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Anthropogenic changes in tropical rainfall are evaluated in a
multimodel ensemble of global warming simulations. Major dis-
crepancies on the spatial distribution of these precipitation
changes remain in the latest-generation models analyzed here.
Despite this uncertainty, we find a number of measures, both
global and local, on which reasonable agreement is obtained,
notably for the regions of drying trend (negative precipitation
anomalies). Models agree on the overall amplitude of the precip-
itation decreases that occur at the margins of the convective zones,
with percent error bars of magnitude similar to those for the
tropical warming. Similar agreement is found on a precipitation
climate sensitivity defined here and on differential moisture in-
crease inside and outside convection zones, a step in a hypothe-
sized causal path leading to precipitation changes. A measure of
local intermodel agreement on significant trends indicates consis-
tent predictions for particular regions. Observed rainfall trends in
several data sets show a significant summer drying trend in a main
region of intermodel agreement: the Caribbean�Central-American
region.

climate change � tropical precipitation � drought

C limate model global warming simulations (1–8) include
substantial changes in tropical rainfall. It has been difficult

to quantify what precipitation changes should be expected,
however, because climate models tend to agree poorly on
standard measures of such changes (9, 10).

We evaluate tropical precipitation response in the latest
multimodel ensemble of simulations under the Intergovernmen-
tal Panel on Climate Change Special Report on Emissions
Scenarios A2 scenario (10) for anthropogenic forcings, each
continued from a 20th-century radiative forcing run. Here we
seek aspects of the simulations on which some level of model
agreement can be found. For brevity, we present figures for a
single season, choosing June–August (JJA) because of the
relationship to an observed trend discussed in Observed Trends
for the Caribbean/Central-American Region. Drying (precipita-
tion reduction) trends are highlighted both because of their
potential impacts and because some aspects emerge more clearly
in the analysis.

A physical hypothesis for two related mechanisms (11, 12) for
the tropical precipitation changes provides background for the
diagnostics. This hypothesis offers plausible reasons for model
sensitivity and for the localization of the dry anomalies and
suggests that some features of the spatial pattern of the precip-
itation change should remain stable with time. The ‘‘upped-
ante’’ mechanism (11) for drought tendency hypothesizes a
differential moistening between convective and nonconvective
regions as warming increases the ‘‘ante’’ of moisture required to
sustain convection. Decreases in precipitation occur on the
margins of the convection zones in regions of strong low-level
inflow into the convection zones, as has been shown to occur in
two model studies (12, 13). This mechanism depends on the
details of the simulated wind climatology relative to the moisture
gradient, and thus the location of the drying is hypothesized to
be sensitive among models. A given climatology and relationship

between warming and convective moistening, however, may be
expected to yield precipitation reduction patterns that grow in
place. The ‘‘anomalous gross moist stability’’ or ‘‘rich-get-richer’’
mechanism (12) hypothesizes that the upped-ante differential
moisture increase will yield increased precipitation within the
convection zones because of enhanced moisture convergence.
This mechanism also contributes to drying outside the strong
convection zones and likewise should yield an approximately
fixed spatial pattern whose amplitude grows in time with the
tropospheric warming.

Patterns and Amplitude Measures for Precipitation Changes
Dry Region Spatial Patterns. Fig. 1 shows an overlay of the ‘‘dry’’
regions (negative precipitation anomalies) for several models for
a 30-year average at the end of the 21st century relative to a
1901–1960 base period for the JJA season. Regional anomalies
can be large, exceeding 3 mm day�1 in some cases. Dry anomalies
often occur in relatively intense, localized regions at the margins
of the convection zones. Weak negative anomalies (not seen at
the contour interval shown) also extend more broadly through
the climatological descent regions. Very substantial differences
in the regional distribution of strong anomalies occur among the
models. Some differences in the Southeast Pacific and South
Atlantic are attributable to errors in the position of the simulated
climatological convergence zones (Figs. 7 and 8, which are
published as supporting information on the PNAS web site,
provide an assessment of model climatological precipitation and
the full spatial pattern of precipitation change for each model).
More typically, intermodel differences are in position or extent
along a particular convective margin.

