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ABSTRACT

It is argued that simulations of the twentieth century performed with coupled global climate models with
specified historical changes in external radiative forcing can be interpreted as climate hindcasts. A simple
Bayesian method for postprocessing such simulations is described, which produces probabilistic hindcasts of
interdecadal temperature changes on large spatial scales. Hindcasts produced for the last two decades of the
twentieth century are shown to be skillful. The suggestion that skillful decadal forecasts can be produced on
large regional scales by exploiting the response to anthropogenic forcing provides additional evidence that
anthropogenic change in the composition of the atmosphere has influenced the climate. In the absence of
large negative volcanic forcing on the climate system (which cannot presently be forecast), it is predicted
that the global mean temperature for the decade 2000–09 will lie above the 1970–99 normal with a prob-
ability of 0.94. The global mean temperature anomaly for this decade relative to 1970–99 is predicted to be
0.35°C with a 5%–95% confidence range of 0.21°–0.48°C.

1. Introduction

There is now a large body of evidence (see, e.g., the
reviews of Mitchell et al. 2001; International Ad Hoc
Detection and Attribution Group 2005) that changes in
the external radiative forcing of the climate system
have had a substantial impact on its evolution since the
industrial revolution. These forcing changes have been
caused by the changing composition of the atmosphere,
mainly as a result of anthropogenic emissions of green-

house gases and aerosol precursors from fossil fuel
burning, and secondarily by natural decadal-scale varia-
tions in volcanic and solar forcing. Evidence of the ef-
fects of these forcing changes on the climate system has
been detected in surface air temperature at global
scales (Mitchell et al. 2001; International Ad Hoc De-
tection and Attribution Group 2005) and recently also
at continental and subcontinental scales (Zwiers and
Zhang 2003; Stott 2003; Braganza et al. 2004; Gillett et
al. 2004a; Zhang et al. 2006; Karoly and Wu 2005). A
consistent picture of change that is related to the
change in external forcing is also emerging in several
other aspects of the climate system, such as ocean heat
content, snow and sea ice cover extent, growing season
length, tropopause height, precipitation, and mean sea
level pressure (see, e.g., International Ad Hoc Detec-
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tion and Attribution Group 2005, and references
therein).

Given the strength of the evidence, it seems natural
to ask whether forcing projections can be used to fore-
cast large-scale climate change on decadal time scales.
Given their potential applications, many of which
would involve some type of hedging, it is desirable that
any decadal-scale forecast should be probabilistic
rather than deterministic. One approach for obtaining
such forecasts would be to produce large ensembles of
forced climate simulations that would then be inter-
preted in a probabilistic manner, either directly or after
some type of postprocessing to adjust for model biases.
Unfortunately, such an approach would be expensive to
implement given the need for large ensembles and the
complexity of climate system models that have be used
to study the evolution of the climate of the twentieth
century (see, e.g., Mitchell et al. 2001; International Ad
Hoc Detection and Attribution Group 2005). However,
recent methodological developments, notably the ap-
plication of Bayesian techniques to climate change de-
tection (Berliner et al. 2000; Min et al. 2004; Schnur and
Hasselmann 2005; Lee et al. 2005), provide a means by
which this possibility can be evaluated using small en-
sembles of simulations. The remainder of this paper
briefly explains the technique and describes prelimi-
nary results obtained when an ensemble of simulations
of the twentieth century using only the history of an-
thropogenic forcing change are evaluated as climate
hindcasts on decadal time scales.

2. Methods

In this section we will briefly describe the methods
that we use to make and verify decadal hindcasts of
temperature change. The term hindcast refers to a pre-
diction statement about the past that is made using only
information (such as initial conditions) that was avail-
able prior to the prediction period, while forecast cor-
responds to a statement about the future.

a. Forecasting model

Forecasts of decadal climate change have several po-
tential sources of skill. These include the initial ocean
state (e.g., Boer 2004), possibly the initial land surface
state, the response to external forcing conditions during
the forecast period, and the continued adjustment of
the climate during the forecast period toward a new
equilibrium consistent with forcing that continues to
persist, such as that which results from previous
changes in atmospheric composition. Transient climate
simulations of the twentieth century with specified his-

torical changes in radiative forcing can be thought of as
climate hindcasts that attempt to exploit the latter two
sources of skill. The extension of such simulations into
the twenty-first century using scenarios of future emis-
sion change can further be considered as forecasts of
future climate change, at least for relatively short 1–2
decade periods into the future (e.g., Zwiers 2002) be-
cause at these forecast leads, the climate response ap-
pears not to be very sensitive to the details of the forc-
ing scenario that must be specified.

To describe the statistical forecasting model, we must
first introduce some notation and make certain assump-
tions. Thus, we let Ot represent an observed decadal
mean field containing n spatial grid points for a decade
t, such as that of the 1970s. We can then think of the
departure of Ot from some base climatology Ot as being
the sum of the response to external forcing during de-
cade t relative to the base period, plus the effects of
internal natural variability. The latter might itself be
predictable on decadal time scales as an initial value
problem, with skill obtained from ocean and perhaps
land surface initial conditions as noted above (e.g.,
Grotzner et al. 1999; Collins and Allen 2002; Pohlmann
et al. 2004), but we will assume that this is not the case
for the purposes of this study. With these assumptions,
a reasonable statistical model for Yt � Ot � Ot might be

Yt � Xt�t � �t, �1�

where vector Xt � St � St contains the model-simulated
response in decade t to past external forcing relative to
the climatological base period, �t results from internal
variability, and �t is a scaling factor that accounts for
errors in the magnitude of the simulated response to
the specified external forcing.

