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A B S T R A C T
Of the two dozen or so global atmosphere–ocean general circulation models (AOGCMs), many share parameterizations,
components or numerical schemes, and several are developed by the same institutions. Thus it is natural to suspect
that some of the AOGCMs have correlated error patterns. Here we present a local eigenvalue analysis for the AOGCM
errors based on statistically quantified correlation matrices for these errors. Our statistical method enables us to assess
the significance of the result based on the simulated data under the assumption that all AOGCMs are independent. The
result reveals interesting local features of the dependence structure of AOGCM errors. At least for the variable and
the timescale considered here, the Coupled Model Intercomparison Project phase 3 (CMIP3) model archive cannot be
treated as a collection of independent models. We use multidimensional scaling to visualize the similarity of AOGCMs
and all-subsets regression to provide subsets of AOGCMs that are the best approximation to the variation among the
full set of models.

1. Introduction

Projections of future climate for different scenarios of anthro-
pogenic fossil fuel emissions are based on coupled climate mod-
els representing the ocean, atmosphere, land and sea ice. Results
from individual models are sometimes averaged into a multi-
model mean (Meehl et al., 2007b), with the implicit assumption
that some of the errors in individual model simulations will can-
cel if the models are independent and distributed around the
true evolution of climate. Some studies use more complicated
methods to assign weight to individual models (Tebaldi et al.,
2005), but in most of these methods, there is an implicit assump-
tion of independence, such that the uncertainty in the projection
decreases as more models are combined (Tebaldi et al., 2005;
Furrer et al., 2007). However, despite the fact that an average
of models often compares more favorably to observations, it is
known already from earlier model intercomparisons that mod-
els tend to have similar deficiencies (Lambert and Boer, 2001).
Little analysis of the characteristics of these error patterns and
how they relate across models, has been done so far.

Jun et al. (2008) present statistical methods to quantify the
dependence of atmosphere–ocean general circulation models
(AOGCMs) and assess the statistical significance of the depen-
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dence through simulated present day mean of surface tempera-
ture, under the assumption that all models are independent. The
independence is defined in the statistical sense that if the ith
AOGCM error, Di , is decomposed into a fixed term, Mi , and a
random part with mean zero, εi , that is, Di = Mi + εi , then Di

and Dj (i �= j) are defined to be independent of each other when
εi and εj are independent. Their results indicate that the similar-
ities of the model errors are obvious and statistically significant,
in particular, between models that share components. How the
model error in the present day climate relates to model error in
projections is largely unknown at this point. But the fact that,
already, the errors in the present day climatology are similar in
many models, suggests that this problem needs further atten-
tion if multiple models are combined into a single prediction or
projection.

In this paper, we present a new method to look at the AOGCM
spatial error patterns, which extends the preliminary result in Jun
et al. (2008). We perform local eigenanalysis, based on the corre-
lation matrices for the AOGCM errors, with the goal of uncover-
ing local features of the model dependence. This analysis is not
possible using the usual empirical orthogonal function (EOF)
analysis. An important feature of this method is a companion
statistical model for the spatial structure of each AOGCM’s error
field. This model is used to determine the sampling properties
of the local eigenanalysis, under the hypothesis of independence
among models and serves as a check to avoid conclusions from
these data that could arise by chance. Furthermore, we explore
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and visualize similarities of AOGCMs at various subregions of
interest and identify subgroups of models that can best summa-
rize the full set of AOGCMs.

2. Data and model experiments

We consider the surface temperature from 1970 to 1999 in the
latitude range from 45◦S to 72◦N and the full longitude range
from −180◦ to 180◦, to define model error. The ‘data product’
that we use are monthly averages, aggregated on a regular spatial
grid by the Hadley Centre, UK MetOffice and Climate Research
Unit (CRU), East Anglia, UK (HADCRU) (Jones et al., 1999;
Rayner et al., 2006) and is a composite of land and ocean data
sets.