Amplitude Growth. Precipitation anomalies evaluated earlier in
the century (2010–2039 and 2040–2069 changes relative to the
same 20th-century base period; data not shown) are smaller in
amplitude, but most features of the spatial pattern correspond to
those in Fig. 1. To provide a measure of amplitude growth, we
project each model’s precipitation change field onto spatial
patterns that are constant in time and are chosen to reflect each
model’s typical precipitation response for dry and ‘‘wet’’ regions
(negative and positive anomalies), respectively. The two spatial
patterns for each model are defined by the precipitation change
for 2070–2099 (relative to the 1901–1960 base period) in the
tropics (lat 23°S to lat 23°N). This pattern is divided into negative
and positive anomalies, each normalized by their respective
spatial rms. The late-21st-century precipitation change is used to
characterize each model’s preferred pattern because the anom-
alies are well established above internal variability by this time.
For each model the precipitation change for a sliding 30-year
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window is then projected onto that model’s own wet and dry
patterns to give an amplitude (in mm day�1), which is displayed
at the 15th year of the window.

Fig. 2 shows this projected amplitude as a function of time for
the JJA season. The growth of both dry and wet anomaly
amplitude approximately tracks the warming in tropical surface

and tropospheric temperature (Fig. 2 Inset). Time evolution for
other seasons (data not shown) is comparable. Although inter-
decadal variability is substantial in some models, the anthropo-
genic signal emerges from the internal variability estimated from
the control runs early in the 21st century. Note that increasing
amplitude for the dry case corresponds to regional decreases in
precipitation. This measure, which approaches a spatial rms
value in late 21st century, captures the amplitude of spatially
varying precipitation anomalies, which are much larger than the
tropical mean precipitation change. Magnitudes are on the order
of those associated with the interannual El Niño�Southern
Oscillation phenomenon, but these anthropogenic changes per-
sist on far longer time scales. Although the models tend to differ
in the exact spatial distribution of wet�dry anomalies, the
amplitude agreement among models appears to be unprece-
dented for a regional precipitation-related quantity.

Per-T Climate Sensitivity. As a prelude to quantifying this inter-
model agreement, we first present the relationship of the pre-
cipitation anomaly to the tropical mean temperature. This
relationship is quantified in Fig. 3 for the dry region projection
for a model that has an ensemble of five runs available. Although
in general precipitation behavior need not be linear (for instance
if a particular region were reduced to zero precipitation) for
average quantities and these amplitudes, the precipitation
change amplitude grows approximately linearly with tempera-
ture. This behavior also holds for the wet region projection and
for moisture increases (data not shown). We thus define a per-T
climate sensitivity, i.e., change per tropical-average surface air
temperature change, applied in Fig. 4 to several quantities
relevant to changes in the hydrological cycle. The per-T sensi-
tivity is useful in relating these changes to a widely studied
quantity �Ts and in taking into account that amplitude increases
with temperature within each model. However, the main pur-
pose of using per-T sensitivity here is to clarify that scatter in
precipitation among models is not primarily due to temperature,
because the leading temperature dependence for each model is
approximately removed. For instance, the model that is an
outlier with small temperature increase in Fig. 4a lies within the
range of the other models in terms of precipitation impact per
unit warming in Fig. 4c.

Model Agreement in Global Tropics Measures. Fig. 4 quantifies the
degree of intermodel agreement for the amplitude of late-21st-
century precipitation changes as measured by the dry and wet
region projections, i.e., for spatial rms measures across the
tropics. This analysis is motivated by the hypothesis that the
model regional responses have underlying similarities even if the

Fig. 1. Examples of dry region precipitation change in the JJA season for
2070 –2099 relative to 1901–1960 (mm day�1) from six of the ocean–
atmosphere climate models, for the Special Report on Emissions Scenarios A2
global warming scenario. Contour line colors correspond to different models.
Model acronyms are given in Methods. Shading denotes precipitation de-
creases exceeding 0.5 mm day�1, with darker shading where these regions
overlap for more than one of the three models shown on each panel. The
dashed black contour gives the observed climatological 4 mm day�1 contour,
which typifies the shape of the mean convection zones.

Fig. 2. Amplitude of dry and wet precipitation changes (30-year running
mean, relative to 1901–1960) for JJA from 10 ocean–atmosphere climate
models for the Special Report on Emissions Scenarios A2 global warming
scenario. The anomaly at each year is projected onto the normalized spatial
pattern of late-21st-century (2070–2099 average) negative and positive pre-
cipitation change, respectively. Units are mm day�1. The error bars on the
model lines, repeated at bottom right, are �1 standard deviation values of the
same projection quantity evaluated for internal variability in the control runs
for each model. Inset shows the increase of tropical average surface air
temperature, �Ts, and vertical average tropospheric temperature (275–900
hPa), �Ttrop, for a single model that has late-21st-century warming close to the
multimodel ensemble mean.

