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[1] We present probabilistic projections for spatial patterns
of future temperature change using a multivariate Bayesian
analysis. The methodology is applied to the output from 21
global coupled climate models used for the Fourth
Assessment Report of the Intergovernmental Panel on
Climate Change. The statistical technique is based on the
assumption that spatial patterns of climate change can be
separated into a large scale signal related to the true forced
climate change and a small scale signal due to model bias
and variability. The different scales are represented via
dimension reduction techniques in a hierarchical Bayesian
model. Posterior probabilities are obtained with a Markov
chain Monte Carlo simulation. We show that with 66%
(90%) probability 79% (48%) of the land areas warm by
more than 2�C by the end of the century for the SRES A1B
scenario. Citation: Furrer, R., R. Knutti, S. R. Sain, D. W.

Nychka, and G. A. Meehl (2007), Spatial patterns of probabilistic

temperature change projections from a multivariate Bayesian

analysis, Geophys. Res. Lett., 34, L06711, doi:10.1029/

2006GL027754.

1. Introduction

[2] Recent work on probabilistic climate change projec-
tions has focussed mainly on the evolution of global mean
temperature [e.g., Wigley and Raper, 2001; Knutti et al.,
2002, 2003, 2005; Stott and Kettleborough, 2002] or on
constraining climate system properties such as climate sen-
sitivity, ocean diffusivity and aerosol forcing [e.g., Forest et
al., 2002; Knutti et al., 2002, 2003]. However, impacts and
adaptations are determined mostly by local climate change
and thus require a quantitative picture of the expected change
on regional and seasonal scales. Estimates of the probability
density functions (PDF) for regional changes have been
constructed using different approaches [e.g., Räisänen and
Palmer, 2001;Giorgi andMearns, 2003; Tebaldi et al., 2005;
Stott et al., 2006; Greene et al., 2007], often either treating
individual regions independently or neglecting structural
uncertainties due to intermodel differences. In contrast to
other techniques, the method applied here [Furrer et al.,
2007] is based on an ensemble of 21 global coupled climate
models (AOGCMs) and partly takes into account structural
uncertainty due to the use of different climate models. It
explicitly models the spatial covariance of the global fields,

thus providing PDFs of localized climate change that are
coherent with the distribution of climate change in neighbor-
ing locations. Results are shown for the temperature change
at year 2080–2100 for the IPCC SRES A1B scenario
[Nakićenović et al., 2000], relative to 1980–2000.

2. Statistical Model

[3] Furrer et al. [2007] introduce a statistical methodology
to assess probabilistic climate change fields from different
AOGCM results. We review here the fundamental ideas of
the approach. The auxiliary material contains a thorough
discussion of the method, parameter justification and addi-
tional illustrations.1

[4] The applied method can be interpreted as an exten-
sion of linear regression: instead of individual values, entire
fields are regressed. Further, the errors are not assumed to
be identically distributed but the fields may have individual
error structure. In this analysis, the individual fields are the
temperature change from each member of the multi-model
ensemble, averaged over the decades and seasons of interest.
[5] The regressors are carefully chosen (basis) functions

that are selected to explain the common large scale structure
of the climate change signal. For each AOGCM, regression
coefficients are determined, which are, on average over all
models, assumed to be centered around the true (unknown)
coefficients which implies that the true signal of climate
change is represented as a linear combination of those basis
functions. Further, this means that all AOGCMs have as
common component the true climate change that we try to
estimate. Inevitably, like for any other method, if a bias is
common to all models, this will incorrectly be considered
part of the ‘‘true’’ climate signal. Each AOGCM approx-
imates the true signal of change with a precision that is
determined by the resolved processes, its resolution, param-
eterization, etc. This statistical modeling technique is a
dimension reduction approach since each field is repre-
sented by a few (order of hundreds) coefficients instead of
the set of grid cells (order of thousands).
[6] The main statistical assumption of the model is that

the true (unknown) climate change can be realistically
represented as a linear combination of the basis functions.
This signal, common in all AOGCM, is also termed large
scale signal. The remaining residual signal, also termed
small scale signal, accounts for the spatial correlation
remaining in each AOGCM’s deviation from the common
large scale structure. This AOGCM specific signal is
assumed to be due to model bias and internal unforced
climate variability and is modelled as (spatially structured)
Gaussian noise with constant variance.