The climate model experiments consist of more than 20 sep-
arate models that were run as part of the coordinated modelling
effort, in support of the IPCC Fourth Assessment Report (Meehl
et al., 2007a). A list of the models used here, as well as their

Table 1. The names of modelling groups, country, IPCC I.D. and resolutions of the 20 IPCC model outputs used in the study

Sl. no. Group Country IPCC I.D. Resolution

1 Beijing Climate Center China BCC-CM1 192 × 96
2 Canadian Center for Climate Modelling & Analysis Canada CGCM3.1 96 × 48
3 Météo-France/

Centre National de Recherches Météorologiques France CNRM-CM3 128 × 64
4 CSIRO Atmospheric Research Australia CSIRO-Mk3.0 192 × 96
5 US Dept. of Commerce/NOAA/Geophysical

Fluid Dynamics Laboratory USA GFDL-CM2.0 144 × 90
6 US Dept. of Commerce/NOAA/Geophysical

Fluid Dynamics Laboratory USA GFDL-CM2.1 144 × 90
7 NASA/Goddard Institute for Space Studies USA GISS-AOM 90 × 60
8 NASA/Goddard Institute for Space Studies USA GISS-EH 72 × 46
9 NASA/Goddard Institute for Space Studies USA GISS-ER 72 × 46
10 LASG/Institute of Atmospheric Physics China FGOALS-g1.0 128 × 60
11 Institute for Numerical Mathematics Russia INM-CM3.0 72 × 45
12 Institut Pierre Simon Laplace France IPSL-CM4 96 × 72
13 Center for Climate System Research,

National Institute of Environmental Studies, MIROC3.2
and Frontier Research Center for Global Change Japan (medres) 128 × 64

14 Meteorological Institute of the University of Bonn,
Meteorological Research Institute of KMA, Germany/

and Model and Data group Korea ECHO-G 96 × 48
15 Max Planck Institute for Meteorology Germany ECHAM5/MPI-OM 192 × 96
16 Meteorological Research Institute Japan MRI-CGCM2.3.2 128 × 64
17 National Center for Atmospheric Research USA CCSM3 256 × 128
18 National Center for Atmospheric Research USA PCM 128 × 64
19 Hadley Centre for Climate Prediction and Research/

Met Office UK UKMO-HadCM3 95 × 73
20 Hadley Centre for Climate Prediction and Research/

Met Office UK UKMO-HadGEM1 192 × 145

The resolution of the observation is 72 × 36 (5◦ × 5◦).

resolution, is given in Table 1. The model output is archived
in a common format and can be downloaded from the Pro-
gram for Climate Model Diagnosis and Intercomparison web-
site (PCMDI, http://www-pcmdi.llnl.gov/). More details
on the model output used in this work is described in Jun et al.
(2008). We originally have 20 models, as listed in Table 1, but
model 1 was excluded from the analysis. As explained in Jun et
al. (2008), this model has problems with model setup and data
post-processing. Model 10 has a relatively large bias compared
with other models, but we included this model in the analysis.

The AOGCM errors are defined for the climatological mean
state. We focus on Boreal winter (DJF) and summer (JJA) mean
surface temperature, averaged over 30 yr (1970–1999). Accord-
ingly, the sample error for each AOGCM at each grid cell is the
difference between the model 30-year mean and the observed
30-year mean, based on the HADCRU data product. For this
multimodel data set, the number of ensemble runs is limited,
and so, one would expect uncertainty in the error estimates,
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simply due to the inherent variability of the model integrations.
Thus, it is important to distinguish between the sample error
that is estimated by each of these statistics and the theoretical
model error obtained from a large ensemble where the internal
variability has been eliminated by averaging.

3. Statistical methods

The statistical methodology to quantify the correlations for pairs
of model errors is based on the results in Jun et al. (2008). With
a single response from each model, effectively a single observa-
tion, it is not feasible to estimate the correlations among model
errors for each gridpoint. The key idea in Jun et al. (2008)
is to estimate the correlations between pairs of AOGCM by a
local spatial weighting, using a non-negative kernel function.
This spatial aggregation overcomes the problem of a single ob-
servation but will have less spatial resolution than the model
grid.