Such a model can be used to make a decadal climate
forecast by making a suitable choice of a climatological
base period. Following the standard World Meteoro-
logical Organization convention for defining the cur-
rent mean climate, we have chosen the base period for
decade t to be the previous three decades t � 10, t � 20,
and t � 30. We made this choice because it is an ap-
proach often used in seasonal forecasting (see, e.g.,
Derome et al. 2001). However, it does impose some
challenges, particularly if it is anticipated that at least
some of the skill will derive from external forcing. For
example, the forcing from anthropogenic greenhouse
gas emissions has gradually strengthened over the
twentieth century, and this has resulted in a response
that has also strengthened over time (e.g., Mitchell et
al. 2001) and that therefore would have increasingly
expressed itself in the moving operational climatology.
Therefore, subtracting the current operational climatol-

5306 J O U R N A L O F C L I M A T E VOLUME 19



ogy from the current decadal mean will remove at least
part of the response that results from anthropogenic
greenhouse gas forcing. Consequently, forecast skill
that is anticipated to derive from such external forcing
may be somewhat reduced when anomalies are ex-
pressed relative to the moving operational climatology.

We indicate decades by their first year. Thus, for the
1970s, the observed anomaly field is computed as

Y1970 � O1970 � �O1960 � O1950 � O1940��3, �2�

and the corresponding model simulated field of re-
sponse anomalies is given by

X1970 � S1970 � �S1960 � S1950 � S1940��3, �3�

where, in order to reduce the effects of internal vari-
ability on the simulated response pattern, St is in fact
the mean of an ensemble of simulations of the twenti-
eth century, each using the same forcing prescription.
With such a convention and given an appropriate scal-
ing factor estimate �̂t, a hindcast (or forecast depending
upon the choice of t) can be made for decade t by
calculating

Ôt � Ot � X̂t�̂t � �̂t , �4�

where X̂t � Xt is the model forecast anomaly response
and �̂t � 0 is the forecast of the internal variability in
decade t. The third term, �̂, is zero because we have
assumed that there is no climate predictability from
internal sources on decadal time scales. This is likely to
be a suboptimal assumption (e.g., Boer 2004; Pohlmann
et al. 2004).

Equation (4) constitutes a valid hindcast in the sense
that it depends only on the evolution of the forcing
specified to the climate model prior to and during the
forecast decade t. This evolution is known from histori-
cal observations, albeit with uncertainty (Ramaswamy
et al. 2001) to the end of the twentieth century, and
subsequently can be specified from a forcing scenario,
such as one from the Intergovernmental Panel on Cli-

mate Change (IPCC) Special Report on Emissions Sce-
narios (SRES; Nakicenovic et al. 2000). As noted
above, the forecast for the 2000 or 2010 decade is not
likely to be sensitive to the specific choice of the forcing
scenario that is used to extend the simulations of the
twentieth century into the future.

The point-value forecasts obtained in this way can be
extended to probabilistic forecasts by noting (i) that the
simple forecasting model described above is, in fact, the
same statistical model that is used for climate change
detection; and (ii) that this model can be given a Bayes-
ian interpretation if we consider its parameters to be
random variables that have their own statistical distri-
butions (e.g., Lee et al. 2005).

b. Bayesian extension and forecast updating
procedure

Following Berliner et al. (2000) and Lee et al. (2005),
we will assume that �t has a Gaussian probability den-
sity function �(mt, ct) with mean mt and variance ct. The
value of mt and ct will be chosen according to our sub-
jective knowledge on �t and information from past ob-
servations. Further, we assume that �t is independent of
�t and that �t has a multivariate Gaussian probability
density function �n(0, �) of dimension n. With these
assumptions, it follows from the forecast model (1) that
the n dimensional hindcast distribution of Yt, condi-
tional on the model simulated response anomaly Xt, is
given by

f�Yt|Xt� � �n�mtXt, ctXtXt
T � ��. �5�

As discussed in Lee et al. (2005), the distribution on �t

can be chosen to reflect prior knowledge about the
presence of the simulated response anomaly in the ob-
servations and the uncertainty of the response.

Having constructed this multivariate distribution, the
hindcast distribution at point i is easily obtained by
calculating the marginal distribution for yti, which is
given by

f�yti |Xt� � �
��

�

. . .�
��

�

f�Yt |Xt� dyt1 dyt2 . . . dyti�1 dyti�1 . . . dytn � ��mtxti, ctxti
2 � �ii�. �6�

Point and interval forecasts for point i (i.e., confidence
intervals for the forecast temperature change in decade
t relative to the current three-decade climatology) are
easily obtained from this distribution. The probability
hindcast for a particular event E for point i is also easily
obtained by integrating f(yti |Xt) over the hindcast event
of interest. That is, the hindcast probability of event E
at point i can be obtained by computing

�
E

f�yti |Xt� dyti. �7�

Typically, we would take E to be an event such as the
occurrence of an above-normal decadal mean tempera-
ture where “normal” is defined as the operational
three-decade climatological mean that is current for the
decade for which the hindcast is issued.
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Hindcast distributions for other quantities such as the
global mean yt. � wT

t Yt are easily obtained as

f�yt. |Xt� � ��mtwt
TXt, ctwt

TXtXt
Twt � wt

T�wt�, �8�

where, in the case of the global mean, wt is a vector of
weights proportional to area. Note that the dot in place
of a subscript indicates that (weighted) averaging has
been performed over that subscript.

