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ABSTRACT

A Bayesian approach is applied to the observed global surface air temperature (SAT) changes using
multimodel ensembles (MMEs) of the Intergovernmental Panel on Climate Change (IPCC) Fourth As-
sessment Report (AR4) simulations and single-model ensembles (SMEs) with the ECHO-G coupled cli-
mate model. A Bayesian decision method is used as a tool for classifying observations into given scenarios
(or hypotheses). The prior probability of the scenarios, which represents a degree of subjective belief in the
scenarios, is changed into the posterior probability through the likelihood where observations enter, and the
posterior is used as a decision function. In the identical prior case the Bayes factor (or likelihood ratio)
becomes a decision function and provides observational evidence for each scenario against a predefined
reference scenario. Four scenarios are used to explain observed SAT changes: “CTL” (control or no
change), “Nat” (natural forcing induced change), “GHG” (greenhouse gas–induced change), and “All”
(natural plus anthropogenic forcing–induced change). Observed and simulated global mean SATs are
decomposed into temporal components of overall mean, linear trend, and decadal variabilities through
Legendre series expansions, coefficients of which are used as detection variables. Parameters (means and
covariance matrices) needed to define the four scenarios are estimated from SMEs or MMEs. Taking the
CTL scenario as reference one, application results for global mean SAT changes for the whole twentieth
century (1900–99) show “decisive” evidence (logarithm of Bayes factor �5) for the All scenario only. While
“strong” evidence (log of Bayes factor �2.5) for both the Nat and All scenarios are found in SAT changes
for the first half (1900–49), there is decisive evidence for the All scenario for SAT changes in the second half
(1950–99), supporting previous results. It is demonstrated that the Bayesian decision results for global mean
SATs are largely insensitive to both intermodel uncertainties and prior probabilities.

1. Introduction

Recently, the International Ad Hoc Detection and
Attribution Group (IDAG) reviewed the advances in
the studies on climate change detection and attribution
(International Ad Hoc Detection and Attribution
Group 2005, hereafter IDAG05). They summarized an-
thropogenic signals found in different observational
datasets: global and regional surface air temperature
(SAT), vertical temperature, tropopause height, sea
level pressure, and ocean heat content (IDAG05, and
references therein). This summary strengthens the pre-
vious conclusion by the Third Assessment Report

(TAR) of the Intergovernmental Panel on Climate
Change (IPCC) that “most of the observed warming
over the last 50 years is likely to have been due to the
increase in greenhouse gas concentrations” (from the
Summary for Policymakers in Houghton et al. 2001).
IDAG05 also showed increasing efforts to apply Bayes-
ian statistical approaches and pointed out their advan-
tages to integrate information from multiple evidences
as well as prior information and to provide probabilistic
output for decision making and a better quantification
of the evidence for attribution. Importantly, they en-
able the users to consider errors in the signal (or model
response) as well as natural climate variability. The lat-
ter is the only source of uncertainties in conventional
statistics although observational and model uncertain-
ties could be assessed from sensitivity tests or intercom-
parisons (Barnett et al. 1999; Hegerl et al. 2000, 2001).

The uncertainties arising from intermodel differences
could not be assessed reasonably due to lack of enough
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samples of model simulations. Recently, a dataset from
multimodel ensemble (MME) simulations became
available through the international project coordinated
by the IPCC Working Group 1. More than 20 interna-
tional modeling groups and institutes participated in
this project. They carried out ensemble simulations
with their atmosphere–ocean general circulation mod-
els (AOGCMs) based on IPCC scenarios for the Fourth
Assessment Report (AR4).

Recent Bayesian studies for climate change detection
and attribution are all based on Bayes factors or like-
lihood ratios (Min et al. 2004, hereafter M04, 2005a;
Schnur and Hasselmann 2005; Lee et al. 2005). The
Bayes factors represent the observational evidence for
the given scenario (e.g., greenhouse gas–forced climate
change) against a reference scenario (e.g., no climate
change or control scenario). Schnur and Hasselmann
(2005) devised an optimal filtering technique for a
Bayesian approach, which maximizes the impact of the
observations on the prior likelihood of detection or the
Bayes factors, and detected anthropogenic signals of
greenhouse gases (G) or greenhouse gases plus sulfate
aerosols (GS) in global SAT patterns. Lee et al. (2005)
applied the Bayesian extension of conventional optimal
fingerprinting of Berliner et al. (2000) by evaluating
detection and attribution hypotheses using the Bayes
factors and detected GS signals in global SAT fields.
M04 developed a Bayesian decision method for climate
change signal analysis where, for given scenarios and
observations, prior information is changed into poste-
rior through likelihood, and the posterior acts as a de-
cision function. Applying the Bayesian decision
method, Min et al. (2005a) detected G signals in East
Asian SAT fields.

In this study, we apply the Bayesian decision method
of M04 to the data from single-model ensembles
(SMEs) and MMEs to test the sensitivity of Bayesian
climate change assessment to intermodel uncertainties.
As a first step, time series of global mean SATs are
used as detection variables. The temporal variability is
incorporated by decomposition of the time series using
Legendre series expansions. This allows for an effective

handling of overall warming (scale) and a warming
trend (trend) (see below). Four scenarios are defined to
test how well they can explain the observed SAT
changes over the twentieth century: “CTL,” “GHG,”
“Nat,” and “All” (see Table 1 for detailed description
of the scenarios). The parameters for the four scenarios
are estimated from SMEs with the ECHO-G coupled
climate model (Legutke and Voss 1999; Min et al.
2005b,c, 2006) or MMEs using the IPCC AR4 models.
The sensitivity of Bayesian decision results to inter-
model uncertainties is examined by comparing the re-
sults from the SMEs with the MMEs. We start with the
case of identical priors for the scenarios where the
Bayes factor can be used as a decision function. Next a
generalized Bayesian decision is done with varying pri-
ors of the given scenarios, in which the posterior prob-
ability is analyzed for observed signal classification.

Considering limitations to the detection and attribu-
tion of climate change that is based solely on the global
mean regional and seasonal extensions using space–
time SAT data vectors will be analyzed in Part II of this
paper (Min and Hense 2006, manuscript submitted to J.
Climate). A space–time data vector can be readily con-
structed, for example, by combining Legendre coeffi-
cients of regional mean SATs for two or three subre-
gions that constitute a continental-scale region. The
block averages will reduce the spatial degree of free-
dom while the Legendre expansions concern temporal
dimensions.

In the next section the Bayesian decision method and
Legendre series expansions are described. Observa-
tions and model simulations for ECHO-G and IPCC
AR4 models are explained briefly in section 3. In sec-
tion 4, detection variables from observations and model
simulations are compared for different time scales using
Legendre expansion coefficients. In section 5, the
Bayesian decision results for global mean SAT changes
are shown for the whole twentieth century and two
subperiods of 1900–49 and 1950–99 focusing on the ef-
fect of intermodel uncertainties and prior probabilities.
Conclusions are given with some discussions in the final
section.