3.1. Local covariances for the model errors

Here, we outline the local covariance estimator. Let X(s, t) denote
the observations and Yi(s, t) the ith model output (DJF or JJA)
at spatial grid location s and year t (t = 1, · · ·, 30). We only
consider the difference of observation and model data or the
model error Di(s, t) = X(s, t) − Yi(s, t), and let Di(s) be its
average over time. Finally, let σij (s) = Cov{Di(s), Dj (s)} be the
covariance between the error statistics—the theoretical target of
our estimator.

The kernel estimator for σij (s), has the form,

σ̂ij (s) =
N∑

k=1

K

( |s, sk|
h

)
D̃ij (sk)

/
N∑

k=1

K

( |s, sk|
h

)
, (1)

for non-negative kernel function K and bandwidth h. Here, D̃ij (s)
denotes D̃i(s) · D̃j (s) and D̃i(s) is the filtered Di(s). We filter
Di(s) by subtracting the estimated linear regression term men-
tioned in Section 3.3. For two spatial locations s1 and s2, |s1,
s2| denotes the great circle distance between the two locations.
In our case, we assume a Gaussian kernel function, K(u) =
exp(−u2), and so, the spatial weighting of the cross-products
decreases with distance, the grid cells beyond a distance of 2h
getting less than 5% of the total weight. The denominator in (1)
is simply to normalize the kernel weights to sum to 1.

Now, let �̂(s) be the estimated covariance matrix for all pairs
of models, using the kernel estimator for each entry given in
(1). It can be shown that �̂(s) is a positive definite matrix, with
the interpretation that it is a local estimate of the covariance, at
location s for the model errors. This covariance can be further
analysed using an eigenfunction decomposition, to quantify the
amount of variability and dependence among the models. In par-
ticular, we focus on the fraction of variance, which is explained
by the leading eigenfunctions of this matrix. This statistic gives

an idea of the effective degrees of freedom, which are explained
by the models. Note that if the bandwidth is made very large,
this estimate will be the same for all locations and will repro-
duce an EOF analysis, applied to the different models and grid
locations. A very small bandwidth will result in a covariance
matrix estimate that has rank one and is just the outer product of
the model errors at location s.

3.2. Comparison with empirical orthogonal functions

Given the role of the bandwidth, it is clear that the local eige-
nanalysis provides different information from the usual EOF
analysis. An EOF analysis would quantify the overall depen-
dence of the AOGCM error fields by expanding the spatial error
fields in terms of orthogonal spatial fields (i.e. the EOFs) and the
companion singular values are related to the variance explained
by each orthogonal component. The orthogonal components are
global in extent, and it is often difficult to discern how isolated
spatial features are explained by a global set of EOFs. In con-
trast to EOF analysis, the local covariance method can detect
heterogenous variability among model errors at different grid
locations. One of the characteristics of this procedure is that for
the locations that are far apart, the leading eigenvectors can be
different. Therefore, even if the same amount of variability is
explained, they can be based on different linear combinations of
the models.

3.3. Reference distribution under independent models

Even if the model errors are independent, the spatial averaging
from the kernel and the selection of the largest eigenvalues will
suggest some dependence among the models. In fact, Section 4
shows that even under the independence assumption across mod-
els, the effective degrees of freedom in 19 independent models is
smaller than 19 (see Fig. 1). Thus, the eigenanalysis of �̂ should
be interpreted with care, and we approach this problem by a
Monte Carlo simulation of a ‘reference distribution’ to guide the
statistical interpretation of the data analysis. Jun et al. (2008)
develop statistical models that describe the spatial dependence
and structure of the error for each model. Briefly, these spatial
models include a linear regression term that adjusts the model
for systematic longitude, altitude and land/ocean effects and a
correlated, non-stationary random component that accounts for
additional spatial dependence. Under the the assumption that the
model errors are independent, one can simulate synthetic model
error fields and quantify the distribution of the percentage vari-
ation explained by the eigenvalues. This reference distribution,
based on the hypothesis of independent model errors, allows
one to determine whether the actual error fields have some evi-
dence for dependence. Throughout the paper, the reference dis-
tribution is generated from 1000 synthetic model errors (1000
independent simulations, based on the spatial model described
above).
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Fig. 1. The quartiles and medians of the amount of variation (across
the entire domain), explained with respect to the number of eigenvalues
from local eigenanalysis. The bandwidth used is 1000 km and both of
the results from the data and the reference distribution are displayed for
both seasons.

