieth-century simulation. In a wider sense, this
means that the results of a grand ensemble of a slab
models can, to some extent, be used to predict some
features of the results of transient, coupled simulations.

It could be argued that predicting sensitivity is inher-
ently more difficult for another AOGCM than for the
observations or reanalysis case. Although the reanalysis
model also has deficiencies, it is forced to follow closely
the observed data and is thus considered to be the
“truth.” Predicting sensitivity for an AOGCM on the
other hand has to deal with systematic errors in both
the CPDN model HadSM3 and the independent model
where sensitivity is to be predicted. On the other hand,
many AOGCMs have errors and biases in common, so
in the event of all climate-resolution GCMs sharing a
common bias with respect to the real world, we appear
to be doing misleadingly well in predicting GCM sen-
sitivity. The fact that the error of the predicted sensi-
tivity (0.7-K rms difference of predicted median minus
true sensitivity for the 14 models) is smaller than the
uncertainty range suggested by the neural network
method (on average about 1.0 K, one standard devia-
tion) indicates that the neural network method is not
underestimating the uncertainty in predicting climate
sensitivity due to structural uncertainties, as far as these
are represented by intermodel differences. More en-
couraging still, there is no evidence of the neural net-
work method over- or underestimating sensitivity in a
systematic way. Thus, from the AOGCM test there is
no evidence that we are underestimating the width of
the sensitivity PDFs (within the limited range of sensi-
tivities covered by the AOGCMs) or of a bias in the
predicted sensitivity, subject to the caveat that we can-
not, of necessity, sample errors that all models have in
common using this approach.

A second verification of performance is given in Fig.
6, where we show the dependence of the prediction
error and the predicted best guess and range of sensi-
tivity as a function of the number of neurons. Increasing
the number of neurons (i.e., increasing the number of
degrees of freedom) decreases the error in the pre-
dicted sensitivity for both the CPDN verification set
(1000 runs, Fig. 6a) and for the 14 AOGCMS [GISS
and the Canadian Centre for Climate Modelling and
Analysis (CCCma) models excluded; Fig. 6b]. How-
ever, increasing the neuron number beyond about five
only improves the performance for the CPDN data, but
not for the other AOGCMs. We interpret this as the
fact that the neural network starts to fit CPDN specific

FIG. 5. Climate sensitivity predicted for 17 AOGCMs. Black
circles indicate the median, black lines the 5%–95% range and
black crosses mark the true model sensitivity. In the models, the
amplitude of the seasonal cycle was calculated from 1950 to 2000
from the all-forcing simulations over the twentieth century to be
comparable with the observational and reanalysis data. The mod-
els with their corresponding institutions are from left to right: the
Geophysical Fluid Dynamics Laboratory Coupled Models
Versions 2.0 (GFDL-CM2.0) and 2.1 (GFDL-CM2.1), the GISS-
EH, GISS-ER, the Institute for Numerical Mathematics Coupled
Model Version 3.0 (INM-CM3.0), the Institut Pierre Simon
Laplace Coupled Model Version 4 (IPSL-CM4), the Model
for Interdisciplinary Research on Climate Version 3.2
[MIROC3.2(hires)] and [MIROC3.2(medres)], the Max Planck
Institute for Meteorology Ocean Model (ECHAM5/MPI-OM),
the Meteorological Research Institute Coupled GCM Version
2.3.2 (MRI-CGCM2.3.2), the National Center for Atmospheric
Research Community Coupled System Model Version 3
(CCSM3), the National Center for Atmospheric Research Paral-
lel Climate Model (PCM), the Met Office (UKMO) HadCM3, the
Commonwealth Scientific and Industrial Research Organisation
Model (CSIRO-Mk3.0), the CCCma Coupled GCM Version 3.1
[CGCM3.1(T47)], the Meteorological Institute of the University
of Bonn/Meteorological Research Institute of the Korea Meteo-
rological Administration model (ECHO-G), and the UKMO Ha-
dley Centre Global Environment Model (HadGEM1). (Model
details and references can be found online at http://www-
pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documen-
tation.php.)
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patterns beyond this point, which are not present in
other models and probably also not in the reanalysis
data. On the other hand, increasing the number of neu-
rons only very weakly affects the best guess and uncer-
tainty of the sensitivity predicted from reanalysis and
observational data (Fig. 6c), so the choice of the neural
network size is not critical here. Since it is desirable to
have good performance, avoid overfitting, and to have
few degrees of freedom for computational efficiency,
we chose 10 neurons as the standard case for Fig. 4. The
results are also insensitive to details in the design of the
neural network and the number of simulations used for
training in this standard setup.