TABLE 1. Climate change scenarios for Bayesian decision analysis. PD: present-day control run; PI: preindustrial control run (�
PIcntrl); Nat: natural forcing run; 20C: 20C3M run with natural plus anthropogenic forcing; and MME: multimodel ensembles of IPCC
AR4 simulations

Number Abbreviation Forcing
Relevant model simulations
used for “mean” estimation

1 CTL Natural internal variability (control) ECHO-G_PD, MME_PI
2 GHG Greenhouse gases ECHO-G_GHG
3 Nat Natural forcing (solar and volcanic activities) ECHO-G_Nat
4 All Natural plus anthropogenic forcing (GHGs and sulfate aerosols) ECHO-G_20C, MME_20C
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2. Methodology

a. Bayesian decision method

The Bayesian decision method by M04 is briefly ex-
plained here (see M04 for more details). Given a set of
N possible scenarios (mi, i � 1, . . . , N; N � 4 in the
present case) and the observational data (d), an appro-
priate question on climate change detection and attri-
bution will be, “How probable is the scenario mi given
the observation d?” This can be expressed as a condi-
tional probability P(mi |d), which is the posterior prob-
ability of the scenario given the observation. Using
Bayes’ rule, this can be evaluated from the prior prob-
ability P(mi), which represents a subjective belief in the
scenario, and likelihood function l(d |mi), which char-
acterizes the observational probability given the sce-
nario

P�mi |d� �
l�d |mi�P�mi�

�
j�1

N

l�d |mj�P�mj�

. �1�

Assuming multivariate Gaussian distributions for the
detection variables of the scenario mi and the observa-
tions d, the likelihood function can be expressed as

l�d |mi� �
1

��2��q
� detAi

� 1

det�i det�0
exp��

1
2

�i�, �2�

where q is the dimension of the data vector d, and �0

and �i are the covariance matrices of the observation d
and the scenario mi, respectively. Here, Ai is a linear
combination of these covariance matrices, Ai � �i

�1 �
�0

�1, and 	i is a generalized distance measure between
the observation and the scenario, 	i � (d � Ai

�1b)T

�0
�1 (d � Ai

�1b) � (Ai
�1b � �i)

T �i
�1 (Ai

�1b � �i),
where �i is mean of the scenario mi and b��i

�1�i �
�0

�1d (for more details see M04). In this study, Leg-
endre expansion coefficients (see below) for global
mean SATs from the Climate Research Unit (CRU)
observation and model simulations under relevant forc-
ing factors (see Table 1) are used to estimate necessary
parameters of means (d and �i) and variabilities (�0

and �i) with changing time scales retained (q) through
Legendre coefficients. On the basis of the result that
the models used here can simulate the internal variabil-
ity quite well on the decadal and longer time scales (see
subsection 2b and Fig. 2), we assume that observed
internal variability is identical to that of the CTL sce-
nario (�0 � �1).

According to the Bayesian decision theory, the pos-
terior probability can be used as a decision function
(Duda and Hart 1973; Berger 1985). We decide the

scenario with maximum posterior probability by which
theoretical decision error becomes a minimum. The
theoretical decision error is the overall risk arising from
wrong decisions (or actions), and it can be calculated by
integrating the expected loss over hypothetically de-
fined observational space (Duda and Hart 1973; M04).
Then the decision rule becomes

Decide mi if P�mi | d� � P�mj | d�

for all j � i �i, j � 1, . . . , N�. �3�

As a tool for quantifying observational evidence in
the Bayesian framework, Kass and Raftery (1995) sug-
gested the Bayes factor, the original idea of which was
developed by Jeffreys (1935, 1961). The Bayes factor is
defined as the ratio of posterior odds to prior odds, and
it is identical to the likelihood ratio in the particular
setup used here where two scenarios (hypotheses) are
single distributions with no free parameters (Kass and
Raftery 1995):

Bir �
P�mi |d��P�mr |d�

P�mi��P�mr�
�

l�d |mi�

l�d |mr�
. �4�

The Bayes factor Bir of the scenario mi with respect
to the reference scenario mr represents observational
evidence in favor of mi or against mr. It should be noted
that this Bayes factor is independent of the prior prob-
ability while the posterior probability depends on pri-
ors. In other words, the Bayes factor corresponds to
posterior odds in a special case of identical priors. Kass
and Raftery (1995) suggested descriptive scales of
Bayes factors (Table 2), which derive from those de-
veloped by Jeffreys (1961). If the logarithm of Bayes
factors is larger than 1, 2.5, or 5, the observations rep-
resent “substantial,” “strong,” or “decisive” evidence in
favor of the scenario mi or against the reference sce-
nario mr. The interpretations of Bayes factors in M04,
Min et al. (2005a), Schnur and Hasselmann (2005), and
Lee et al. (2005) are based on these scales.

It is assumed by definition that N possibilities (sce-
narios) are exhaustive, that is, their prior probabilities
add to one. The Bayesian decision is made only for
possible scenarios that are predefined. Therefore its re-

TABLE 2. Descriptive scales of Bayes factors after Kass and
Raftery (1995).

ln Bir Bir

Evidence against the
reference scenario (mr)

0–1 1–3 Not worth more than a bare mention
1–2.5 3–12 Substantial

2.5–5 12–150 Strong
�5 �150 Decisive
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sult is definitely dependent upon the scenarios in-
cluded, meaning that one should set possible scenarios
carefully and that one cannot say anything about other
scenarios that are excluded.

b. Legendre series expansions

Although we use global mean SAT as detection vari-
ables, we deal with a multivariate problem because we
treat one time series of global mean SAT as the real-
ization of a multivariate random variable. Therefore we
have to summarize the temporal structure by an appro-
priate compression. The dimension reduction is neces-
sary to avoid singular or near-singular covariance ma-
trices. We propose the use of Legendre polynomials
(LPs) Pn(x), which have three advantages: 1) They can
handle an overall warming (scale) and a linear trend
(trend) in contrast to Fourier or Wavelet modes. 2)
They are data independent in contrast to empirical or-
thogonal functions (EOFs) or singular spectrum analy-
sis. 3) They are orthogonal in contrast to general poly-
nomials. The LP method has a major advantage over
the direct analysis of decadal means in terms of tem-
poral dimension. While the latter defines a fixed time
scale, the former covers all time scales up to the small-
est resolved one, which allows examining relative roles
of each temporal component in the sense of signal de-
tectability. However, we admit that LPs also have some
disadvantages, for example, they would explain less
variance than EOFs would for a given number of
modes, there might be odd behaviors of higher-order
modes related to end effects, and there are multiple
time scales associated with each LP that differ as one
approaches the ends of the time series (i.e., get shorter).