3.4. Bandwidth selection

The method to estimate correlation through kernel smoothing is
sensitive to the bandwidth. Depending on the bandwidth used,
the results may vary quite substantially. Although there are more
statistically rigorous methods to choose an appropriate band-
width, we choose to use 1000 km in this study due to the typical
spatial variations in a climatological mean temperature. How-
ever, as a safeguard, we also investigate the sensitivity of our
results to this choice. With the bandwidth 100 km, the largest
eigenvalue explains more than 95% of the variation for both the
data and the reference distribution, whereas with the bandwidth
5000 km, we require at least 11 or more largest eigenvalues to
explain the same amount of the variation in the data. Again, the
EOF analysis is an extreme case of the local analysis, with the
bandwidth being extremely large.

4. Main result

In this section, we demonstrate the results of local eigenanalysis
and compare those with the results from EOF analysis. For both
analyses, the dependence of model errors are tested through the
reference distribution as described in Section 3.3.

4.1. Dependence of model errors and its local feature

In the local eigenanalysis, one obtains a 19 × 19 correlation
matrix at each pixel as explained in Section 3.1. The num-
ber of ‘dominant’ eigenvalues of this matrix should give an
idea on how many ‘independent’ AOGCMs we really have. Al-

though we have 19 eigenvalues in total, we suspect, only a few
of them should have relatively large magnitude, since many
AOGCMs have highly correlated errors, as demonstrated in Jun
et al. (2008). We compare the number of eigenvalues that explain
a certain amount of variation in the actual model errors from the
data with a reference distribution under the hypothesis of inde-
pendence. Figure 1 gives the numbers of eigenvalues needed to
explain 95% of the variation, for both seasons, in the data and
in the reference distribution. We obtain these numbers for each
gridpoint; so, the figure shows the median and quartiles of these
numbers across the entire spatial domain (summarized as box-
plots). A bandwidth of 1000 km is used for these local estimates.
Approximately six eigenvalues for the climate model output are
required to explain 95% of variation in the data, but almost 12
eigenvalues are required for the reference distribution. This does
not imply that there are only six ‘independent’ AOGCMs that
explain almost all the variation in the data, rather that there are
six linear combinations of 19 AOGCMs that explain 95% of the
variation in the data. Note that the form of these linear combina-
tions vary pixel by pixel, and so, the models with large loadings
in one location may be different from that at a location that is
widely separated. Figure 2 gives the analogous result from the
EOF analysis. For the EOF analysis, we do not get results in
each pixel; so, the result from the data is summarized as points.
For the reference distribution, however, the result is summarized
as boxplots, since we have 1000 Monte Carlo cases. The overall
results are similar for both seasons. It is interesting to note that at
most 85% of variation is explained by the first six eigenvalues.
As in local eigenanalysis, the effective degrees of freedom in
the data is much smaller than that in the reference distribution,
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number of EOFs

5 10 15
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Fig. 2. Similar to Fig. 1, but the result of the EOF analysis is displayed
instead of local eigenanalysis. The symbols × and + are from the data,
and the boxplots are from the reference distribution. The symbols ◦ and
� display R2 for the best regressors given in Table 2, for comparison.
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DJF JJA

Fig. 3. The amount of variation explained by the five largest eigenvalues for the data. The pixels with white are for values above 0.95, those with
light grey are for values between 0.9 and 0.95 and those with dark grey are for values below 0.9.

although for DJF, the first two EOFs explain a smaller amount
of the variation in the data compared with the reference distribu-
tion. This may be due to the fact that model 10 is very different
from the rest of the models, and the effective degrees of freedom
in the data therefore should be at least 2.