Once a hindcast has been produced for an initial de-
cade t and verified against observations for that period,
hindcasts (or forecasts as the case may be) can be pro-
duced for subsequent decades by means of a simple
Bayesian updating procedure. In particular, the hind-
cast for decade t � 10 is obtained by deriving a prob-
ability distribution for �t�10 that is based on the out-
come for decade t. The analysis that produced the initial
forecast was based on observations prior to decade t, a
simulation of the response to external forcing on the
climate system through to the end of decade t, and a
prior distribution �(mt, ct) on the scaling factor �t that
reflects knowledge about the true value of �t before
observing Yt. The latter also accounts for various
sources of uncertainty (Lee et al. 2005). Once the ob-
servations for the initial decade t become available,
knowledge regarding the scaling factor can be updated
by calculating the posterior distribution on �t. Accord-
ing to Bayes’s theorem (e.g., West and Harrison 1997)
this distribution is given by

f��t |Xt, Yt� � ��mt�10, ct�10�, �9�

where ct�10 � (1/ct � XT
t ��1Xt)

�1 and mt�10 �
ct�10(mt /ct � XT

t ��1Yt). This updated version of the
distribution on �t, which represents a combination of
the prior information that was available regarding �t

and information that was subsequently extracted from
the observations for decade t, can now be used as the
prior distribution for �t�10 to generate the hindcast for
decade t � 10. In another words, the hindcast for de-
cade t � 10 is derived by using the posterior distribution
on �t as the prior distribution for �t�10 to obtain the
hindcast distribution f(Yt�10 |Xt�10) for the climate
state in decade t � 10. Once observations become avail-
able for decade t � 10, a further updated posterior
distribution f(�t�10 |Xt�10, Yt�10) can then be calculated
for making the hindcast in decade t � 20, etc. Thus such
a posterior-prior updating process allows us to improve
our knowledge, over time, regarding the scaling factor
� that is required to best match the model-simulated
decadal temperature increments with observed tem-
perature increments.

c. Climate change hindcast and skill evaluation

By defining our problem in terms of anomalies from
a moving climatological base period, we can easily de-
fine hindcast events that are related to climate change.
In this study we consider only a two-category forecast
system, that is, we consider either an increase in tem-
perature in decade t relative to the base period (above
normal) or conversely, a decrease (below normal). In
contrast, seasonal forecasting systems (e.g., O’Lenic
1994; Mason et al. 1999; Derome et al. 2001) typically
provide three-category forecasts of the likelihood of
above, near, and below normal. Such an extension to
the present two-category system would not be difficult,
but would increase uncertainty somewhat because the
event boundaries, as well as the forecasts themselves,
would then become dependent upon our estimates of
the internal climate variability. Using a two-category
system avoids this source of uncertainty by allowing us
to define events relative only to the current operational
base climatology. Thus, we calculate hindcast probabili-
ties at point i by defining the event E in Eq. (7) to be
either [0, 	) for above normal, or (�	, 0) for below
normal. If we predict that there will be no climate
change (relative to the base period), the probabilities
for both events should be equal to 1/2. Otherwise, the
probabilities would differ from 1/2, depending on the
strength and sign of the effect of the forcing.

Once the probability hindcasts are generated, one
can evaluate the skill of these hindcast for each decade
t over the n spatial grid points contained in the obser-
vation vector Yt. Such an evaluation allows us to assess
whether knowledge of forcing change during the de-
cades leading up to decade t can be translated into us-
able forecast skill on decadal time scales. Such skill, if
present, would also provide additional, and very prac-
tical, supporting evidence for the attribution of ob-
served twentieth-century climate change to external
forcing change.

A widely used verification statistic for probability
forecasts is the Brier score (Brier 1950; Wilks 1995).
The Brier score, evaluated over n forecasts, is given by

B �
1
n 


i�1

n

�pi � qi�
2, �10�

where pi is the forecast probability of an event E at
point i and qi is an indicator variable that is set to 1 or
0 depending upon whether or not the event occurred.
To assess the skill of the forecast, B is converted to the
Brier skill score (BSS), which is defined as

BSS � 1 � B�Bcli, �11�
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where Bcli is the climatologically expected Brier score
of the event. It is easily shown that Bcli � 0.25 in the
case of a system using two equally likely climatological
categories. The BSS is equal to 1 for a perfect probabil-
ity hindcast, 0 for a hindcast that performs the same as
the no-climate-change hindcast and negative for a hind-
cast that performs worse than the no-climate-change
hindcast.

d. Additional hindcasts

To investigate whether Bayesian procedure de-
scribed above improves or diminishes forecast skill
from the models, or whether indeed, the climate models
contribute skill beyond a simple straw man approach to
forecasting, we also consider three additional hindcast
variants.

The first, called the raw model hindcast, is produced
by not updating the mean of the prior distribution in
the posterior-prior updating process. That is, we specify
that mt � 1 at each time point t so that the mean of the
hindcast distribution is the ensemble mean. However,
we still allow the width of the prior to vary between
time periods according to Eq. (9). The effect is that the
variance of the forecast distribution [see (5)] is inflated
by the factor ctXtX

T
t . This is roughly equivalent to the

usual practice of adding a factor 1/m to the forecast
variance, where m is the ensemble size, to account for
sampling variability in the ensemble mean. Note the
details of the treatment of the prior variance have al-
most no influence on our results.