It can be shown that any function f(x) may be ex-
panded in terms of Pn(x) over the interval [�1, 1] (Ka-
plan 1992, 508–512):

f�x� � �
n�0

�

anPn�x�. �5�

Using the orthogonality of the LP, the expansion coef-
ficient an can be obtained from

an �
2n � 1

2 �
�1

1

Pn�x�f�x� dx. �6�

In this study, f(x) over the interval [�1, 1] corresponds
to global mean monthly SAT anomalies (SATAs) over
the time interval [t1, t2] from either observation or
model simulations. After transforming the SAT data,
say g(t) [t1, t2], into f(x) [�1, 1], substituting f(x) into
Eq. (6) produces the coefficient an by summing over the
data points.

If we expand time series of twentieth-century global
mean SATA, the zeroth degree coefficient a0 of P0(x)
� 1 (LP0) handles the overall time average (scale). The
first degree coefficient a1 of P1(x) � x (LP1) is directly
proportional to the linear trend (trend). Higher-order
coefficients characterize the decadal and interannual
variability. As examples of Legendre series expansions,
Fig. 1 shows reconstructed Legendre components
anPn(x) for degrees from 0 to 12 of global mean SATA
from observations (HadCRUT2v, Jones and Moberg
2003; see section 3) and different AOGCM simulations.
The first 12 degrees of LPs explain about 62% of ob-
served variances in global mean monthly SATs. Obser-
vations and model simulations show a global surface
warming (scale) in the twentieth century by about 0.3°C
with respect to 1900–20 means and positive trends
(trend), both of which are located beyond the range of
internal variability estimated from present-day control
simulations with the ECHO-G model (denoted as
ECHO-G_PD). The scale 0.3°C is different from the
well-known warming 0.6°C published by Houghton et
al. (2001) because the former is an averaged warming
over the whole twentieth century relative to 1900–20
while the latter is a temperature change for 1901–2000
estimated from the linear trend. Observed and simu-
lated SATA variations in higher degrees are located
within the simulated internal variabilities except some
AOGCMs in LP3 (see below). LP0 values can be arbi-
trary according to the defined reference period, but the
comparison of LP0 coefficients between observations
and model simulations is important as a relative dis-
tance measure between the observed and simulated
warming over the whole period. If one changes the ref-
erence period, observed and simulated LP0 coefficients
move together and the difference between them is not
affected much.

We decide the truncation degree of LP by assessing
whether the models simulate internal variability rea-
sonably on the time scales that are retained. The model
evaluation is done through analyzing power spectra of
global mean SATs from model and observations after
removing the linear trend. Figure 2 shows a comparison
of power spectra between CRU observations and
ECHO-G_PD and MME_PI (preindustrial control
simulations with multimodels; see Table 3). The Black-
man–Tukey method (Blackman and Tukey 1958) is
used for performing spectral analysis with a Hamming
window. A maximum lag of 25 yr is applied. One should
note that there might be the problem of the short rec-
ord for estimating the power in the 20-yr and longer
time scale. Ranges of model spectra represent maxi-
mum and minimum values from ensemble members for
a given time period. The range of statistical uncertainty
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(95% confidence limits) in the spectral estimates is
shown as a vertical line, which is identical for the ob-
servation and all model ensemble members of the same
100-yr length (i.e., 1200 months). ECHO-G_PD exhib-
its reasonable variance in the decadal time scales while
it has a too-strong 2-yr peak and a weak power in the
interannual time scale, which was reported by Min et al.
(2005b). It is interesting to see that the uncertainty
range from ECHO-G_PD looks similar to that of the
statistical error although there are some points (e.g.,
near 5 yr) where the former is less than the latter. The
MME result shows a broader range of modeled vari-
ance and the averaged power reveals better consistency
with that observed. The range of multimodel spectra is
larger than that of the statistical error in all periods. It
is shown that the LP12 has a maximum power near 20
yr for the 100-yr period, which would be near 10 yr for
50-yr subperiods (note that LP structure is fixed). Con-
sidering that models can do a good job at simulating the
internal variability on decadal time scales, we apply the
same LP truncation up to the 12th degree for both the
whole twentieth century (1900–99) and 50-yr subperi-
ods (1900–49 and 1950–99). Here we only identify a

period of maximum power for LP12. The linear fall off
of the spectra around the peak indicates that LP expan-
sion is not appropriate to filter out clearly times scales
outside of the peak. This is, as discusses above, related
with multiple time scales contained in the LP structure,
which originates from the shorter-term variability at the
end of time series.

3. Data and model simulations

As the observational dataset for SATA we use the vari-
ance-adjusted version of the CRU data (HadCRUT2v)
for 1900–99 (Jones and Moberg 2003). For the model
dataset there are two sources. One comes from SME
simulations with the ECHO-G model. These consist of
an existing 1000-yr present-day control run (ECHO-
G_PD; Min et al. 2005b,c) and newly performed his-
torical simulations for 1860–2000 under three different
external forcing factors (we take 1900–99 only for
analysis). ECHO-G is a coupled climate model, which
uses the ECHAM4 at a T30 resolution with 19 levels as
the atmospheric component (Roeckner et al. 1996).
The oceanic component utilizes the Hamburg Ocean

FIG. 1. Reconstructed time series of global mean SATs for 1900–99 from Legendre series expansions for Legendre degrees from 0
to 12: CRU observations (thick solid); selected two 20C3M simulations with different AOGCMs (thin solid and dashed), and 91 samples
from ECHO-G 1000-yr present-day control run (ECHO-G_PD; gray). See text for details.
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Primitive Equation (HOPE-G) at an equivalent T42
resolution with a meridional refinement in the equato-
rial region and 20 vertical layers (Legutke and Voss
1999). The model shows a good performance at simu-
lating climatology and natural climate variability, for

example, El Niño–Southern Oscillation (ENSO) and
the North Atlantic Oscillation (NAO; Min et al.
2005b,c). The equilibrium climate sensitivity (surface
air temperature change in equilibrium doubling CO2

minus control with ECHAM4 T30 coupled to slab

FIG. 2. Power spectra of global mean SATs (1900–99) for (a) ECHO-G_PD and (b)
MME_PI compared to CRU observations (thin). Mean (thick) and ranges (gray) of model
spectra are obtained from ten and eighty 100-yr nonoverlapping samples from ECHO-G_PD
(ECHO-G 1000-yr present-day control run) and MME_PI (multimodel ensemble preindus-
trial control run; see Table 3), respectively. In (a), normalized power spectra for the 12th
degrees of Legendre polynomials (dashed) are drawn together and represent maximum tem-
poral scales near 20 yr. The vertical lines represent the range of 95% confidence in the spectral
estimates for the observation and models.
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ocean) and the transient climate response (TCR; sur-
face air temperature change for years 61–80 of a tran-
sient 1% yr�1 CO2 increase minus control, where CO2

doubles around year 70) of the ECHO-G model are
3.18° and 1.73°C, respectively (cf. Min et al. 2006).

