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ABSTRACT

Because of a lack of observations, historical simulations of land surface conditions using land surface
models are needed for studying variability and changes in the continental water cycle and for providing
initial conditions for seasonal climate predictions. Atmospheric forcing datasets are also needed for land
surface model development. The quality of atmospheric forcing data greatly affects the ability of land
surface models to realistically simulate land surface conditions. Here a carefully constructed global forcing
dataset for 1948–2004 with 3-hourly and T62 (�1.875°) resolution is described, and historical simulations
using the latest version of the Community Land Model version 3.0 (CLM3) are evaluated using available
observations of streamflow, continental freshwater discharge, surface runoff, and soil moisture. The forcing
dataset was derived by combining observation-based analyses of monthly precipitation and surface air
temperature with intramonthly variations from the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–NCAR) reanalysis, which is shown to have spurious
trends and biases in surface temperature and precipitation. Surface downward solar radiation from the
reanalysis was first adjusted for variations and trends using monthly station records of cloud cover anomaly
and then for mean biases using satellite observations during recent decades. Surface specific humidity from
the reanalysis was adjusted using the adjusted surface air temperature and reanalysis relative humidity.
Surface wind speed and air pressure were interpolated directly from the 6-hourly reanalysis data. Sensitivity
experiments show that the precipitation adjustment (to the reanalysis data) leads to the largest improve-
ment, while the temperature and radiation adjustments have only small effects.

When forced by this dataset, the CLM3 reproduces many aspects of the long-term mean, annual cycle,
interannual and decadal variations, and trends of streamflow for many large rivers (e.g., the Orinoco,
Changjiang, Mississippi, etc.), although substantial biases exist. The simulated long-term-mean freshwater
discharge into the global and individual oceans is comparable to 921 river-based observational estimates.
Observed soil moisture variations over Illinois and parts of Eurasia are generally simulated well, with the
dominant influence coming from precipitation. The results suggest that the CLM3 simulations are useful for
climate change analysis. It is also shown that unrealistically low intensity and high frequency of precipita-
tion, as in most model-simulated precipitation or observed time-averaged fields, result in too much evapo-
ration and too little runoff, which leads to lower than observed river flows. This problem can be reduced by
adjusting the precipitation rates using observed-precipitation frequency maps.

1. Introduction

Historical records of surface evaporation, runoff, soil
moisture, and other land surface fields are unavailable

over most of the continents. For example, there have
been no direct measurements of actual evaporation or
evapotranspiration over most land areas. Records of
soil moisture are available only for a few regions and
often are very short in length (Robock et al. 2000).
Surface runoff is not measured and is often estimated
using simple water balance models (e.g., Fekete et al.
2002). While streamflow has been monitored by gauges
along many of the world’s major rivers, the publicly
available records of streamflow are incomplete and of-
ten short in length (Dai and Trenberth 2002), and the
number of streamflow gauges has been declining during
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recent decades (Shiklomanov et al. 2002). The lack of
historical data of land surface fields hampers our ability
to study the variability and changes in these variables
and interactions among them (Ziegler et al. 2002).
Moreover, these data are needed for verifying and ini-
tializing numerical weather and climate models (Dirm-
eyer et al. 1999).

Land surface fields from atmospheric and climate
models such as the National Centers for Environmental
Prediction–National Center for Atmospheric Research
(NCEP–NCAR) (Kalnay et al. 1996) and the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) (Uppala et al. 2005) reanalyses are not suit-
able for climate studies because they are affected by
large errors in model-simulated precipitation (Higgins
et al. 1996; Janowiak et al. 1998; Trenberth and
Guillemot 1998; Betts et al. 2003, 2005; Ruiz-Barradas
and Nigam 2005), clouds (Trenberth et al. 2001a), and
other atmospheric forcing (Berg et al. 2003). For ex-
ample, large biases have been identified in reanalysis
evapotranspiration (Lenters et al. 2000; Ruiz-Barradas
and Nigam 2005), runoff and streamflow (Roads and
Betts 2000; Betts et al. 2003, 2005), and snow and soil
moisture (Lenters et al. 2000; Maurer et al. 2001). A
major cause of these biases, in addition to the precipi-
tation errors, is the use of soil moisture “nudging” or
adjustment, which results in nonclosure of the surface
water budget (Maurer et al. 2001).