The second, called the blended hindcast, uses a prior
distribution where the mean � � mt � (1 � �) � 1 is a
blend of the posterior mean obtained from the updating
process at time t � 10, and the mean mt � 1 that would
be appropriate if the model always responded correctly
to external forcing. The variance of the prior distribu-
tion continues to be updated as in Eq. (9). The weight-
ing factor � can be varied between 1 and 0, with � � 1
producing the Bayesian hindcast described previously,
and � � 0 producing the raw model hindcast described
above. We used � � 0.5, thereby allowing the update
process to learn partially from previous success by the
model in reproducing observed large-scale climate
variations, but also allowing for the possibility that pre-
vious performance may have a detrimental effect on
future forecast skill and lead to underestimation of the
scaling factor �t. Underestimation of �t in a given de-
cade might occur for a variety of reasons. These would
include (i) small ensemble sizes, which would lead to
contamination of the model ensemble response Xt by
sampling errors and thus underestimation of �t; (ii)
poor response to a short time scale forcing such as a
volcanic event; or (iii) the occurrence of unusual natu-

ral internal variability, such as a strong El Niño event,
during a given decade that one would not expect a
model to reproduce.

A third, called the persistence hindcast, is produced
by using Yt�1 as Xt and then generating the hindcast
using the full Bayesian mechanism describe previously.
We anticipate that the persistence hindcast will be dif-
ficult to beat. While it does not benefit from a sophis-
ticated formulation of the anticipated response to ex-
ternal forcing, it does implicitly benefit from knowledge
of the state of the climate system at the start of the
forecast period, including the true response to external
forcing up to that point. In addition, the Bayesian hind-
casting process should be able to learn from aspects of
internal climate variability that persist from one decade
to the next.

3. Application

a. Data

The observational dataset used in this study is the
same as that used in Lee et al. (2005), namely, the
Hadley Centre–Climate Research Unit variance ad-
justed temperature dataset (HadCRUTv; Jones et al.
2001). This is a combined dataset of monthly surface air
and sea temperature anomalies relative to 1961–90 on a
5° � 5° latitude–longitude grid for the period 1870–
1999. The various versions of this dataset have been
used extensively in previous climate change detection
and attribution studies.

The climate simulations of the twentieth century
used in this study are from the Canadian Centre for
Climate Modeling and Analysis (CCCma) second-
generation Coupled Model (CGCM2; Flato and Boer
2001), the Second and Third Hadley Centre Coupled
GCMs (HadCM2 and HadCM3) and simulations from
six models in the IPCC Fourth Assessment Report
(AR4) model archives that are driven with estimates of
historical forcings for the twentieth century [the Com-
munity Climate System Model version 3 (CCSM3.0),
the Geophysical Fluid Dynamics Laboratory model
versions 2 and 2.1 (GFDL2.0 and GFDL2.1), the Model
for Interdisciplinary Research on Climate version 3.2
(MIROC3.2), the Meteorological Research Institute
(MRI) and Parallel Climate Model (PCM)]. A sum-
mary of the simulations used in this study is displayed in
Table 1. Ensemble sizes for individual models range
from three to eight simulations of the twentieth cen-
tury. Earlier ensembles available for this study include
only anthropogenic forcing, with sulfate aerosol forcing
limited to the direct effect in some instances, while the
IPCC AR4 simulations all include anthropogenic and
natural external forcing, and generally include indirect
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aerosol effects. Three long control simulations from
CGCM2, HadCM2, and HadCM3 are also used in this
study. All simulations, which are available in a variety
of grid sizes (Table 1), were interpolated onto the 5° �
5° grid of the observations and subsequently averaged
into regional decadal means (details to be described
below). An analysis is conducted for each individual
model and for the ensemble mean of the simulations
from the six IPCC AR4 models.

We conduct our analysis of decadal predictability on
regional decadal means calculated over 30° � 40° lati-
tude–longitude grid boxes as in Lee et al. (2005).
Monthly means in 30° � 40° regions were calculated by
averaging all available observed, or simulated, 5° � 5°
monthly means in the region. Observed annual means
are treated as missing if even 1 month within the year is
missing. Decadal means are treated as missing if fewer
than 6 of the 10 yr are present. The base period tem-
perature is treated as missing only if all three decadal
means are missing. To avoid systematic bias, missing
data are not filled in. Instead, model output is flagged
as missing whenever the corresponding observations
are missing. In the absence of any missing data, the
observational vector Yt in a given decade would have
length n � 6 � 9 � 54, where 54 is the number of

30° � 40° grid boxes that cover the globe. Missing data
reduces the dimension length to a number ranging from
44 for the decade of the 1930s to 51 for the decade of
the 1990s.

b. Covariance matrix estimation and dimension
reduction

To generate our probability hindcasts, it is necessary
to have an estimate of the natural internal variability of
the surface temperature on the decadal and regional
scales that are retained in the observation vector Yt.
That is, we require an estimate of the variance–covariance
matrix � of the term �t that appears in Eq. (1). As in
our previous detection study (Lee et al. 2005), we esti-
mate this matrix from long control simulations because
the available instrumental record is not long enough to
provide a reliable estimate of decadal-scale variability.

To avoid bias in our probability hindcasts, we pro-
duce two independent estimates of �. The first estimate
of � is used in an empirical orthogonal function (EOF)
dimension reduction step that retains only the large-
scale variability in the observational vector Yt, while
the second estimate provides an estimate of the internal
variability covariance structure in the subspace that was
determined from the first estimate.