Additionally, we have conducted four simulations
with greenhouse gas (GHG) forcing only (ECHO-
G_GHG), five with natural forcing only (ECHO-
G_Nat), and four combining natural and anthropogenic
forcing (ECHO-G_20C). The radiation calculation al-
lows for the inclusion of 19 GHGs including CO2, CH4,
N2O, and minor industrial GHGs (Roeckner et al.
1999). In ECHO-G_Nat, solar and volcanic activities
are implemented by varying the solar constant follow-
ing Crowley (2000). Besides GHGs, the anthropogenic
forcing runs include sulfate aerosols. The direct and
first indirect effects of aerosols are calculated with an
interactive sulfur cycle model (Feichter et al. 1997).
ECHO-G_20C participates in the “20th Century Cli-
mate in Coupled Models” (20C3M) simulations for

IPCC AR4 (Table 3). From ECHO-G_GHG, ECHO-
G_Nat, and ECHO-G_20C we obtain four, five, and
four nonoverlapping samples of 100-yr (1900–99) global
mean SATs for GHG, Nat, and All scenarios, respec-
tively. From the ECHO-G_PD control run, 91 time se-
ries of 100-yr global mean SATs are sampled for the
CTL scenario using a moving window of 100-yr length
with a shift of 10 yr. This provides an estimate of inter-
nal variability for the analysis period (see below).

The second source for model data is the IPCC AR4
archive (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.
php). We extracted monthly mean SATs from 20C3M
simulations (MME_20C) and preindustrial control
(PIcntrl) simulations (MME_PI) from 12 and 22 mod-
els, respectively (see Table 3). Detailed model informa-
tion can be also obtained from the IPCC AR4 archive.
Overall 48 and 80 independent (nonoverlapping) 100-yr
global mean SATs could be extracted for MME_20C
and MME_PI, respectively. Another sampling for
MME_PI is done with overlapping 100-yr moving win-

TABLE 3. List of AOGCMs used in constructing MME_20C and MME_PI. Ensemble members in MME_20C come from model
simulations for 1900–99 including both natural and anthropogenic forcing. Number of 100-yr subsections in MME_PI is obtained by
applying a 100-yr-long moving window with a shift of 10 yr while nonoverlapping samples are taken from every 100-yr interval.
Atmospheric horizontal resolution of each model is given as number of grid points in longitude (Nx) and latitude (Ny).

Model

Atmospheric
resolution
(Nx 
 Ny)

MME_20C
(12 models)

MME_PI (22 models)

Total period
No. of 100-yr subsections

(nonoverlapping)
Nonuse

(climate drift)Ensemble members

BCCR_BCM2.0 192 
 96 — 250 16 (2)
CCSM3 256 
 128 8 (run1–run7, run9) 230 (run1) 14 (2)

500 (run2) 41 (5)
CGCM3.1 (t47) 96 
 48 — 500 41 (5)
CGCM3.1(t63) 128 
 64 — 350 26 (3)
CNRM-CM3 128 
 64 — 390 30 (3)
CSIRO-Mk3.0 192 
 96 — 379 29 (3)
ECHAM5/MPI-OM 192 
 96 — 670 58 (6)
ECHO-G 96 
 48 5 341 25 (3)
FGOALS-g1.0 128 
 60 — 150 (run1) 1 (1) 1st 50 yr

150 (run2) 1 (1) 1st 50 yr
150 (run3) 1 (1) 1st 50 yr

GFDL-CM2.0 144 
 90 3 500 41 (5)
GFDL-CM2.1 144 
 90 3 500 41 (5)
GISS-AOM 90 
 60 — 251 (run1) 16 (2)

251 (run2) 16 (2)
GISS-EH 72 
 46 5 400 21 (3) 1st 100 yr
GISS-ER 72 
 46 9 500 41 (5)
INM-CM3.0 72 
 45 1 330 24 (3)
IPSL-CM4 96 
 72 — 230 14 (2)
MIROC3.2(hires) 320 
 160 1 100 1 (1)
MIROC3.2(medres) 128 
 64 3 500 41 (5)
MRI_CGCM2.3.2 128 
 64 5 350 26 (3)
PCM 128 
 64 4 588 (run2) 49 (5)
UKMO-HadCM3 96 
 73 — 341 25 (3)
UKMO-HadGEM1 192 
 145 1 (run2) 140 5 (1)
SUM 48 644 (80)
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dows with a 10-yr shift where data from individual mod-
els are kept separate. This produces 644 samples of
100-yr global mean SATs (see Table 3 for details). This
will be used to estimate parameters (means and covari-
ance matrices) for the scenarios. We treat all model
simulations as independent samples. Using different
numbers of models, for example, 10, 17, and 22 models,
did not change our major results, which means that
means and covariance matrices, which are estimated
from different combination of models, are rather simi-
lar.

For every 100-yr global mean SAT sample from
ECHO-G_PD and MME_PI, the anomaly is calculated
with respect to the first 20 yr to be compared with the
twentieth-century simulations. Taking different refer-
ence periods for anomaly calculation (e.g., 1880–1920
or 1961–90) does not change main results. The year
1900 is selected since it is the common period between
models. All model data are interpolated linearly onto
the observational grid of 5° 
 5° and masked with ob-
servational coverage on a month-by-month basis prior
to analysis.

4. Overall structure of the detection variables

a. Single-model ensembles with ECHO-G

Temporal variations of the twentieth-century global
mean SATs from SMEs with the ECHO-G model un-
der different forcing factors are shown in Fig. 3. They
are low-pass filtered by retaining Legendre degrees up
to 12. SATs from HadCRUT2v observations (thick
black) and ECHO-G_PD (gray) are drawn together for
comparison with the forced SMEs (thin black, dashed
for ensemble mean). The observed warming by the end
of twentieth century is about 0.8°C from the 1900–20
mean, and it is characterized by two dominant periods
of increasing trend, that is, 1920–45 and 1975 onward.
The scale 0.8°C is again different from 0.6°C given by
Houghton et al. (2001). The former represents the tem-
perature change near 2000 in the law data whereas the
latter is an estimated value from the linear trend (see
above). The amplitudes of the observed warming in the
two periods are beyond the range of internal variability
from ECHO-G_PD. Dissimilar to the observations, the
four members of ECHO-G_GHG exhibit a steady
warming over the whole twentieth century, produce a
too-strong warming by the end of the century (1.2°–
1.6°C), and fail in reproducing the observed early
warming near the 1940s (Fig. 3a). In contrast, the
ECHO-G_Nat simulations capture well the observed
early warming with the intraensemble variability being
large. Recent observed warming since the 1970s cannot
be simulated in these runs, and the temperature

changes for the period are located within the range of
internal variability (Fig. 3b). The ECHO-G_All simu-
lations (Fig. 3c) reproduce observed temperature varia-
tions successfully, indicating that both natural and an-
thropogenic forcing factors including the aerosol forc-
ing are required to simulate the observed temperature
changes. These results are consistent with previous
studies from other models with, for example, the Third
Hadley Centre Coupled Ocean–Atmosphere GCM
(HadCM3; Tett et al. 2002), Geophysical Fluid Dynam-
ics Laboratory R30 model (GFDL_R30_c; Broccoli et
al. 2003), and the Parallel Climate Model (PCM; Meehl
et al. 2004).