The observational dataset HadCruT2v and the two
reanalysis datasets, which are generated by assimilating
observational data, should match the “true” climate
evolution very closely, in particular for temperature,
which is comparably simple to model and where many
good observations exist. There are nevertheless system-

atic errors in these datasets that are not captured by the
uncertainty estimate from interannual variability. In-
deed, for the mean seasonal cycle, the spread between
ERA-40, NCEP–NCAR, and HadCruT2v is substan-
tially larger than the uncertainty due to natural vari-
ability in the mean of each dataset. The effect of taking
into account the spread of the different datasets is dis-
cussed below. Another point to consider is the fact that
the reanalysis datasets cover only a period of about 50
yr. It is therefore impossible to make any statement
about the extreme tails of the distribution given the
limited number of years to estimate interannual vari-
ability. We assume the distribution to be normal, and
there is no evidence from the data against that. To test
the effect of a particular realization of 50 yr of variabil-
ity on the predicted sensitivity range, sensitivity was
calculated for different ensemble members of the same
AOGCM and the 1950–2000 all-forcing simulations. In
most cases, differences in the 5% and 95% levels for
sensitivity were very small, but it must be stated clearly
here that it is fundamentally impossible to exclude with
certainty the possibility of climate sensitivity being out-
side any range. It is equally impossible to give a 99%
confidence level for it, given the limited information on
the tails of the prior for our climatology (Frame et al.
2005). In other words, even if the solid PDF in Fig. 4
suggests essentially zero probability for sensitivities
above 8 K, that conclusion is not justified from that
method, and probably also not from any similar
method. A value for climate sensitivity of 11 K as found
by Stainforth et al. (2005) can still not be excluded. The
correct statement is that there is a 1 in 20 chance for
sensitivity being above about a certain level, with very
little information above that level. But this itself is a
vital step to quantify uncertainties in model projections.

An additional problem is how to account for struc-
tural uncertainties. In a similar study, Piani et al. (2005)
found that just accounting for internal climate variabil-
ity leads to very tight constraints on sensitivity but,
more importantly, a clear inconsistency between the
residual and the noise model. Given that for the ampli-
tude of the seasonal cycle in most regions, the standard
deviation across the three datasets is larger than the
uncertainty in each dataset due to internal variability,
we use the sum of the two as a more reasonable uncer-
tainty estimate of the seasonal cycle. This accounts in a
crude way for part of the structural uncertainties and
therefore provides minimum estimate of the contribu-
tion of structural uncertainty. In a sensitivity test where
we double the combined uncertainty (interannual vari-
ability plus spread across datasets) again, the peak of
the PDF remains similar and the lower bound changes
only slightly. However, the 95% level is more sensitive

FIG. 6. (a) Error (1 std dev) of the predicted sensitivity on a
subset of the CPDN data (not used for training), (b) error (1 std
dev) of the predicted sensitivity for 14 AOGCMs (GISS and
CGCM models excluded), and (c) mean (solid) and 5%–95%
range for sensitivity (dashed) predicted from observed/reanalysis
seasonality over land vs number of neurons in the neural network.
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and the PDF becomes increasingly skewed, indicating
that the upper bound on climate sensitivity is more dif-
ficult to constrain. Figure 7 shows the medians, 5%–
95% ranges, and PDFs of climate sensitivity for the two
cases.