The details of the covariance matrix estimation are as
follows. Three control simulations are available in this
study. To avoid bias when estimating the covariance
matrix, we used only the last 1000 yr of HadCM2 and
HadCM3 control simulations so that their length
matches with that of the CGCM2 control simulation.
Each control simulation is divided into two 500-yr sub-
sets and each 500-yr control run subset is formed into
99 10-yr chunks, each overlapped by 5 yr. Decadal
means are computed from these chunks and the prior
three-decade mean is subtracted from each chunk. This
results in 93 decadal anomalies from their respective
prior three-decade climatologies within each 500-yr
subset of each control run. This approach of calculating
overlapping decadal anomalies provides somewhat
more information for calculating the covariance matrix
than would be available from only the 47 nonoverlap-
ping decadal anomalies that can be computed from
years 31–40, 41–50, . . . , 491–500 of the control run. By
overlapping decades, an additional 46 decadal anoma-
lies are obtained from years 36–45, 46–55, . . . , 486–495.
A sample covariance matrix is calculated for each con-
trol run from the first collection of 93 anomalies using
the standard formula. The average �̂ of the three re-
sulting covariance matrices is then used as an estimate
of �. A second estimate �̃ is similarly calculated from
the collections of 93 anomalies obtained from the sec-
ond 500-yr segment of each of the three control runs.

TABLE 1. Summary of simulations used in this study. “Anthro”
indicates that the simulation is driven by anthropogenic forcing
consisting at least of greenhouse gas and direct sulfate aerosol
forcing in the case of CGCM2 and HadCM2, but also including
forcing from other sources, such as the indirect effects of sulphate
aerosols, other nonsulfate aerosols, ozone, and land use in some
of the more complete IPCC AR4 models. “Anthro�Nat” indi-
cates that the simulation is also driven by reconstructions of his-
torical natural forcings such as solar and volcanic. The control
length column is filled in only when a control simulation is avail-
able from that model. Horizontal atmospheric resolution is indi-
cated either by the model’s spectral resolution, or by gridbox size
expressed in degrees of lat � degrees of lon. Further details of the
models are available online (CGCM2: http://www.cccma.ec.gc.ca;
HadCM2 and HadCM3: http://www.metoffice.com/research/
hadleycentre/models/modeltypes.html; IPCC AR4 models: http://
www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_
documentation.php).

Model
Atmospheric

resolution Runs Forcings

Control
length

(yr)

CGCM2 T32 � L10 3 Anthro 1000
HadCM2 2.5° � 3.75° � L19 4 Anthro 1019
HadCM3 2.5° � 3.75° � L19 4 Anthro 1640
CCSM3.0 T85 � L26 8 Anthro�Nat
GFDL2.0 2.0° � 2.5° � L24 3 Anthro�Nat
GFDL2.1 2.0° � 2.5° � L24 3 Anthro�Nat
MIROC3.2 T42 � L20 3 Anthro�Nat
MRI T42 � L30 5 Anthro�Nat
PCM T42 � L26 4 Anthro�Nat
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Note that these calculations are repeated for each hind-
cast because the masking that reflects whether obser-
vations are missing varies from one hindcast period to
the next.

The estimated covariance matrix �̂ is used to define
a dimension reduction that retains only the large spatial
scales of variation in decadal anomalies. This is done by
projecting all observed and simulated decadal anoma-
lies onto the k gravest EOFs of �̂. The choice of k is
determined by two criteria. First, the retained scales
should well represent the model-simulated response
anomaly Xt. More importantly, the model simulated
internal variability should be consistent with observed
variability (Allen and Tett 1999) on these scales. Pre-
vious detection work at global and regional scales sug-
gests that moderate values of k can be used. As in
Zwiers and Zhang (2003) and Lee et al. (2005), we find
that our results are not sensitive to the choice of k for
5 � k � 25.

Given such a dimension reduction, a natural estimate
of the variance structure of the internal variability in
the reduced space is P(k)T̃P(k), where the columns of
P(k) are the first k EOFs of �̂. We use �̃ rather than �̂
to estimate the internal variability in the reduced space
to avoid biases that would creep into the analysis from
using only one control run sample to estimate both the
EOFs and the variability in the reduced space. Such
biases arise because the EOF basis vectors inevitably
“adapt” to the specific variations present in the part of
the control simulation from which they are estimated
(Allen and Tett 1999; Allen and Stott 2003).

The variance and mean of the posterior distribution
of the Bayesian analysis in the reduced space can be
estimated using �̃ as

ct�10 � �1�ct � Xt
TP�k��P�k�T�̃P�k���1P�k�TXt�

�1

mt�10 � ct�10���mt � �1 � ����ct

� Xt
TP�k��P�k�T�̃P�k���1P�k�TYt�. �12�

Similarly, the hindcasting distribution [cf. Eq. (5)] be-
comes

f�Yt |Xt� � �n(��mt � �1 � ���P�k�P�k�TXt,

ctP
�k�P�k�TXtXt

TP�k�P�k�T � �̃). �13�

Recall that � � 1 for the full Bayesian hindcast, � � 0.5
for the blended hindcast, and � � 0 for the raw hind-
cast. Also, as noted above, the matrices �̃ and �̂ vary
slightly from one hindcast period to the next because
the masking of the observations varies. Thus, the indi-
vidual EOFs that are used for the dimension reduction
also vary somewhat from one hindcast period to the
next.

c. Determining the significance of the BSS

The BSS that we use to evaluate our forecasts is af-
fected by the specific realization �t of the climate’s in-
ternal variability that is present during the hindcast pe-
riod. Thus, one would expect the BSS of an unskilled
hindcast or forecast to vary about zero as a result of
sampling variability. It is therefore necessary to con-
struct an upper critical bound for the BSS in order to
identify a skill threshold above which one can reject the
null hypothesis that the forecast is not skillful. Such a
critical level can be estimated by verifying our hindcast
against decadal anomalies calculated from the three
available 1000-yr control simulations. A total of 97 �
3 � 291 such anomalies can be obtained by using non-
overlapping 10-yr chunks. The resulting sample of
BSS’s reflects the range of skill scores one would ob-
tained if the verification dataset consists of only inter-
nal climate variability. An upper 5% critical level for
the BSS is then easily estimated by calculating the 95th
percentile of the sample of 291 BSS. This critical value
varies slightly from one decade to the next because the
observational masking changes in time.

d. Hindcast results

Temperature anomaly hindcasts for each model and
the AR4 ensemble were produced using the methods de-
scribed above for seven decades (1930–39, 1940–49, . . . ,
1990–99). In addition, we also produced a forecast for
the decade 2000–09 using the CGCM2 model that will
be discussed in the concluding section of this paper.