Figure 3 displays the percentage of variation explained by
the first five eigenvalues across the entire spatial domain. One
of the interesting findings here is that the variation explained
by the five largest eigenvalues in the data is much larger over
the ocean than over the land. The fact that the spatial scale of
variations over land is generally smaller than over ocean, may
contribute to the signal. In addition, there are more physical
processes that affect climate over the land than over the ocean,
for example, topography, soil properties, plant types, surface
roughness. Therefore, climate models tend to be less similar over
land than over ocean. Another interesting point is that the amount
of variation explained is somewhat smaller along the coast than
over the land. This may be partly due to the fact that we have
an indicator for the land and the ocean in the regression model
described in Section 3.3, but the results with or without this term
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Fig. 4. Top: histograms of the number of
pixels with 85% or more variation explained
by the five largest eigenvalues from the
reference distribution. The numbers in the
figures are the corresponding values from the
data. Bottom: similar to the top figures
except that the results are for the maximum
amount of variation explained across the
entire spatial domain.

do not change much. Another possibility is that since the data are
on grids, there are grid cells after the interpolation that contain
partly land and partly ocean. The land–ocean mask also differs
slightly between models. Interpolation from different grids is
therefore a problem, even at finer resolution. The fact that this
effect is particularly strong in southeast Asia, the Caribbean,
the Mediterranean and the Canadian Arctic, all areas where
the land–ocean mask is very complex, is consistent with that
explanation. As expected, the reference distribution did not show
any notable patterns across the entire domain. Moreover, the
amount of variation explained is significantly less than that of
the data.

To provide a more formal statistical test on the dependence of
the model errors, we generate the distributions (or histograms)
of (1) number of grid cells where more than 85% of the vari-
ation is explained and (2) the maximum amount of variation
explained across the entire spatial domain, based on the refer-
ence distribution (1000 synthetic model errors). Figure 4 gives
these histograms for both (1) and (2). The actual number of
pixels with more than 85% variation explained in the data, are
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1607 and 1586 for DJF and JJA, respectively. These numbers
are far above the range of the histograms. Moreover, the max-
imum amount of variation in the data for both seasons is 0.99,
which is again far greater than the maximum value in the range
of the histograms for both seasons. These two comparisons give
us strong confidence that the model errors are, indeed, highly
correlated throughout the entire spatial domain.

4.2. Selection of representative subgroups of models

So far, we have demonstrated, in several ways, that the effective
degrees of freedom in the entire model set are much smaller
than the actual number of models. We have given thorough sta-
tistical testing to support the claim. We now raise the following
question: how many models are needed to explain most of the
variation in the data? We apply two statistical techniques to an-
swer this question, classical multidimensional scaling (Young
and Householder, 1938; Torgerson, 1952; Cox and Cox, 2001)
and all-subsets regression.

4.2.1. Classical multidimensional scaling (CMS). The CMS
technique is a graphical technique to visualize relative distances
among data points. Based on a distance metric, the technique
assigns each data point to a location in a low-dimensional space,
commonly either two- or three-dimensional space. The ‘similar’
data points should be located close to each other, and the degree
of dissimilarity is displayed as distances between the points. For
the main algorithm and more details of CMS, see Cox and Cox
(2001). We apply the CMS technique to our AOGCM errors, us-
ing the correlation matrices as the similarity measure. Although
CMS is a simple visualization technique, it conveys some in-
teresting findings, regarding the correlations among AOGCM
errors, that are consistent with our results in the previous sec-
tions. The CMS technique is applied for both EOF analysis and
local eigenanalysis cases.

Figure 5 gives the result of the CMS technique applied to
the EOF results, for each season. For DJF, except for models 7,
8, 9 and 10, most of the models are clustered together, and we
cannot find any notable patterns regarding the dependence of
model errors. The results for JJA also do not reveal any notable
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Fig. 5. The result of the Classical Multidimensional Scaling from the
EOF analysis. The models connected by lines are those developed by
the same institutions. The models with a circle are among the best five
regressors given in Table 2.