Recently, large efforts have been devoted to simulate
past land surface conditions using comprehensive land
surface models forced with realistic forcing. These in-
clude the Global Soil Wetness Project (http://
grads.iges.org/gswp; Dirmeyer et al. 1999), the North
America Land Data Assimilation System (NLDAS;
K. E. Mitchell et al. 2004), and the Global Land Data
Assimilation System (GLDAS; http://ldas.gsfc.nasa.
gov; Rodell et al. 2004). These multi-institutional ef-
forts have focused on producing realistic soil moisture
and other land surface fields for the recent periods for
improving weather and seasonal climate forecasts.
Long-term simulations using land surface models have
also been done (e.g., Huang et al. 1996; Nijssen et al.
2001a,b, 2003; Dirmeyer and Tan 2001; Maurer et al.
2002; Bowling et al. 2003; Fan et al. 2003; Van den Dool
et al. 2003; Fan and Van den Dool 2004; Sheffield et al.
2004; Ngo-Duc et al. 2005). Most of these long-term
simulations used the NCEP–NCAR reanalysis data di-
rectly as atmospheric forcing. It has been shown that
land surface model–simulated fields are sensitive to the
large biases in the reanalysis forcing data (Berg et al.
2003). Furthermore, we show here that spurious long-
term changes exist in the reanalysis precipitation and

surface radiation fields, which make the simulated land
surface fields unsuitable for climate change studies.

Many studies have recognized the problems in the
reanalysis data. They used observational data either di-
rectly or to adjust the reanalysis data. For example,
Nijssen et al. (2001b) developed a daily forcing dataset
for global land areas for the period of 1979–93, using
daily precipitation and daily minimum and maximum
temperatures from station observations. Similarly,
Maurer et al. (2002) apportioned observed daily pre-
cipitation totals evenly over each 3-h period and inter-
polated temperature through daily maxima and minima
to get 3-hourly forcing data for the conterminous
United States and portions of Canada and Mexico from
1950 to 2000. Fan and Van den Dool (2004) used the
gauge-based monthly Climate Prediction Center (CPC)
global land precipitation (Chen et al. 2002) and
monthly global reanalysis 2-m air temperature (Kistler
et al. 2001) as the driving input fields to derive a global
monthly soil moisture dataset for 1948 to 2003. Shef-
field et al. (2004) corrected the rain day error in the
NCEP–NCAR reanalysis using the monthly precipita-
tion statistics from observations. Ngo-Duc et al. (2005)
used the Climate Research Unit (CRU; New et al. 1999,
2000) data to correct the NCEP–NCAR reanalysis pre-
cipitation and temperature monthly means and the Sur-
face Radiation Budget (SRB) data produced at the Na-
tional Aeronautics and Space Administration (NASA)
Langley Research Center for a simple bias correction of
the reanalysis radiation data.

Hence a central difficulty for performing global land
simulations is a lack of multidecadal, high-resolution,
realistic atmospheric forcing data for driving land sur-
face models. The forcing data often require subdaily
data of precipitation, surface air temperature, specific
humidity, wind speed, and downward solar radiation,
which are not readily available from observations on a
global scale and reanalysis values are flawed. In this
paper, we describe a global forcing dataset derived by
combining the short-term (synoptic) variations con-
tained in the NCEP–NCAR reanalysis with longer-
term variations in monthly time series of observed pre-
cipitation, surface air temperature, and other climate
records for a 57-yr period (1948–2004) over global land
areas. For the observational data, we compare various
kinds of products and choose the best available. We
then use the forcing data to drive the latest version
of the NCAR Community Land Model version 3
(CLM3; Oleson et al. 2004) to simulate the global land
surface conditions during 1948–2004, and evaluate the
simulations using gauge records of streamflow and
available soil moisture data. The deficiencies in the
forcing data, the model, and the validation data are
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discussed. We also investigate the effects of precipita-
tion intensity and frequency on the partitioning of pre-
cipitation into surface evaporation and runoff. The
main purpose of this paper is to document the obser-
vation-based forcing dataset that can be used to drive
the CLM3 for model development and for simulating
past land surface conditions.

In the following, we first describe the forcing dataset
in section 2, and then the CLM3 in section 3. An evalu-
ation of the CLM3 simulation is presented in section 4.
Section 5 addresses the effects of precipitation fre-
quency on model-simulated fields. A summary and con-
cluding remarks are presented in section 6.