To produce our first hindcast for the decade 1930–39,
it was necessary to specify a prior distribution on the
scaling factor �1930 that appears in Eqs. (1) and (4).
That is, we chose values for the parameters m1930 and
c1930. Prior distributions for the subsequent hindcasts
were then obtained by using the posterior-prior updat-
ing process described above. We subjectively chose the
prior distribution on �1930 to be �(1, 0.25), thereby pro-
ducing an initial four standard deviation uncertainty on
the scaling factor that ranges from 0 to �2. Lee et al.
(2005) discuss the suitability of this choice in the con-
text of the uncertainties that affect the climate model–
simulated external forcing response anomalies Xt. The
robustness of our results to the initial choice of prior is
discussed in the latter part of this section.

Figure 1 displays the BSS for the above-normal event
as a function of decade with 15 EOFs retained for the
full Bayesian hindcast (with � � 1), together with cor-
responding 5% critical values for rejecting the null hy-
pothesis of an unskillful hindcast for the CGCM2 hind-
cast (thick horizontal line segments). The critical values
for other models are very similar and thus not shown.
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We have also repeated our analysis by retaining 5, 10,
20, and 25 EOFs (not shown) and find that the BSS is
not very sensitive to the number of EOFs retained.
With 15 EOFs retained, the BSS for CGCM2 lies above
the critical value for the decades 1930–39, 1940–49,
1980–89, and 1990–99, suggesting that the temperature
anomaly hindcasts for those decades may have signifi-
cant skill. Specifically, the BSSs for these periods are
0.523, 0.373, 0.439, and 0.684, respectively. Similar re-
sults are obtained for HadCM2 and HadCM3, for the
hindcasts produced from the AR4 model simulations
and for their ensemble mean, where the BSS is above
the critical value for the early and late decades of the
twentieth century. This suggests that the inclusion of
natural forcing in the simulations is not the solution to
the apparent lack of skill in the 1950s–70s.

The skill obtained for the blended and raw hindcasts
(not shown) is very similar to that obtained with the full
Bayesian hindcast, with minor variations in skill (both
increases and decreases) depending upon the model
that is used. This indicates that variation in the details
of the prior updating process does not have a large
influence on forecast skill, at least as measured by the
BSS. This is a reasonable result given that the BSS
measures the agreement between the spatial pattern of
the hindcasts of above-normal probability, and the veri-
fying pattern of above-normal events. The prior updat-
ing process would have some influence on the ampli-

tude of the pattern of hindcast probabilities, but it does
not affect its shape, and thus has little influence on the
BSSs.

A concern with respect to the skill scores is that they
may be sensitive to the choice of prior distribution on
the 1930s scaling factor �1930. Thus, we also conducted
our full Bayesian analysis using two other classes of
priors to evaluate that possibility. The first type of prior
is identical to that used above except that the initial
mean (m1930) was varied between �1 and 3. The second
type of prior has m1930 � 1 but uses variances c1930 that
range from 0.1 to 1.1. The BSS for CGCM2 obtained by
using these priors ranges from �1.09 to 0.59 for the
decade 1930–39 and from 0.184 to 0.460 for the decade
1940–49. However, BSSs in subsequent decades, after
the Bayesian updating process commences, are very
similar to those shown in Fig. 1. The hindcast probabil-
ity, hindcast anomaly, and posterior distribution were
found to be insensitive to the initial choice of prior after
the first three decades, with only a minor impact on the
third decade. Similar behavior was also exhibited by the
other models that we have considered here. The robust-
ness of our results after the initial two to three decades
is mainly due to the calibration of the distribution of �t

from the posterior-prior updating process. While we
will continue to show results for all decades in the re-
mainder of this paper based on our initial choice of
prior, the sensitivity to the choice of prior during the

FIG. 1. BSSs for the above-normal event with 15 EOFs retained. The thick horizontal line
segments indicate the critical skill threshold for rejecting the no-skill null hypothesis. Skill
scores are shown only for the full Bayesian analysis with � � 1. Results for the blended and
raw hindcasts are very similar.
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first two hindcast decades indicates that results for
those two decades should be downweighted.

Figure 2 displays the global mean hindcast probabil-
ity for the above-normal event as a function of decade
with 15 EOFs retained together with the observed pro-
portion of such events and its confidence bound. An
approximate 95% confidence bound for the observed
proportion p̂o can be defined as p̂o � 2�p̂o(1 � p̂o)/n,
where n is the number of spatial points in the analysis.
This bound accounts for sampling variations in the ob-
served proportion of above-normal events that would
be expected under similar conditions, and under the
assumption of spatial independence. The actual confi-
dence bound is likely to be wider because of depen-
dence between the regions. Figure 2a shows that the
CGCM2 hindcast probabilities significantly underesti-
mate the proportion of observed above-normal events
for the decades 1930–39 and 1940–49, but are within the
uncertainty range for 1950s, 1960s, 1980s, and 1990s.
Considering all 10 model hindcasts together, we see
that the hindcast performance is generally poor in the
1930s and 1940s, but starting from the 1950s, a majority
of the models “correctly” hindcast the observed pro-
portion in each decade. As noted previously, hindcasts
of the first two decades are sensitive to the choice of
initial prior, and thus these results should be dis-
counted. Also, as with the results for the BSS, the de-
tails of the prior updating process have a relatively
small effect, although there is some evidence (cf. Figs.
2b,c with Fig. 2a) that either the blended or raw hind-
cast performs slightly better than the full Bayesian
hindcast, perhaps because the latter allows the scaling
factor �t to be too heavily influenced by past forecast
errors.