Fig. 3. Precipitation anomaly dry region projection (as in Fig. 2), �Precipdry,
as a function of tropical average temperature for NCAR-CCSM3 for JJA. Colors
denote different ensemble runs. The slope of the heavy line shown gives the
per-T climate sensitivity for �Precipdry (lines for fits to individual ensemble
members are also shown). Values are for 30-year averages centered on 1934,
1964, 1994, 2024, 2054, and 2084 (10 years earlier for NCAR-CCSM3 ensemble
member 5 because of missing data at the end).
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spatial distribution differs. The scatter among models for the
negative region precipitation change (Fig. 4b) is only slightly
larger, relative to the multimodel ensemble mean, than the range
for tropical-average surface temperature (Fig. 4a), the inter-
model standard deviations being 22% and 18% of the multimo-
del mean, respectively. When the precipitation change is ex-
pressed as a precipitation climate sensitivity per unit surface
temperature change (Fig. 4c), the intermodel standard deviation
for negative region amplitude drops only slightly, to 21% of the
mean, suggesting that the scatter is not primarily due to differ-
ences in warming. The per-T precipitation-increase sensitivity
(Fig. 4d) has roughly comparable intermodel standard deviation.
Overall, the amplitude of the precipitation anomalies exhibits a
level of agreement in the multimodel ensemble that, while clearly
leaving room for improvement, is roughly comparable to inter-
model agreement on the warming itself. Considering that these

amplitudes measure regional precipitation changes, on which
poor intermodel agreement has been found, the agreement on
this measure is fairly remarkable. It may be interpreted as
indicating that the potential for regional drying should be taken
seriously.

Fig. 4 also shows two variables potentially associated with the
causal chain contributing to precipitation changes. The free
tropospheric temperature climate sensitivity has particularly low
scatter (14) (Fig. 4e). A measure of the moisture gradient
increase between regions inside and outside of strong convective
zones (Fig. 4f ) shows that the models all produce this key step
in the hypothesized mechanisms discussed in the Introduction.
Reasonable agreement on the differential moisture increase
within convection zones is no doubt a factor in why the models
would agree on precipitation change amplitude even while
exhibiting differences in regional distribution. However, the
per-T sensitivity for the differential moisture increase has larger
intermodel scatter than that for tropospheric temperature, sug-
gesting that intermodel differences begin already at the step of
establishing increased free tropospheric moisture in convective
regions.

Local Trend and a Measure of Local Model Agreement
A typical spatial distribution is seen in Fig. 5a, which shows the
precipitation trend of the multimodel ensemble median (see
Methods for details). Substantial drying trends occur in partic-
ular locations along the convective margins, for which the 4 mm
day�1 contour of the median climatology serves as a rough
indicator. Among these are drying regions in Central America,
the Caribbean, equatorial South America, and along the Atlantic
intertropical convergence zone. Precipitation increases tend to
occur inside the convection zones, including increases in the
Southeast Asian summer monsoon. Increased precipitation also
occurs in the equatorial Pacific, associated with changes in the
dynamics of the equatorial cold tongue and local sea-surface
temperature increase (15–18). The drying trends tend to be
larger as a fraction of the climatological rainfall: trends in much

Fig. 4. Late-21st-century changes (2070–2099 minus 1901–1960) and per-T
climate sensitivities for tropical precipitation, temperature, and moisture in
JJA. Each variable is normalized by the mean of the multimodel ensemble so
that the intermodel range relative to the multimodel mean (the interval 0–1,
highlighted in gray) may be compared across climate variables. Multimodel
ensemble standard deviations are shown as error bars, with values as a percent
of the multimodel mean marked. All axes are nondimensional. (a) Tropical
average (lat 23°S to 23°N) surface air temperature, �Ts. (b) rms negative
precipitation change, �Precipdry (with error bars as in Fig. 2). In c and d,
variables are given as per-T climate sensitivities, defined as change per unit
increase in tropical average surface air temperature, �Ts. (c) �Precipdry per �Ts.
(d) rms positive precipitation change, �Precipwet per �Ts. (e) Tropospheric
temperature increase (275- to 900-hPa vertical average above the surface
boundary layer), �Ttrop per �Ts. ( f) Differential tropospheric moisture increase
inside convection zones minus increase outside �(qin � qout) per �Ts. Colors
denote model.