2. Construction of atmospheric forcing data

The atmospheric forcing data for driving the CLM3
include 3-hourly (0000, 0300, 0600 UTC, etc.) precipi-
tation, near-surface air temperature, specific humidity
and wind speed, surface air pressure, and downward
solar radiation. Since historical records of subdaily pre-
cipitation and other fields are unavailable on a global
basis, we therefore used the high-frequency variations
contained in the NCEP–NCAR reanalysis data, which
are 6 hourly (0000, 0600, 1200, 1800 UTC) at T62
(�1.875°) resolution and cover the period from 1948 to
present. We used the NCEP–NCAR reanalysis partly
because other reanalyses are shorter. The NCEP–
Department of Energy (DOE) reanalysis is only for
1979 onward, and while some aspects were improved
others got worse. The 40-yr ECMWF Re-Analysis
(ERA-40) (September 1957–August 2002) was not
available when we started this work and is not as long
as the NCEP–NCAR reanalysis; it also has its own
problems (e.g., negative P � E over land). We have
also created another forcing dataset with ERA-40 ad-
justed with observations, but it does not make large
differences for the CLM3 results reported here. For
monthly and longer-term variations, however, we use

gridded datasets derived from historical records of sta-
tion data. Table 1 lists the observational datasets used
to create the forcing data. These datasets are regridded
to T62 resolution using bilinear interpolation before
merging with the reanalysis data.

Near-surface fields of wind speed and air pressure in
the reanalysis were updated at least twice daily by ra-
diosonde and satellite observations, and they are used
directly here. However, precipitation, surface air tem-
perature, and surface solar radiation are calculated en-
tirely by the atmospheric model used in the reanalysis
system (Kalnay et al. 1996) and are not suitable for our
purpose, as we show below. It is important to note that
surface observations of temperature and precipitation
from weather stations were not assimilated into the re-
analysis data, even though these observations have pro-
vided the basic data for global temperature (e.g.,
Hansen et al. 2001; Jones and Moberg 2003) and pre-
cipitation datasets (e.g., Dai et al. 1997; New et al. 2000;
Chen et al. 2002).

Precipitation and clouds have a dominant effect on
surface solar radiation, but are notoriously difficult to
simulate correctly in atmospheric and climate models
(Trenberth et al. 2001a, 2003; Dai and Trenberth 2004).
Because of this and the spurious variability resulting
from changes and inhomogeneities in the observational
data assimilated into the reanalysis, multiyear to mul-
tidecadal variations in the reanalysis temperature, pre-
cipitation, cloudiness, and surface solar radiation are
problematic (Trenberth and Guillemot 1998; Trenberth
et al. 2001a,b). Therefore, it is unsuitable to use re-
analysis data directly for forcing land surface models in
long-term simulations. On the other hand, current
weather forecast models capture much of the short-
term, synoptic variations at the surface. However, al-
though the reanalysis precipitation diurnal cycle is close
to observed-precipitation frequency (Dai 2001b) in
summer months for all land areas, it starts too soon
after sunrise (�0800 LST) and reaches a plateau versus

TABLE 1. Datasets used to adjust and validate NCEP reanalysis. All are monthly unless stated otherwise.

Variables Type and coverage Resolution Period Source and reference

Precipitation Rain gauge, land 2.5° � 2.5° 1948–2004 CPC; Chen et al. (2002)
Precipitation Rain gauge and satellite 2.5° � 2.5° 1979–2004 GPCP; Adler et al. (2003)
Precipitation frequency Global 2° � 2° (seasonal) 1975–97 Dai (2001a,b)
Temperature anomaly Surface observation, land 5° � 5° 1856–2004 Jones and Moberg (2003)
Temperature climatology Surface observation, global 1° � 1° 1961–90 New et al. (1999)
Surface solar radiation Satellite, global 2.5° � 2.5° (3 hourly) 1983–2001 Zhang et al. (2004)

Station, land 95 stations 1960–90 GEBA; Gilgen et al. (1998)
Cloud cover Surface observation, land 0.5° � 0.5° 1901–2000 New et al. (2002);

T. D. Mitchell et al. (2004)
Surface observation, global 5° � 4° (seasonal) 1975–2004 Dai et al. (2006)
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a sharp peak in the observations. For winter months, in
the extratropics the diurnal cycle is too small in the
reanalysis precipitation (not shown). No attempts were
made to correct these diurnal biases as any simple cor-
rections would induce physical inconsistencies among
the 6-hourly reanalysis data.