Fig. 6. The four subregions (US, Europe, Himalayas region, sea ice
area) used for the Classical Multidimensional Scaling from the local
eigenanalysis (see Fig. 7).

patterns. For the local eigenanalysis, we pick four subregions
as in Fig. 6: US, Europe, sea ice region over the Pacific and
Himalayas area. Unlike the previous EOF analysis case, Fig. 7
shows many interesting patterns. Throughout all four regions,
the GFDL models (numbers 5 and 6) stay relatively close to each
other. The GISS models (numbers 7, 8 and 9) are separated from
the rest of the models in quite a few regions/seasons, and they
stay fairly close to each other. In terms of the similarity between
models developed by the same groups, we find many interesting
patterns. In particular, these patterns are clear in the Himalayas
regions and the sea ice area, where most of the models have
poor performance. In the sea ice area, GFDL, GISS, NCAR or
UKMO models stay very close to their own groups and suggest
that the model errors between models developed by the same
groups are highly correlated over this region. We also tried a
similar analysis over the tropical Pacific (Nino3.4 region), but
there is no significant pattern among most of the models. This
may be because we do not take time information into our analysis
(we take the climatological mean state), that is, the amplitude
and frequency spectrum of ENSO are not considered. Finally,
it is interesting to note that the result of the CMS technique is
not the same for each season, in both EOF analysis and local
eigenanalysis.

4.2.2. All-subsets regression. Although the results in Section
4.2.1 give some ideas of which models are ‘close’, either over the
entire region on average or in some local regions, it is not clear
how to pick out specific subsets of models that explain most of
the variation in the data. To study this in more details, we use
the all-subsets regression technique. The main idea is to divide
all 19 models into two subgroups and regress one subgroup on
the other. If the model subgroup is of size n (1 ≤ n ≤ 18), then
there are

(19
n

)
different possible choices of subgroups. When we

regress 19 − n model errors onto n model errors, we choose
the best n models that have the minimum error sum of squares
(SSE). It can be shown that the principal component analysis
(or the EOF analysis) has an equivalent optimization criteria as
the multiple linear regression approach and, in particular, the
ratio between the sum of the leading eigenvalues and the sum
of the all eigenvalues are equivalent to the ratio between the
regression sum of squares (SSR) and the total sum of squares
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Fig. 7. Similar to Fig. 5 except that this result is from the local
eigenanalysis over the subregions given in Fig. 6.

(SST), that is, R2 (see Jong and Kotz, 1999 for details). Here,
the SSR is the same as SST–SSE and the SST is the sum of
squared deviations of the 19 model errors from their own means.
Therefore, minimizing the SSE is the same as maximizing R2 in
this analysis.

Table 2. The result of all-subsets regression described in Section 4.2.2 for both seasons

DJF JJA

Size of subgroup Subgroup members R2 Subgroup members R2

1 10 0.255 5 0.213
5 0.24 9 0.201
6 0.232 19 0.199

5 5 7 10 11 20 0.722 5 9 10 11 20 0.63
7 10 12 18 19 0.714 5 8 10 11 20 0.626
7 10 12 18 20 0.71 9 10 11 14 19 0.622

10 6 7 8 10 11 12 14 18 19 20 0.884 6 7 9 10 11 12 13 14 18 19 0.831
2 6 7 8 10 11 12 18 19 20 0.883 4 7 9 10 11 12 13 14 18 19 0.831
2 6 7 8 10 11 12 14 18 20 0.882 6 7 9 10 11 12 13 18 19 20 0.83

We report the top three selected best regressors sets with cor-
responding R2 in Table 2. For DJF, the best 1 regressor is model
10, which is surprising since it actually has the largest model
error among all 19 models. This may be due to the fact that
with the largest model error, model 10 is fairly independent to
all other models and the SSE would be large if model 10 is not
selected as a regressor. For a relatively small number of regres-
sors, not all models from the same institutions are selected. This
is what we expect since given number of models, the method
should choose the models that can span most of the range of the
model error space. The choices of models are not the same for
both seasons. The R2 values are compared with the amount of
variation explained by the EOFs in Fig. 2. We expect these R2