Fig. 5. Multimodel local precipitation trend measures. (a) Precipitation
trend for JJA of the multimodel ensemble median from 1979 to 2099. Shading
indicates �99% significance by the Spearman-rho test. The black line gives the
4 mm day�1 contour from the median climatology (1900–1999 average) of the
models to indicate a typical boundary of the convection zones. (b) Model
agreement on the predicted local precipitation trend from 1979 to 2099 for
JJA. The number of models at each location that agree on a dry trend or a wet
trend exceeding 99% significance and exceeding a minimum amplitude
change (20% of the median climatology per century) is given by the brown or
green color bars, respectively. Only regions with five or more of the 10 models
agreeing are shaded.
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of the wet region are �20% of median climatology per 100 yr,
whereas the dry region trends noted above often exceed 30% per
100 yr. Although the amplitudes of these trends are sufficient to
raise concern, we wish to ask a more stringent question: are there
precipitation trends on which the models agree at the point-by-
point level?

Intermodel scatter tends to be high at the local level, so we
used the following measure: at each point count the number of
models (fraction of the multimodel ensemble) that have a trend
of the same sign and amplitude sufficiently large to (i) pass a
given significance level and (ii) exceed a minimum percent
change (here 20%) per century of climatological seasonal rain-
fall. Fig. 5b shows this measure of local intermodel agreement for
both dry and wet trends. Majority agreement on precipitation
increases occurs in a very restricted subset of the areas with
significant median trend within the equatorial Pacific and certain
parts of the Indian�Southeast-Asian monsoon. Drying trends
fare slightly better in terms of the area over which majority
model agreement occurs, although some areas exhibiting agree-
ment in the subtropical winter hemisphere have small trend
amplitudes. The largest area of high intermodel agreement
occurs for a drying trend in the Caribbean�Central-American
region. The model median amplitude of this trend is between 0.5
and 1 mm day�1 per 100 yr over most of the region, exceeding
this at some locations. This amplitude is substantial because this
region sits at the margin of the strong convection zones, with �2
mm day�1 rainfall in this season in the current climate. The
individual model reduction in rainfall averaged over the region
(long 90–60°W, lat 13–25°N) for a 30-year average at the end of
the century (relative to 1901–1960 average) ranges up to 54%
with a median of 25%. Locally the percent reduction can be
higher for particular models.

Observed Trends for the Caribbean�Central-American Region
We now consider evaluation of precipitation trends in observations,
which face several challenges. Full spatial coverage by means of
satellite retrievals is available only since 1979. Land station rain
gauge data has longer temporal records in some locations but
limited tropical spatial coverage. Projection methods such as are
used in Fig. 2 hold future promise, especially as the satellite record
lengthens, but require an estimate of spatial pattern, on which
models currently agree poorly. Finally, for estimation of local trends
the models are far from agreement on when detection of statistically
significant trends should be expected. Even in regions where high
model agreement is obtained in late 21st century when the signal
is large, agreement by measures that require point-by-point statis-
tical significance degrades for earlier times (Fig. 9, which is pub-
lished as supporting information on the PNAS web site, provides an
example). Part of this scatter is due to internal variability. For
example, for the National Center for Atmospheric Research Com-
munity Climate System Model, version 3 (NCAR-CCSM3), the
earliest model to achieve statistical significance in the Caribbean�
Central-American region, area average (long 92–58°W, lat 11–
23°N) rainfall trends starting from 1979 pass the 95% significance
level of a Spearman-rho test (19) at different years for the five runs,
ranging from 1994 to 2029. For trends evaluated starting from 1950,
all NCAR-CCSM3 runs pass this criterion by 2004. However, to
reach model agreement takes longer: five models pass this criterion
before 2044, and seven pass by 2054.

With these caveats in mind, examination of four observational
rainfall data sets yields a significant drying trend in the Carib-
bean�Central-American region. A satellite estimate and two
land-only station data sets are shown in Fig. 6 over their periods
of availability, since 1979 and since about 1950, respectively, with
a Spearman-rho test applied at each grid point. The coarser-
resolution Hulme land rainfall data (20) give similar results (data
not shown). The station-based local negative trends fall in the

range of 5–30% of the mean rainfall per 100 yr; the shorter
satellite-based trend is somewhat larger.