Global mean SATA time series of the ECHO-G
SMEs can be decomposed into scale, trend, and decadal
shorter-term components using the Legendre series ex-
pansions. The decomposition is applied to SATAs for
the whole twentieth century (1900–99) and its first
(1900–49) and second halves (1950–99). This allows an
assessment of the different external forcing factors in
different periods and a quantification of simple com-
parisons between observed and simulated time series
described above. Figure 4 (left) shows the distributions
of Legendre expansion coefficients for the three forced
ECHO-G SMEs for the whole twentieth century. There
is clear evidence that the observed coefficients a0 and a1

(amplitude for scale and trend) have positive values ly-
ing outside of the uncertainty range of ECHO-G_PD.
Observed coefficients for higher degrees are within the
range of internal variability (also see Fig. 1). It is found
that observed coefficients a3 and a4 are significantly
different from the mean of ECHO-G_PD at the 5%
level assuming normal distributions, while a2 is not. In
terms of conventional univariate statistics, this means
that external forcing signals in global mean SATs can
be detected only on time scales longer than about 50 yr,
which is consistent with a previous study by Stott and
Tett (1998).

The ECHO-G_GHG results for 1900–99 show posi-
tive coefficients beyond ECHO-G_PD ranges for de-
grees from zero to two. As seen above, the amplitude
for trend is much larger than the observed. In the
ECHO-G_Nat simulation, the coefficients for a0 and a1

are positive but smaller than the observed one while the
coefficients a4 are close to the observations. Because
the observed warming trend for 1920–45 projects
strongly on LP4 (Fig. 1), this result indicates that the
natural forcing might explain parts of the observed
early warming. The ECHO-G_All results exhibit good
consistencies with observations for Legendre degrees
for 0–4 confirming that observed long-term variations
of the twentieth-century global mean SATs may be at-
tributable to both natural and anthropogenic forcing.
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The Legendre coefficients for the first half of the
twentieth century (1900–49) are presented in Fig. 4
(middle). Observations show a general warming of
0.15°C (a0) and an increasing trend (a1), both of which
are beyond the internal variability range of the ECHO-
G_PD runs. Observed values for higher degrees from
LP2 are within the internal variabilities similar to the
results for the full twentieth century. The ECHO-
G_GHG runs show a similar behavior to the observa-
tions, but with weak amplitudes. The ECHO-G_Nat
simulations exhibit a good skill only in two members

out of five indicating the large intraensemble difference
in responses to natural forcing as discussed above. The
ECHO-G_All ensemble captures the observed warm-
ing for 1900–49 very well in the coefficients a0 and a1

with a small intraensemble difference or a good consis-
tency between ensemble members.

Similar results can be found in the Legendre expan-
sion coefficients for the second half (1950–99), where
the observed mean warming from 1900–20 mean (a0) is
0.42°C. While the ECHO-G_GHG simulations display
a too-large warming and the ECHO-G_Nat runs do not

FIG. 3. Time series of reconstructed global mean SATs from the ECHO-G simulations
under different forcing factors (thin lines): (a) ECHO-G_GHG, (b) ECHO-G_Nat, and (c)
ECHO-G_20C. Number in brackets indicates number of ensemble members. Gray lines show
a range of internal variability from ECHO-G_PD (91 samples from 100-yr moving windows
with a 10-yr shift), dashed lines are ensemble mean, and thick lines are CRU observations. All
values are low-pass-filtered temperature anomalies from 1900–20 means using Legendre se-
ries expansions retained at the 12th degree.
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have significant warming, the ECHO-G_All simula-
tions show similar amplitude of warming although the
trend (a1) is slightly smaller than that observed. Ac-
cording to Roeckner at al. (1999), who used the same
atmospheric model with the same historical sulfate
emissions as here, the direct and first indirect aerosol
forcing for 1860–1990 is estimated as �0.35 and �0.91
W m�2, respectively. Subtracting Legendre coefficients
of ECHO-G_GHG and ECHO-G_Nat from that of
ECHO-G_All provides an estimate of aerosol cooling
effect (a0 � �0.35 and a1 � �0.26 for 1950–99). They
are very similar to those estimated from three-member
ensemble runs with sulfate aerosol forcing only (a0 �
�0.32 and a1 � �0.24), indicating linearity of the re-
sponse to external forcing in the ECHO-G model (e.g.,
Gillett et al. 2004).

To summarize, these results show that 1) Legendre
series expansion provides a useful information for cli-
mate change signal analysis, and 2) only the ECHO-G

simulations with all (natural and anthropogenic to-
gether) forcing can reproduce observed global mean
temporal SAT patterns not only for the whole twenti-
eth century but also the first and second halves of the
century separately.

b. Multimodel ensembles from the IPCC AR4
models

To consider uncertainties from intermodel differ-
ences, detection variables are obtained from the multi-
model dataset. Figure 5 shows reconstructed global
mean SATs for the twentieth century using LP0 to
LP12 from MME_20C (48 members) and MME_PI
(644 members). The MME_20C dataset is based on 12
models that are available for the natural plus anthro-
pogenic forcing run only while the MME_PI set is
based on 22 models (Table 3). All results are relative to
1900–20 means. Some members in MME_20C do a

FIG. 4. Legendre expansion coefficients for global mean SATs for the period of (left) 1900–99, (middle) 1900–49, and (right) 1950–99
from ECHO-G_GHG, ECHO-G_Nat, ECHO-G_20C simulations (thin), ensemble means (dashed), and CRU observations (thick
lines; see Fig. 3 for low-pass-filtered original time series). Number in brackets shows number of ensemble members. Gray shading
represents the range (maximum to minimum) from ECHO-G_PD.
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good job in simulating observed temperature changes
although intermodel difference is a bit large. Ensemble
mean of MME_20C shows a slightly lower warming
than observations and the difference is largest near
1940. MME_PI also exhibits large uncertainty ranges,
but the observed recent warming is still outside of the
range.

It would be worth discussing the spread in the simu-
lated SATs, which widens after 1920 in association with
possible effects of climate drift and the choice of cen-
tering on the properties of LP coefficients and Bayesian

decision results. First, concerning climate drift, we ex-
cluded a few model simulations, which show noticeable
drift, constituting MME_PI (Table 3). In the case of
MME_20C, the selection of 12 models, which were in-
tegrated under natural and anthropogenic forcing to-
gether, left out a few models of larger climate drift (not
shown). Even after this procedure, the climate drift
would remain (see ensemble mean line in Fig. 2b). The
remaining drift would serve as an upper bound by en-
larging the internal variability estimated. That is, as one
removes climate drift more, the estimated internal vari-

FIG. 5. Reconstructed global mean SATs from (a) MME_20C (12 models 48 members) and
(b) MME_PI (22 models 644 members; see Table 3) simulations (gray lines). Dashed lines are
ensemble means, and thick lines are reconstructed SATs from CRU observations. MME_PI
ensemble members are constructed from 100-yr moving windows with a 10-yr shift. All data
are anomalies from 1900–20 means and are low-pass filtered using Legendre series expansions
retained at the 12th degree.
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ability will be reduced. Second, the choice of centering
affects only the zeroth degree of LP (scale) without
giving any changes in the first and higher degrees of
LPs. It means that applying different reference periods
cannot change any shorter-term component except for
the time average. In some comparisons of Bayesian de-
cisions from taking different centering, we found neg-
ligible effects (not shown).