Figure 3 shows the corresponding hindcasts as de-
rived from Eq. (8) for the actual global mean decadal
temperature anomalies together with their correspond-
ing 5%–95% hindcast confidence intervals and the ob-
served anomalies. This graph also provides a forecast
for the 2000–09 decade using the CGCM2 model. The
information provided is essentially the same as that
provided in Fig. 2. In particular, we see that there is
good agreement between the observed and hindcast
anomalies during the last four decades of the twentieth
century. Specifically, for the full Bayesian procedure,
the CGCM2, HadCM3, CCSM3.0, MRI, and PCM
hindcasts were able to capture the observed anomalies
throughout 1960s–90s. In addition, the AR4 ensemble
hindcast was able to capture six out of seven observed
anomalies. In contrast, the hindcast anomalies of the
earlier skillful hindcasts, for the decade of the 1930s and
1940s, were less promising for all the models, except for
the CCSM3.0 and AR4 ensembles. Based on the antic-

ipated response to anthropogenic forcing and assuming
that there will not be a substantial change in natural
external forcing, the global mean temperature anomaly
for the current decade (2000–09) is predicted to be
0.35°C with a 5%–95% confidence range 0.21° to
0.48°C using the CGCM2 model.

Again, as above, there is some evidence that the
blended or raw hindcast (Figs. 3b,c) has a slightly better
performance than the full Bayesian hindcast (Fig. 3a).
The AR4 ensemble, for example, is able to capture all
of the observed anomalies in the former two cases.
There is some evidence that the full Bayesian hindcast
overly constrains the model forecasts (cf., e.g., the
1990s in Fig. 3a with the same period in Figs. 3b,c),
suggesting that the scaling factor �t has been underes-
timated. However, the blended and raw hindcasts also
impose weaker constraints on models that warm
quickly, such as CGCM2, with the result that greater
warming is forecast for the first decade of the third
millennium. In particular, the global mean temperature
anomaly for 2000–09 is predicted to be 0.48°C (5%–
95% confidence range: 0.34°–0.61°C) for the blended
hindcast and 0.52°C (5%–95% confidence range: 0.39°–
0.66°C) for the raw hindcast using the CGCM2 model.

Figure 4 displays 5%–95% for the posterior distribu-
tion of the scaling factor �t for the full Bayesian hind-
cast as in Eq. (12) with 15 EOFs retained. The mean of
the posterior distribution has a general downward trend
for all the models. For example, for the CGCM2 model,
5%–95% of the posterior confidence interval lies below
1 for the last five decades. This may be partly due to
negative bias in the estimate of �t due to weak decadal-
scale signals (see Allen and Stott 2003 for a discussion).
However, it may also reflect an oversimulated response
to twentieth-century forcing, perhaps because of miss-
ing forcings in the case of this model (Lee et al. 2005).
In contrast, 5%–95% ranges for the AR4 ensemble in-
clude the possibility that �t � 1 for the 1960s, 1970s,
1980s, and 1990s, providing evidence toward attribution
of natural and anthropogenic influence on climate for
these four decades in the context of optimal fingerprint-
ing. Bayesian climate change assessment focusing on
the use of the posterior distribution of the scaling factor
has been studied by Lee et al. (2005) and Berliner et al.
(2000). Note that the �t for the AR4 ensemble is larger
than those obtained using the individual AR4 models.
This is possibly due to the reduction of sampling un-
certainty in the simulated response pattern for the AR4
ensemble hindcast as more ensemble members are
used. As would be expected, the scaling factors ob-
tained for the other two hindcasts (not shown) are
much more tightly constrained to �t � 1.

Even though our hindcasts are skillful for part of the
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FIG. 2. Global mean hindcast probabilities of above-normal decadal mean temperatures in 30° lat � 40° lon regions (bars) and the
observed proportion of regions with above-normal temperatures (thick horizontal dashed line segments) together with its estimated
uncertainty (box). The probability scale is indicated on the left. A regional decadal mean temperature is considered to be above normal
in a given decade when it is greater than the corresponding climatological mean temperature in the region for the preceding three
decades. (a) Full Bayesian hindcast, (b) blended hindcast, and (c) raw hindcast.
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FIG. 3. Hindcasts of global decadal mean surface temperature anomalies and their 5%–95% confidence bounds based on Eq. (8),
together with the observed global mean anomalies (thick horizontal line segments), with 15 EOFs retained. A forecast for the decadal
global mean anomaly for the decade 2000–09, relative to the 1970–99 climatology, is also displayed (°C). (a) Full Bayesian hindcast,
(b) blended hindcast, and (c) raw hindcast.
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twentieth century, there remains the question of wheth-
er this reflects the capability of the climate models to
predict the decadal response to external forcing, or
whether the skill is really just an artifact arising from
natural persistence. Such persistence might arise from
two sources—either low-frequency natural internal
variability or a persistent forcing disequilibrium result-
ing in a continuing response of the climate system to
that disequilibrium.