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/gl/
2006gl027754. Other auxiliary material files are in the HTML.
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[7] Additional assumptions are that each individual
AOGCM is unbiased for each gridpoint, and that all
AOGCMs are independent (i.e. their differences from the
true climate signal are uncorrelated) and are given the same
weight. These assumptions are not entirely satisfied in
reality. To some degree, most AOGCMs are known to have
similar biases, in particular on small scales. Independence
implies that with increasing number of AOGCMs the
uncertainty in the climate change estimate decreases. If
the number of climate models were to become very large
this would lead to unrealistic results as this method ignores
that in this case the common biases dominate the uncer-
tainty. This asymptotic behavior would require attention and
modifications of the statistical method. However, these
assumptions do not imply that all the models have the same
climate sensitivity, or that they all have the same transient
climate response at a particular time and at some scale. We
assume that each design of a AOGCM model is such that it
models the truth to the best knowledge of its developers.
The differences between the models are expressed by their
individual precision. Additionally, a more sophisticated
method should incorporate the fact that some models
compare more favorably with observations than others.
The underlying idea of our approach, namely that each
climate model provides realizations of a process centered
around the true climate, is fundamentally different from the
assumptions that the true climate is one of the physically
possible climates described by the AOGCMs.
[8] The statistical model is formulated as a spatial hierar-

chical Bayesian model [Banerjee et al., 2004] and using a
Markov Chain Monte Carlo algorithm we obtain (1) esti-
mates of the true regression coefficients, (2) the uncertainty
around them, and (3) estimates of the small scale covariance.
As a result we can reconstruct the estimated true climate
change field and its uncertainty (posterior field). Since the
statistical model accounts for the spatial correlation of the true
climate change (through the basis functions) and of the model
specific bias and internal variability (through the residual

covariance), the probabilistic projections derived for the
entire climate change field represent the spatially joint
probability of climate change for each of the locations.

3. Results

[9] Results are shown for the surface warming at year
2080–2100 relative to 1980–2000 for the emission scenario
A1B, using model simulations calculated for the Fourth
Assessment Report (AR4) of the Intergovernmental Panel on
Climate Change (IPCC). Surface temperature fields from the
following 21 models were used: CCSM3, CGCM3.1(T47),
CGCM3.1(T63), CNRM-CM3, CSIRO-Mk3.0, ECHAM5/
MPI-OM, ECHO-G, FGOALS-g1.0, GFDL-CM2.0, GFDL-
CM2.1, GISS-AOM, GISS-EH, GISS-ER, INM-CM3.0,
IPSL-CM4, MIROC3.2(hires), MIROC3.2(medres), MRI-
CGCM2.3.2, PCM, UKMO-HadCM3, UKMO-HadGEM1
(for details and model references see http://www-pcmdi.llnl.
gov/ipcc/about_ipcc.php). Model data is first interpolated to a
common 5� by 5� latitude-longitude grid. Note that the global
averages refer to the average between 80�S and 80�N, i.e. the
poles are excluded.
[10] The posterior climate fields can be used to calculate

pointwise percentile fields. Figure 1 shows the temperature
change that is exceeded with 80% probability (i.e. the
20th percentile) for boreal winter (December to February)
and summer (June to August). Winter warming is excep-
tionally large in high northern latitudes, caused by a
decrease in sea ice and snow cover, while summer warming
is large over most land areas. Although the analysis is
carried out on a 5� by 5� resolution, the posterior fields are
smoothed by construction and results should not be inter-
preted on a grid point level but by regions of the order of a
few thousand kilometers. The patterns in the posterior
climate fields are similar to the corresponding raw (finite
sample) multi-model quantities as the analysis is based on
all, equally weighted, models. Yet, because of the assumed
model structure the present technique can be used to derive
arbitrary percentiles independent of the number of models.
Of course, the validity of estimates of very large or very
small percentiles depends strongly on the statistical model
assumptions.
[11] Similarly, Figure 2 shows the probability that the

local temperature change exceeds 2�C. This temperature
change relative to preindustrial climate is an often quoted,
albeit clearly subjective, temperature threshold [den Elzen
and Meinshausen, 2005].
[12] Figure 3 shows the percentage of the total area and

of the land area where the season average warming exceeds
a given temperature threshold with 66% and 90% probabil-
ity, respectively. Note that the IPCC terms >66% and >90%
probability as ‘‘likely’’ and ‘‘very likely’’, respectively.
[13] With 66% (90%) probability, about 79% (48%) of

the land areas warm more than 2�C relative to the base
period 1980–2000 in the annual mean by the end of the
century in addition to the global temperature increase of
about 0.5�C realized before the base period. The land area
fraction exceeding a certain temperature is always substan-
tially larger than the global area fraction, because warming
over land is larger than over ocean. A small fraction, about
5% (3%), of the land area warms more than 5�C with 66%
(90%) probability.

Figure 1. (top) DJF and (bottom) JJA temperature change
in �C by 2080–2100 in the A1B scenario (relative to 1980–
2000) that is exceeded with 80% probability.
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[14] Naturally, the posterior fields can be used to con-
struct global mean climate changes. Figure 4 compares the
seasonal posterior mean climate change with a normal
distribution fitted to global mean values of the 21 models.