In the absence of observed time series to characterize regional
interdecadal variability, we present a multimodel ensemble
probability distribution of 50-year trends from the control runs
(Fig. 10, which is published as supporting information on the
PNAS web site). Because of the difficulty of validating the model
interdecadal precipitation variability, the comparison of the
observed trend to this distribution shows only that 50-year trends
of the observed magnitude in the region are not common in the
models. One cannot at this time exclude the possibility that the
observed trend is due to natural interdecadal variability; stan-
dards of attribution for temperature trends (21) are not yet met.
Observed sea-surface temperature trends in this region are
estimated to be small or positive (22, 23), which would favor
increased rainfall, so any impact from oceanic interdecadal
variability would have to come via a remote pathway. Possible
natural variability linkages include El Niño�Southern Oscillation
and the North Atlantic Oscillation (24).

Observed rainfall trends have been noted in other regions
(25–27), but we do not in the present models find strong
intermodel agreement on global warming-related trends for
these regions. The drying trend in sub-Saharan Africa observed
over past decades has been noted to continue in future in some

Fig. 6. Precipitation trend from observed estimates for JJA. (a) Climate
Prediction Center Merged Analysis of Precipitation satellite-only product for
1979–2003. The 4 mm day�1 contour from the climatological average over this
period is shown in black for reference. (b) Gridded station data (partial land
and island coverage only) from two data sets: Climate Prediction Center (34)
(CPC; 2.5° resolution, 1950–2002) and Variability Analyses of Surface Climate
Observations (33) (VASClimO; overlaid at 1° resolution, 1951–2000). Shading
indicates regions exceeding the 95% significance level by the Spearman-rho
rank-based test. Note that the color bar in a is at double the interval of that
in b.
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models (28, 29) but exhibits poor agreement in the ensemble
considered here. A region of drying in southern Africa and
surrounding oceans exhibits reasonable intermodel agreement
by our measures but should be treated with caution because most
models overestimate precipitation in the related Southern Hemi-
sphere mid-latitude storm tracks (see Fig. 7 for details). We do
note a region of strong model agreement on drying in the eastern
subtropical South Pacific in southern spring and summer that has
a corresponding negative trend in satellite observations (data not
shown). However, we have not found consistent supporting
evidence in station data from islands in that region. The
Caribbean�Central-American region trend, colocated with the
region of largest local intermodel agreement and predicting
substantial percent rainfall reduction, thus stands out as de-
manding attention and may provide a prototype for other regions
that are as yet undetectable.

Summary
Understanding, detection, and attribution of precipitation
changes under global warming lags by at least a decade behind
the corresponding problem for temperature, especially in the
tropics. While recognizing considerable model differences that
challenge climate modelers, the results here extract sufficient
agreement to consider the following changes likely: tropical
precipitation decreases in certain areas along the margins of the
convection zones and increases within the convection zones, with
amplitude increasing with warming. The drying trends outside
the convection zones are likely to be concentrated in particular
regions, among which the Caribbean�Central-American region
is a leading candidate.

A trend is shown in observed station and satellite data in this
region, although attribution of this trend to anthropogenic
effects should as yet be regarded as plausible but uncertain.

Methods
The model ensemble was chosen based on completeness of data
availability (including three-dimensional fields) at the Program
for Climate Model Diagnosis and Intercomparison archive and
a model grid size that is smaller than 4° by 3°, because phenom-
ena at convective margins are being considered. The models
included are as follows: Centre National de Recherches Météo-
rologiques Coupled Global Climate Model, version 3 (CNRM-
CM3); Commonwealth Scientific and Industrial Research Or-
ganization (Australia) climate system model, version 3 (CSIRO-
MK3); Max Planck Institute for Meteorology fifth-generation
atmospheric general circulation model (ECHAM5); Geophysi-
cal Fluid Dynamics Laboratory, National Oceanic and Atmo-
spheric Administration, global coupled climate model, versions
2.0 and 2.1 (GFDL-CM2.0 and GFDL-CM2.1); Hadley Centre
coupled model, version 3 (HadCM3); Center for Climate System
Research, University of Tokyo, Model for Interdisciplinary
Research on Climate, version 3.2, medium resolution (MIROC-
3.2-medres); Meteorological Research Institute, Japan, coupled
global climate model, version 2.3.2a (MRI-CGCM2); NCAR-
CCSM3; and National Center for Atmospheric Research Par-
allel Climate Model, version 1 (NCAR-PCM1). Although
GFDL-CM2.0 and GFDL-CM2.1 differ primarily in the dynamic
core, their precipitation response is very different (Fig. 7), and
so they are treated here as different models. The Canadian
Climate Centre model (CCCma) was evaluated and has consis-
tent results but was excluded from the multimodel ensemble here
because of a nonnegligible trend affecting JJA tropical precip-
itation (0.15 mm day�1 century�1 in the �Precipdry projection)
in its 500-year control run, presumably because of imperfect
equilibration of the spin-up run.