Legendre coefficients for the two MMEs are shown
in Fig. 6. It clearly shows that observed SAT changes
summarized in the LP0 and LP1 coefficients are inside
of the uncertainty range of MME_20C and outside of
that of MME_PI. MME_20C has coefficients in LP0

and LP4 that are a bit smaller than observations, which
can be inferred from SAT patterns in Fig. 5a described
above.

5. Bayesian decisions

a. Experiment setup

The Bayesian decision analysis quantifies the com-
parisons or similarity measures described in the above
section with respect to various uncertainty estimates
from either SMEs or MMEs. The combinations for
seven different Bayesian decision experiments are sum-
marized in Table 4. The difference of the experiments

FIG. 6. Legendre expansion coefficients for global mean SATs for the period of 1900–99
from (a) MME_20C (12 models 48 members) and (b) MME_PI (22 models 644 members).
Thick black lines are CRU observations, and dashed lines are model ensemble means. See Fig.
5 to compare with low-pass-filtered original time series.
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comes from various model combinations to define the
four scenarios: CTL, GHG, Nat, and All. Practically the
entries in Table 4 define those SMEs/MMEs from
which the mean and covariance matrices are estimated.
The mean estimation for the GHG and Nat scenarios is
fixed for all the experiments, because at present we
have only ECHO-G_GHG and ECHO-G_Nat with
four and five samples at our disposal. The method can
be extended to a multimodel approach if a large num-
ber of different model simulations becomes available
with relevant forcing. The SINGLE experiment in
Table 4 uses only data from SMEs (Legendre coeffi-
cients in Fig. 4) while MULTI1 to MULTI6 use differ-
ent combination of multimodel data from MME_20C
and MME_PI (Legendre coefficients in Fig. 6).

Two possible effects of MMEs are on the mean and
on the variability (covariance matrix). In the MULTI1
we assess the effect of MME_20C on the mean only.
MULTI2 has an additional effect of MME_20C on the
variability. MULTI3–6 commonly use MME_PI rather
than ECHO-G_PD for the mean and variability esti-
mation for the CTL scenario. The differences between
MULTI3–6 are based on the number of samples as well
as the assumption about the forced variability. While
MULTI3–4 take nonoverlapping 80 samples to esti-
mate the mean and variability of MME_PI, MULTI5–6
use overlapping 644 samples (Table 3). Hence the com-
parison of results from MULTI3–4 with those from
MULTI5–6 provides a sensitivity test to the number of
samples in defining scenarios. On the other hand,
MULTI3 and MULTI5 are different from MULTI4
and MULTI6 in treating the variability for the forced
scenario (GHG, Nat, and All scenarios). The former
experiments adopt MME_PI while the latter experi-
ments take MME_20C as a best guess for the forced
variability. This corresponds to assuming that the un-
forced internal variability remains unchanged given ex-
ternal forcing (MULTI3 and MULTI5) or it changes

notably due to the external forcing (MULTI4 and
MULTI6). By comparing results from different experi-
ments, the effect of intermodel uncertainties on the
Bayesian detection and attribution is assessed below.

b. Results for 1D and 2D variables: Scale and trend

Bayesian decision processes for one-dimensional
(1D) and two-dimensional (2D) detection variables are
explained before extending Bayesian analysis to a
higher-dimensional case, assuming that the dominant
signals of the external forcing enforce low-frequency
responses as discussed above. The coefficients for LP0
and LP1 are selected either as two sets of 1D variables
(q � 1) or as one 2D variable (q � 2). Legendre coef-
ficients retained at kth degree (k � 2) provide higher-
dimensional detection variables, which will be analyzed
later with q � k � 1. Figures 7 and 8 illustrate the
Bayesian decision processes for either 1D or 2D vari-
ables using SATs for 1900–99. As contours or lines, we
include the likelihood probability density functions
(PDFs). The decision areas for the four scenarios are
indicated by the shadings, and the observational points
are marked with crosses. All values are derived from
the SINGLE (Fig. 7) and MULTI5 (Fig. 8) experi-
ments. Model simulations described in Table 4 provide
samples to estimate the parameters for the likelihood
PDF of each scenario in Eq. (2). Means and covariance
matrices are calculated from all samples assuming in-
dependency between the samples. The likelihood PDF
for each scenario is calculated by applying hypothetical
observational values (Legendre coefficients) in the
range from –1.0 to 1.0 at steps of 0.01. The shaded
regions are derived from selecting the most probable
scenario given the observation at each point using the
decision rule of Eq. (3). For simplicity it is assumed that
prior probabilities of all four scenarios are identical,
P(m1) � P(m2) � P(m3) � P(m4). In this case, the
Bayes factor or likelihood ratio can act as a decision

TABLE 4. Experiment list for the Bayesian decision analysis. Number in brackets represents number of ensemble members with the
same abbreviation of model simulations as in Table 1. SINGLE represents an experiment using SMEs while six MULTIs represent
those using MMEs (bold). MME_PI [80] are based on independent (nonoverlapping) sampling while MME_PI [644] are sampled from
100-yr moving windows with a 10-yr shift. See text for details.

Experiment
name

Model simulations for parameter estimations

Mean and
variability for CTL Mean for GHG Mean for Nat Mean for All

Variability for GHG,
Nat, and All

SINGLE ECHO-G_PD [91] ECHO-G_GHG [4] ECHO-G_Nat [5] ECHO-G_20C [4] ECHO-G_PD [91]
MULTI1 ECHO-G_PD [91] ECHO-G_GHG [4] ECHO-G_Nat [5] MME_20C [48] ECHO-G_PD [91]
MULTI2 ECHO-G_PD [91] ECHO-G_GHG [4] ECHO-G_Nat [5] MME_20C [48] MME_20C [48]
MULTI3 MME_PI [80] ECHO-G_GHG [4] ECHO-G_Nat [5] MME_20C [48] MME_PI [80]
MULTI4 MME_PI [80] ECHO-G_GHG [4] ECHO-G_Nat [5] MME_20C [48] MME_20C [48]
MULTI5 MME_PI [644] ECHO-G_GHG [4] ECHO-G_Nat [5] MME_20C [48] MME_PI [644]
MULTI6 MME_PI [644] ECHO-G_GHG [4] ECHO-G_Nat [5] MME_20C [48] MME_20C [48]
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function since it becomes identical to posterior odds
[see Eq. (4)]. The shaded regions indicate therefore the
scenario of maximal Bayes factor. A generalized Bayes-
ian decision is made below (in Figs. 10 and 11) where
we introduce varying prior probability of each scenario.
The plots in Figs. 7 and 8 are organized such that the 1D
result can be viewed as the marginal result of the 2D
case.