4. Comparison With Other Techniques

[15] Figure 5 compares regional boreal winter temperature
change for four regions obtained with the method presented
here with results obtained by Tebaldi et al. [2005]. The PDFs
of the latter technique are much narrower, and in some cases
show multimodality. Multimodal PDFs are not physically
meaningful and are likely to be the result of random cluster-
ing of the limited number of models and of the use of a model
convergence criterion. On large scales, the technique by
Tebaldi et al. [2005] has been shown to generally underes-
timate the uncertainty relative to other estimates [Lopez et al.,
2007]. The uncertainty of the PDFs calculated here is

considerably larger since the developed model was con-
strained with a global posterior coverage of the climate
change. For some regions, e.g., Central America, the regional
posterior temperature change is wider than the multimodel
forecast. For other regions, e.g., Alaska, the posterior covers
all but one or two AOGCM results. We believe that the
stationarity assumption of the small scale process (i.e. the
assumption that the amplitude of the noise component is

Figure 3. Fraction of (left) total and (right) land area
where the season average warming exceeds with 66% and
90% probability a given temperature threshold (period from
1980–2000 to 2080–2100 with A1B scenario).

Figure 4. Aggregated (top) DJF and (bottom) JJA PDF of
global mean temperature change in �C by 2080–2100 in the
A1B scenario, relative to 1980–2000 (solid curve). Dashed
curves are the PDFs of respective global mean temperature
change for the individual models depicted with a scale
reduced by 10. The dotted curve is the normal fit of the
21 models. Ticks mark individual model results.

Figure 5. Comparison of PDFs of regional posterior DJF
temperature change obtained with the presented method
(solid curve) and with the Tebaldi et al. [2005] technique
(dashed curve). Ticks mark individual model results. The
regions are (a) Alaska, (b) West North America, (c) Central
America, and (d) Amazon Basin, as defined by Giorgi and
Francisco [2000].

Figure 2. Probability that (top) the DJF and (bottom) the
JJA temperature change exceeds 2�C by 2080–2100 in the
A1B scenario, relative to 1980–2000.
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similar in all regions) is a main factor for this phenomenon.
Our PDFs have a comparable variability/uncertainty with the
results obtained based on the detection and attribution
method, both on global [Stott and Kettleborough, 2002]
and regional scales [Stott et al., 2006].

5. Conclusions

[16] The statistical model presented here has a simple
structure, is based on very few statistical assumptions and it
also provides a probabilistic interpretation of the output of a
relatively small number of models while incorporating both
structural uncertainty due to intermodel differences and the
spatial nature of climate fields. The latter is implemented
using meaningful covariance functions expressing the geo-
graphical and spatial dependence. The posterior fields can
be analyzed as such or can be arbitrarily down-scaled or
weighted with virtually no computational cost.
[17] However, the model has some limitations and does

not incorporate local, systematic biases within individual
AOGCMs. Current research consists of extending the sta-
tistical model by modelling future and base period climate
fields independently and by adding further additive compo-
nents. For example, the AOGCM climate fields could be
represented as additive decompositions of overall large
scale effects, specific model bias and internal variability.
Further, an ideal technique would take into account the fact
that several models in the ensemble are used in different
resolutions but are based on identical or similar physical
cores.
[18] Finally, by construction of the statistical model, the

residual signal has a constant variance. This hypothesis
should be relaxed, since, for example, the AOGCMs reveal
smaller variability over the ocean compared to over land.
Additionally, the statistical method provides a slightly too
narrow posterior distribution in the high latitudes (see
Figure 5).
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Räisänen, J., and T. N. Palmer (2001), A probability and decision-model
analysis of a multimodel ensemble of climate change simulations,
J. Clim., 14, 3212–3226.

Stott, P. A., and J. A. Kettleborough (2002), Origins and estimates of
uncertainty in twenty-first century temperature rise, Nature, 416, 723–
726.

Stott, P. A., J. A. Kettleborough, and M. R. Allen (2006), Uncertainty in
continental-scale temperature predictions, Geophys. Res. Lett., 33,
L02708, doi:10.1029/2005GL024423.

Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns (2005), Quantifying
uncertainty in projections of regional climate change: A Bayesian
approach to the analysis of multimodel ensembles, J. Clim., 18, 1524–
1540, doi:10.1175/JCLI3363.1.

Wigley, T. M. L., and S. C. B. Raper (2001), Interpretation of high projec-
tions for global-mean warming, Science, 293, 451–454.

�����������������������
R. Furrer, Mathematical and Computer Sciences Department, Colorado

School of Mines, Golden, CO 80401, USA. (rfurrer@mines.edu)
R. Knutti and G. A. Meehl, Climate and Global Dynamics, National

Center for Atmospheric Research, Boulder, CO 80305, USA. (knutti@
ucar.edu; meehl@ucar.edu)
D. W. Nychka and S. R. Sain, Institute for Mathematics Applied to

Geosciences, National Center for Atmospheric Research, Boulder, CO
80305, USA. (nychka@ucar.edu; ssain@ucar.edu)

L06711 FURRER ET AL.: SPATIAL PATTERNS OF TEMPERATURE CHANGE L06711

4 of 4