The former possibility is, in fact, taken into account
in the estimation of the 5% critical value for the BSS
(see section 3c). BSSs for the decades of the 1980s and
1990s (Fig. 1), which are not affected by the choice of
initial prior, are significantly greater than the estimated
critical value, suggesting an external, rather than inter-
nal source of skill. This assessment is, of course, subject
to the caveat that the control runs used to estimate
these critical values are assumed to correctly simulate
the natural internal low-frequency variability of the cli-
mate system on the space and time scales retained in
the hindcasting analysis.

The latter possibility is considered by evaluating the
performance of the persistence forecast, the results of
which are indicated by the olive green bars in Figs. 1–4.
As discussed above, persistence is a very tough forecast
to beat at decadal leads given the apparent linearity of
the response to forcing (e.g., Gillett et al. 2004b) and
the fact that the response during any given decade is
more reflective of a continuing response to historical
forcing, than to forcing change during the hindcast de-

cade. The BSSs for the persistence hindcast are similar
to those obtained using climate model hindcasts, except
in the last two decades, where the BSS is significantly
lower for the persistence hindcast (Fig. 1). This holds
regardless of whether one uses the full Bayesian hind-
cast procedure (Fig. 1) or the blended or raw hindcast
procedures (not shown). Similarly, the persistence
hindcast underhindcasts the global mean hindcast prob-
ability of above normal during the last two decades,
regardless of the hindcast procedure used (Fig. 2), and
it underpredicts the global mean temperature anomaly
(Fig. 3). The latter problem is particularly evident in the
full Bayesian hindcast (Fig. 3a), perhaps because the
“signal” used in persistence hindcast is heavily contami-
nated by noise from internal variability (which leads to
negative bias in the estimate of �t). Thus, despite the
expectation that the persistence hindcasts would be dif-
ficult to beat, it would appear that the model-based
hindcasts outperform the persistence hindcast during
the last two decades when anthropogenic forcing is
largest.

4. Conclusions

In this paper, we have put forward another approach
to climate change detection analysis that is based on the
skill of probabilistic decadal hindcasts that are pro-
duced from simulations of the climate of the twentieth
century with a Bayesian technique. Specifically, we con-
sider hindcasts of decadal temperature anomalies on

FIG. 4. Mean and 5%–95% of the posterior distribution of the scaling factor �t from the
full Bayesian hindcast with 15 EOFs retained.
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large spatial scales relative to the three-decade opera-
tional climatologies that are current at the time of the
hindcast. Consistent with other detection studies, our
Bayesian analysis indicates that the combined effect of
greenhouse gas and sulfate aerosols is detectable in the
latter part of the twentieth century. Statistical charac-
teristics of the hindcasts, such as the global mean hind-
cast of the probability of above normal and the hindcast
of the global mean temperature, are consistent with the
characteristics of the verifying observations from the
1950s onward. The BSSs indicate that the model-based
hindcasts demonstrate significant skill during the last
two decades of the twentieth century. Comparison be-
tween the model-based hindcast and a persistence hind-
cast suggest that the models add value during this pe-
riod relative to simple persistence. There is also some
evidence of decadal hindcast skill during the first two
decades considered, those of the 1930s and 1940s, but
we consider those results to be somewhat more tenuous
because these results are sensitive to the initial choice
of prior distribution. As in other studies (Derome et al.
2001; Kharin and Zwiers 2002; Gillett et al. 2002; Zhang
et al. 2006), there is also some evidence that the en-
semble model mean approach performs more consis-
tently than do individual models. The inclusion of natu-
ral external forcing does not appear to significantly im-
prove short-term (i.e., decadal) hindcast skill, perhaps
because the response associated with natural forcing is
small relative to that associated with anthropogenic
forcing.

Further work will be required to more clearly iden-
tify the factors that contribute to skill on the decadal
time scale, to make more sophisticated use of multimo-
del ensembles as in seasonal forecasting (e.g., Derome
et al. 2001; Kharin and Zwiers 2002), and by assimilat-
ing observed ocean, and perhaps land surface, state in-
formation into the model. A multisignal analysis that
attempts to tease out the effect on skill of the different
external forcing factors may be feasible, but requires
the specification of a multivariate prior distribution.
The corresponding hindcast distribution and posterior
distribution can then be derived from Eq. (1) by using
Bayes’s theorem based on the prior distribution.

Forecasts for events in the future can be generated
using the same methodology. However, one cannot
carry out the posterior-prior updating process since ob-
servations are not available. Also, simulations of the
twentieth century must then be extended into the fu-
ture using a scenario of future emissions. While the
simulated response one–two decades into the future is
not likely to be sensitive to scenario details (e.g., Zwiers
2002), there are forcing uncertainties, such as the pos-
sibility of unforeseen volcanic activity, that must be

taken into account. Using the CGCM2 simulated an-
thropogenic signal as Xt and using the posterior distri-
bution from 1990 to 1999 as the prior distribution, we
predict that in the absence of large negative volcanic
forcing on the climate system (which cannot presently
be forecast) the global mean temperature anomaly for
the decade 2000–09 will be above the 1970–99 normal
with a probability of 0.94. The global mean temperature
increment for this decade is correspondingly predicted
to be 0.35°C with a 5%–95% confidence range 0.21°–
0.48°C (Fig. 3a). The suggestion that such decadal fore-
casts are now apparently skillful on large regional scales
based only on anthropogenic forcing, and that they can
be regularly updated and verified, provides additional
evidence for the influence that anthropogenic forcing is
having on our climate.
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