In the 1D results of the SINGLE experiment (upper-
and bottom-right panels of Fig. 7), the observation in
scale (a0) is positioned near the center of likelihood
PDFs of the All and GHG scenarios, which are very
close to each other, while the observation in trend (a1)
is located near the center of the All scenario, which is
well separated from the GHG (too big a trend) and the
Nat/CTL scenarios (trend close to zero). It is a quanti-
fication of the visual presentation of the coefficients a0

and a1 in Fig. 4. The 2D results using both scale and
trend together show an even clearer separation between

the scenarios than the 1D results (Fig. 7, bottom left).
The observations are well positioned near the center of
the All scenario area. This is a good example showing
an advantage of multidimensional or multipattern ap-
proach to get clearer signals. The same plots from the
MULTI5 experiment (Fig. 8) represent similar results
to the SINGLE ones, except for two notable differ-
ences. First, the center (mean) of the All scenario is
moved toward zero especially in scale (a0), which is
caused by a smaller overall warming simulated in mul-
timodel averages (cf. Fig. 5a with Fig. 3c). The second
effect of MMEs is that, due to strengthened correlation
structure between a0 and a1, the decision area for the
All scenario in the 2D result of MULTI5 is reduced
compared to that in SINGLE. This makes the decision
in favor of the All scenario more selective.

The overall comparison demonstrates that, for the
1D and 2D study of the variables scale and trend, the
introduction of the larger intermodel uncertainties does

FIG. 7. Distribution of likelihood PDFs (contour lines) for four scenarios concerned in
Table 1, locations of observations (plus symbol), and Bayesian decision areas (shadings) for
three detection variables: (top) scale (using a0 only), (bottom right) trend (using a1 only), and
(bottom left) sale and trend simultaneously (using a0 and a1 together) from the SINGLE
experiment described in Table 4. Gray shadings represent decision area for each scenario into
which hypothetical values for observations are classified (white for the CTL). Bayesian de-
cisions are made assuming identical priors for the scenarios.
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not change the main results of Bayesian decisions. Ob-
served global mean SAT changes in the twentieth cen-
tury are classified into the All scenario. That is, the
observations can only be attributed to the all-forcing
case. The results for 1900–49 and 1950–99 show the
same conclusions (figures not shown), which is also
consistent with the visual comparisons of the time series
described in section 4. Effects of using MMEs appear as
movement of likelihood PDFs of the All scenario to-
ward zero for scale (a0) and trend (a1) of 1900–49 and a
better consistency between the All scenario and obser-
vations for trend (a1) of 1950–99, which are associated
with relative skills of MME_20C to ECHO-G_20C:
worse at simulating mean changes and trends for 1900–
49 while better at simulating trends for 1950–99.

Fuzzy ranges of the decision boundary can be con-
sidered on the basis of the descriptive scales for the
likelihood ratio, for example, logarithm ratio less than
1, of the two scenarios existing across the boundary
similar to those for the Bayes factors given in Table 2.
Sensitivity tests of the fluctuations of decision bound-
aries can also be done to prior probabilities (cf. Fig. 4a
of M04) and other intermodel uncertainties (not only
MULTI5 in Fig. 8). The latter test includes the effects

of means, covariance matrices, and number of model
simulations applied (Table 4). The fuzziness of the
boundary is difficult to present in a single figure.

c. Result for higher-dimensional variables

Next we extend the 1D and 2D Bayesian decisions
above to higher dimensions by increasing the degree of
retained Legendre polynomials from 0 to 12 (q � 1 to
13). Inclusion of higher degrees means shorter time
scales to be considered additionally in the Bayesian de-
cision process (Fig. 1). Figure 9 shows the Bayesian
decision results for higher-dimensional representations
of SATs for the three analysis periods (1900–99, 1900–
49, and 1950–99) from SINGLE and MULTI experi-
ments. The logarithm of the Bayes factor is used as a
decision function. For clarity, identical priors of the sce-
narios are assumed again. If we use the criteria for
Bayes factors from Table 2 for the values in Fig. 9, we
find that decisive evidences (logarithm of Bayes factors
� 5) can be only seen for the All scenario for the pe-
riods of 1900–99 and 1950–99. This result is robust to
both intermodel uncertainties and temporal scales con-
cerned. For SAT changes during the earlier part 1900–
49, Nat and All scenarios have strong evidences (loga-

FIG. 8. Same as in Fig. 7, except for the MULTI5 experiment.
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rithm � 2.5) for Legendre degrees 0–8. It is reasonable
to see that Nat and All results are very close to each
other for 1900–49 when anthropogenic forcing is
weaker than natural forcing.

Figure 9 also reveals large fluctuations of the Bayes
factors between experiments especially in the GHG
and Nat results for the two periods of increasing SATs
(1900–99 and 1950–99). Remembering that the mean of
the CTL scenario is always close to zero in all experi-
ments and the means of GHG and Nat are not changed
between models (Table 4), this indicates an important
role of natural internal variability in the Bayesian de-
cisions. Smaller values in MULTI3 and MULTI5 are
caused by smaller variabilities estimated from MME_PI
than from MME_20C for the MULTI2, MULTI4, and
MULTI6 (not shown). This is because the intermodel
uncertainty in MME_20C includes intermodel differ-
ences in responses to the external forcing as well as
natural variability, while the variability in MME_PI is
composed mostly of the latter.

d. Sensitivity to varying priors

As a last step the Bayesian decisions can be gener-
alized by considering varying prior probabilities. Here
the priors represent subjective beliefs in the given sce-
narios. It can be regarded as a weighting factor to the
likelihood PDF of each scenario. As a simple way we
take “noninformative” uniform priors (M04; Schnur
and Hasselmann 2005; Lee et al. 2005). Another as-
sumption is that total prior sum of the four scenarios
(CTL, GHG, Nat, and All) equals one, and priors of the
climate change scenarios excluding CTL are identical,
which leads to P(m2,3,4) � [1 – P(m1)]/3. Next prior
probability of CTL P(m1) is changed from 0.01 to 0.99.
This corresponds to changing prior odds P(m1)/[1 –
P(m1)] from 0.01 to 99, which can be interpreted as
giving a weighting to P(m2,3,4) by 33 times of P(m1) to a
weighting to P(m1) by about 337 times of P(m2,3,4). Us-
ing the varying priors and the likelihood values (or
Bayes factors in Fig. 9), posterior probabilities for each

FIG. 9. Bayesian decision results for observed global mean SATs for the period of (left) 1900–99, (center) 1900–49, and
(right) 1950–99 as represented by distributions of logarithm of Bayes factors for the GHG, Nat, and All scenarios with respect
to the CTL scenario as retained degree of Legendre polynomials varies from 0 to 12 (as shorter time scales are added, see
Fig. 1, e.g.) for SINGLE and MULTI experiments described in Table 4. Assuming identical priors for the scenarios,
logarithms larger than 5 (less than –5) represent decisive evidence for the scenario concerned (for the reference scenario
CTL), which are marked with dark shadings. Light and middle-dark shadings represent substantial and strong areas similarly
(see Table 2 for descriptive scales).