We conclude that structural uncertainty is an impor-
tant contribution to the total uncertainty here, but has
received little attention in these types of studies so far.
Even if there is little evidence from the sensitivities
derived for other AOGCMs, we conclude from the ar-
guments above that when trying to account for struc-
tural uncertainties in the datasets and the model used,
the result in Fig. 4 does not capture the full uncertainty
range, and that a more conservative estimate as in Fig.
7 would place an upper bound (95%) for climate sen-
sitivity between 5 and 6.5 K.

An additional problem not considered is that there is
a systematic relationship between climate sensitivity
and the top-of-atmosphere energy imbalance in the cli-
mateprediction.net ensembles: these being slab models,
there is no constraint that integrated fluxes at the sur-
face and top of atmosphere sum to zero. Since many

observable quantities, including the seasonal cycle,
would likely be affected by an overall atmospheric en-
ergy imbalance for reasons that have nothing to do with
atmospheric feedbacks, this may have implications for
the approach to constraining sensitivity that we propose
here, which we will explore in subsequent work. For-
tunately, the climateprediction.net ensemble is growing
rapidly such that it will soon be possible to restrict at-
tention to a subset of model versions that are approxi-
mately in energy balance, avoiding this potential prob-
lem.

5. Conclusions

The amplitude of the seasonal cycle in temperature
provides a strong constraint on climate sensitivity. Us-
ing a neural network and climatological data, and sub-
ject to the assumptions discussed above, we find a me-
dian and 5%–95% range for climate sensitivity of 3.3
and 2.2–4.4 K when treating three observational and
reanalysis datasets as equally plausible. This however
ignores structural uncertainty and thus does not capture
the full uncertainty range. Including a simple represen-
tation of structural uncertainty by increasing the uncer-
tainty of the observations widens the uncertainty range.
While the lower bound (5%) is relatively robust at
1.5–2 K, the upper one (95%) is sensitive to the as-
sumptions made and varies between 5 and 6.5 K.

Unlike some studies based on the transient warming
of the twentieth century, which show a large probability
for high values of sensitivity, this method suggests an
upper bound (95% level) on climate sensitivity at about
6.5 K for most cases considered, and above about 5 K
when using an optimal combination of regions and de-
grees of freedom and making our most optimistic as-
sumptions about the origins of model–data inconsis-
tency. The 5%–95% confidence range is in broad
agreement with the range of climate sensitivities
spanned by the AOGCM models currently in use, but
with a somewhat longer tail at high values that is not
sampled by any AOGCM used for the upcoming IPCC
report. Equally important as the constraints placed on
the upper bound, this method indicates that climate
sensitivity is very unlikely below 1.5–2 K, independent
of all assumptions. This supports the view that the net
feedbacks are substantially positive and it provides a
lower bound on the climate change we have to expect in
the future. While not allowing to completely exclude
very high values of climate sensitivity, this approach
allows one to attach probabilities to any value of sen-
sitivity within the 5%–95% interval, and thus provides
a basis for probabilistic projections based on large cli-
mate model ensembles.

FIG. 7. PDFs, medians (circles), and 5%–95% ranges (horizon-
tal lines) for climate sensitivity. The solid lines denote the case
where the uncertainty in the observed seasonal cycle, in addition
to natural variability, takes into account the spread across the
ERA-40, NCEP–NCAR, and HadCruT2v datasets, and provides
a minimum estimate of structural uncertainty to the PDF of cli-
mate sensitivity. Doubling this combined uncertainty again
(dashed) indicates that the 95% level is most sensitive as to how
structural uncertainties are treated. Medians are 3.1 and 3.4 K and
the 5%–95% ranges are 1.9–4.7 and 1.5–6.4 K for the solid and
dashed cases, respectively.
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