In Fig. 1, the observed climatology contour is from the Climate
Prediction Center Merged Analysis of Precipitation data set. In
Fig. 2, the projection procedure is simpler than the one known

as optimal ‘‘fingerprinting’’ (30) but closely related in that a
distinctive pattern of the anthropogenic impact is being defined.
The main difference in the application here is that different
patterns are used for each model to focus on amplitude, given the
differences in spatial distribution among models. Difficulties
using standard fingerprinting in face of model disagreement
were shown in ref. 31. The standard deviations from the control
runs shown as error bars in Fig. 2 are evaluated by taking the
same spatial pattern for the projection (i.e., from the 2070–2099
change) and projecting on the control run precipitation differ-
ences from an ensemble of all possible 30-year means minus
nonoverlapping 60-year means. Control runs all exceed 340 years
(500 years for most models). The curves in Fig. 2 are for a single
realization for each model for consistency among models (be-
cause most models did not have an ensemble available). Eval-
uation of other ensemble members where available yields similar
results, consistent with the error bars evaluated from the control.
Projections similar to the wet and dry patterns in Fig. 2 but using
the full late-21st-century precipitation change pattern (not di-
vided into wet and dry regions) yield similar curves that lie
between those for the wet and dry region amplitudes for each
model.

The per-T climate sensitivity illustrated in Fig. 3 can be
estimated either as a linear fit (through zero) or simply from
ratio in the late-century signal (when this sufficiently exceeds the
internal variability). The latter is used here for simplicity.
Although tropospheric temperature is more relevant to the
hypothesized physical pathway, we use values per tropical aver-
age surface air temperature change because it is a more widely
known indicator of global warming and the two are closely linked
in the models (Fig. 4e). This sensitivity measure follows methods
standard for climate feedback parameter estimates (10) but
applied here to impacts of the warming rather than to feedbacks
onto it.

In Fig. 4, the multimodel ensemble mean values by which the
axes are normalized are as follows: 3.2 K for �Ts, 0.84 mm day�1

for �Precipdry, 0.26 mm day�1 K�1 for �Precipdry��Ts, 0.43 mm
day�1 K�1 for �Precipwet��Ts, 1.4 K�K for �Ttrop��Ts, and 0.37
mm K�1 for �(qin � qout)��Ts. In Fig. 4f, the differential
moisture increase �(qin � qout) is estimated as an average
moisture increase in the 900- to 650-hPa layer for tropical regions
with climatological precipitation �4 mm day�1 minus the aver-
age over those with smaller precipitation. Although this is a
crude estimator of local gradients, it clearly shows a substantially
larger moisture increase within strongly convecting regions.

In Figs. 5 and 6, the trend is computed for each grid point for
the given season. Rank regression is used for temporal trend
computation; i.e., the sum of squares minimized in the standard
regression computation is replaced by a product of the usual
variable times its value in centered rank space. This is a more
robust estimator for non-Gaussian variables such as precipitation
(32). In Fig. 5, the model data are first averaged to a common
3.75° by 2.5° grid (that of the coarsest-resolution model,
HadCM3). For Fig. 5a, a model median is computed for the
seasonal precipitation values at every grid point and year. This
procedure creates a positive definite time series for each grid
point that characterizes median properties of the models and on
which the same operations can be done as on any other precip-
itation time series, including the computation of the climatology
and long-term trend shown in the figure. For Fig. 5b, the trend
over 1950–2099, its Spearman-rho statistic, and the climatology
are computed separately for each model. Because we are re-
quiring primarily agreement on sign, we wish to exclude counts
of trends with questionable sign or low potential consequence,
and so we count only the number of models at each grid point
that pass the confidence and fractional change criteria stated in
the text. In Fig. 6, the gridded station data sets include some of
the same stations. The VASClimO project included a large effort
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to gather additional stations, and aggregation of station data is
by Kriging interpolation to minimize risk of temporal inhomo-
geneities due to varying station densities (33). The Climate
Prediction Center Merged Analysis of Precipitation satellite
precipitation estimate that does not include land stations is
chosen for independence in Fig. 6.
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