values to be smaller than the amount of variation explained by
the EOFs for a given number of regressors (or number of EOFs),
since the space spanned with a fixed number of regressors in
multiple regression is more restricted than the space that can be
spanned by the same number of EOFs. For both EOF analysis
and the multiple regression, more variation is explained by a
given number of EOFs (or regressors) for DJF than JJA. This
can be explained by the following argument. Over land, models
tend to have smaller biases and tend to be more similar in the
winter season than in the summer season because the winter
climate is more dominated by the large-scale atmospheric circu-
lation, whereas more small-scale processes (e.g. soil moisture,
land surface processes, thunderstorms) are important in the sum-
mer season. Because the land fraction is larger in the Northern
Hemisphere, models tend to be more similar overall in DJF than
in JJA, and the variance explained by a small number of models
is therefore larger in DJF.

4.3. Statistical permutation test

A different perspective on this problem is to consider whether
the observed climate and the AOGCM results belong to the same
statistical population, and thus, whether the observations and the
AOGCM outputs are exchangeable. We can test this assumption
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Table 3. The number of eigenvalues to explain 95% of the variation

Omitted Model output Reference
case and observations distribution

10 4 12
1, 7 6 12
12 7 14
8, 9 8 12
11, 18 8 14
20 9 15
19 9 16
14, 15, 17 10 14
2, 3, 4, 6, 16 10 15
5, 13 11 14

using a permutation test, that is, by withholding a model output
as the ‘reality’, we perform the local eigenanalysis and the EOF
analysis on the differences between the withheld ‘reality’ and
the rest of the model outputs and the observations. Let case
1 refer to the situation that we withhold the observations as
the reality and case n (n = 2, · · ·, 20) refers to the case that
we withhold model n as the reality. Table 3 gives the number
of eigenvalues from the local eigenvalue analysis that explain
95% of the variation. Notice that except for cases 7 and 10, the
number of eigenvalues required to explain 95% of the variation
for cases 2 to 10 are bigger than that of case 1. Note that model
10 (for case 10) is the one that has a very large bias compared
with others, and thus, it makes sense that when model 10 is
considered to be the truth, all the rest of the models turn out
to be highly correlated. The result in Table 3 suggests that the
assumption that the model results belong to the same population
as the observation is violated. Figure 8 is a similar figure to Fig.
2, without the reference distribution and R2. The black circles
are from case 1 and the grey circles are from cases 2 to 10. Figure
8 shows that the model-to-model differences tend to have fewer
degrees of freedom than the model to observation differences.
Thus, we argue that the bias of a model relative to the remaining
models has a different character than the bias of a model relative
to the observations. This difference is not surprising and suggests
that intercomparison of the models can give limited information
about the bias with respect to the observations.

5. Discussion

We present the results of a local eigenvalue analysis using the
correlation values of pairs of AOGCM errors at each gridpoint.
These results are compared with those from the usual EOF anal-
ysis, and we demonstrate that we find interesting local features
regarding the dependence of model errors, which cannot be ob-
tained from the usual EOF analysis. The result suggests that

0.2

0.4

0.6

0.8

1.0

number of EOFs

5 10 15

Fig. 8. EOF analysis for cases 1 to 20 in Section 4.3. Black circle is for
case 1 (real observations treated as reality) and the grey circles are for
cases 2 to 20 (one of the models treated as reality).

the data set has fewer degrees of freedom than the number of
AOGCMs would suggest, overall. One of the local features dis-
covered is that there are more degrees of freedom over the land
than over the ocean. There is also a ‘coastal effect’, meaning
that the degrees of freedom are even bigger along the coast.
Moreover, models developed by the same groups tend to have
highly correlated model errors in areas such as the Himalayas or
the sea ice region. We also provide subsets of models that best
explain the full set and have identified subsets of 10 models,
which explain more than 80% of the variation in the bias.

The analysis performed in this paper can easily be applied
to variables other than surface temperature. Moreover, instead
of looking at the climatological mean, we could explore model
errors in the trend. However, to assess the statistical significance
of the dependence of model errors of the trend, we would need
to build a spatial-temporal model that can simulate the synthetic
model errors in the trend.
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