3252 J O U R N A L O F C L I M A T E VOLUME 19



scenario can be obtained from Eq. (1). The posterior
probability of each scenario represents its contribution
to total summed posteriors, which always equals one as
the prior does (cf. see Fig. 2 of M04). Bayesian deci-
sions are made by selecting the scenario of maximum
posterior at each point of varying priors and Legendre
degrees retained.

Figure 10 shows these posterior probabilities of the
four scenarios and the Bayesian decisions for global
mean SATA from the SINGLE experiment as a func-
tion of the varying priors. The periods of 1900–99,
1900–49, and 1950–99 are considered as before. For
the whole twentieth century and its second half, All
has the largest posterior probabilities for all ranges of
Legendre expansions and prior values even if P(m1) is
0.99. The result for the first half shows a different be-
havior. Posterior of All is largest for LP0, LP1, and
LP9–LP12 while Nat signals are dominant from LP2 to

LP8. Also the decision is in favor of CTL if P(m1) is
larger than 0.8 or prior odds are larger than 4 (see
above). This result from the single-model ECHO-G
demonstrates that Bayesian decision results for global
mean SATs are largely insensitive to prior changes if
the whole twentieth century or the second half is con-
sidered.

To see the impact of intermodel uncertainties on
Bayesian decision results in the case of varying priors,
posteriors and Bayesian decisions from the MULTI5
experiment are shown in Fig. 11. Other MULTI experi-
ments exhibit very similar results (not shown). One can
clearly find that the scenarios selected by the decision
in the MULTI5 experiment are very close to those in
the SINGLE experiment. Only one minor difference
from the SINGLE result can be seen in that Nat is
dominant in LP0 and LP1 for 1900–49. This MME ef-
fect on long-term components (scale and trend) is asso-

FIG. 10. Distributions of posterior probabilities for the four scenarios of (top four rows) CTL, GHG, Nat, and All and (bottom row)
corresponding Bayesian decisions of the most probable scenario for observed global mean SATAs for three periods [(left) 1900–99,
(middle) 1900–49, and (right) 1950–99] in case of varying prior probabilities from the SINGLE experiment. Ordinate depicts the prior
probability of CTL P(m1) and abscissa represents retained Legendre degrees from 0 to 12. It is assumed that priors of the climate change
scenarios except for CTL are identical with a constraint that a total summed prior is unity. White-colored area in the decision plot
indicates decision area where logarithm posterior odds of the decided scenario with respect to CTL are less than 1, i.e., climate change
signal is “not worth more than a bare mention” (see Table 2).
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ciated with movement of means as discussed above in
the identical prior case. A good consistency between
the SINGLE and MULTI experiments demonstrates
that our Bayesian decision results for the observed
twentieth-century global mean SATs are robust to the
uncertainties arising from intermodel differences as
well as prior probabilities.

6. Conclusions and discussion

A Bayesian decision method developed by M04 is
applied to observed and simulated twentieth-century
global mean SATs considering four scenarios (“CTL,”
“GHG,” “Nat,” and “All”) whose parameters are esti-
mated from single-model ECHO-G or multimodel
IPCC AR4 simulations. To consider temporal scales in
the analysis, the time series of global mean SATs are
expanded into 13 components of Legendre series ex-
pansions. The coefficients represent an overall warming
scale (zeroth degree), the linear trend (first degree),
and shorter-term decadal (second degree and higher)
variations. The Legendre coefficients serve as detection

variables for the Bayesian decision process. Two sub-
periods of 1900–49 and 1950–99 as well as the whole
twentieth century (1900–99) are considered to examine
relative importance of different forcing factors in ex-
plaining observed climate change in different subperi-
ods.

Simple comparison of Legendre coefficients shows
good consistencies between observations and All forc-
ing simulations, which does provide some hints on the
results of climate change detection and attribution. Our
Bayesian decision quantifies this comparison with con-
sideration of the changing prior information and uncer-
tainties from internal variability and intermodel differ-
ence as well. As in other Bayesian studies (Min et al.
2005a; Schnur and Hasselmann 2005; Lee et al. 2005),
the Bayes factor or likelihood ratio is used as an indi-
cator of observed evidence for the scenario concerned,
given a predefined reference scenario (CTL in this
study). Numerical values of the Bayes factor are trans-
ferred into the descriptive scales “substantial,”
“strong,” and “decisive” through thresholds provided
by Kass and Raftery (1995).

FIG. 11. Same as in Fig. 10, but for the MULTI5 experiment.
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Analysis results using single-model simulations
(SINGLE experiment) show that global mean SATs for
the whole twentieth century and its second half exhibit
decisive evidences only for the All scenario for all
ranges of Legendre degrees retained. On the other
hand temperature changes in the first half of the cen-
tury are classified into both Nat and All scenarios with
strong evidences. These results are very consistent with
previous works based on conventional or Bayesian sta-
tistics (Mitchell et al. 2001; IDAG05, and references
therein).

When multimodel simulations are applied (MULTI
experiments), the distributions of the Bayes factors are
not changed notably, implying the insensitivity of
Bayesian decisions to intermodel uncertainties arising
from different model sources. It is also demonstrated
that Bayesian decision results are largely robust to
varying priors. This is well shared with previous results
for a regional-scale detection by Min et al. (2005a) and
global results by M04, Schnur and Hasselmann (2005),
and Lee et al. (2005).

In this study, we handle multiple signals (GHG, Nat,
and All) in the presence of the unforced background
noise (CTL). The unforced noise can contain the inter-
model differences if we use MMEs rather than SMEs.
Suppose that one wants to detect anthropogenic signal
only (e.g., “Anthro” scenario defined as GHG plus sul-
fate aerosol forced change) from a single background
noise. This becomes a single signal versus a single noise
problem, and the Bayesian decision procedure and re-
sult would be very similar to those in the 2D case of
M04 and Min et al. (2005a) although details might be
highly different because of the different data domain
and model simulations used. As the noise model, we
can think about CTL alone or CTL-plus-Nat scenarios
and assess how this would change the Bayesian decision
result. However, in practice, since there are not enough
model simulations available with natural forcing only,
parameters characterizing the noise model should be
estimated mainly from CTL, which would reduce a pos-
sible change in the decision result.

One important result is that Bayesian decision results
are highly dependent upon a suite of forcing scenarios
defined, not the choice of models. This implies that one
should construct proper scenarios with care by which
observations might be explained better. It should be
also noted that forcing uncertainty is partly included in
the intermodel uncertainties analyzed here since mod-
els were not integrated with exactly identical forcing for
a given scenario (e.g., solar and volcanic forcing). Al-
though, for simplicity, we assume that forcing uncer-
tainty is very small because generally the uncertainty in
the response from different models to the same forcing

is much larger than ranges of forcing uncertainty; sepa-
ration of the forcing uncertainty out of the intermodel
differences and its effect on the Bayesian climate
change assessment would be an interesting subject for
future work.
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