a. Precipitation

The NCEP–NCAR reanalysis 6-hourly mean precipi-
tation rates (Pr) at a given grid box were scaled using
the observed monthly mean precipitation according to

Pr, adj � �Pobs, m�Pr, m�Pr, �1�

where Pr, adj is the adjusted 4� daily precipitation rate
in mm day�1, and Pobs, m and Pr, m are, respectively, the
observed and reanalysis monthly mean precipitation for
month m. A special case (�5% of all cases) occurs
when Pr, m � 0 but Pobs, m � 0. In this case, a search was
employed to find the closest grid cell with at least one
nonzero precipitation rate during the month. This grid
cell was used to provide Pr, m and Pr in (1) for the grid
cell with zero precipitation rates. If Pobs, m � 0, then
Pr, adj was set to zero for all time steps within the month.

Chen et al. (2002) created a gridded monthly precipi-
tation dataset for global land from 1948 to present by
interpolating rain gauge records from about 5000–16
500 gauges during 1948–97 and about 3500 gauges for
more recent years using an optimal interpolation
scheme. The undercatch bias associated with topogra-
phy found in most gridded precipitation datasets
(Adam et al. 2006) is considerably reduced in the Chen
et al. dataset due to their use of a large network of rain
gauges in creating the climatological mean fields (P.
Xie 2004, personal communication). For 1997–2004, the
Global Precipitation Climatology Project (GPCP) ver-
sion 2 (v2) dataset (for 1979–2004; Adler et al. 2003)
has better gauge coverage than the Chen et al. dataset.
There are also other global land precipitation datasets
such as those from the CRU (New et al. 2002), the
Global Precipitation Climatology Center (GPCC; Beck
et al. 2005), and Dai et al. (1997). The CRU dataset
uses climatological values to fill many unspecified grid
boxes (i.e., the user cannot easily find out which grid
box has observations or is filled with climatological val-
ues) and its gauge coverage is not better than Chen et
al. The GPCC products use total precipitation in grid-
ding (not good for varying station networks), although
this is not a big issue for its fixed-station dataset, which
uses only about 9000 stations (fewer than Chen et al. for
most years). We have compared the various precipita-
tion datasets and found large differences over many

areas with sparse gauge coverage such as the Amazon
and tropical Africa. Figure 1 compares the time series
of annual precipitation averaged over world’s major
river basins based on five different precipitation prod-
ucts, including the Chen et al., GPCP, CRU, and GPCC
fixed-station (VASClimO) and all-station (FullV3)
datasets. In general, the Chen et al., CRU, and GPCC
FullV3 products are close to each other for most basins,
except for the Orinoco and Yenisey. Large spreads ex-
ist for the Amazon, Congo, Orinoco, Yenisey, Lena,
and Mekong. All the datasets show similar estimates
for the Changjiang, Mississippi, and Paraná basins,
where good gauge coverage exists. The differences
among the precipitation products may result from (a)
different gauge coverage especially over tropical Africa
and South America, (b) different treatments of wind-
and topography-induced undercatch errors by rain
gauges (Adam and Lettenmaier 2003; Adam et al. 2006;
note only the GPCP v2 has a climatological correction
for the wind-induced bias), and (c) differences in grid-
ding methods, which can have considerable effects on
the gridded precipitation, especially over sparsely
sampled regions (Chen et al. 2002).

Based on our comparisons, here we chose the Chen
et al. dataset (for 1948–96), supplemented by the GPCP
v2 data for 1997–2004. The GPCP monthly precipi-
tation (Pg, m) for 1997–2004 was adjusted for systematic
differences from Chen et al. at each grid box according
to

Pobs, m � �Pc, clim � 0.01���Pg, clim � 0.01��Pg, m�,

�2�

where Pobs, m is observational monthly precipitation
used for 1997–2004, and Pc, clim and Pg, clim are the
monthly climatology of Chen et al. and GPCP v2 pre-
cipitation (mm day�1) over a common period (1986–
95), respectively. A precipitation rate of 0.01 mm day�1

is added to avoid the few cases of zero in the denomi-
nator. Figure 2 shows the difference between the
NCEP–NCAR reanalysis and the merged observational
precipitation averaged over global and hemispheric
land. The reanalysis annual precipitation is about 0.3
mm day�1 or 14% higher than the observed for the land
areas within 60°S–75°N (Fig. 2a). Furthermore, the re-
analysis precipitation apparently has a spurious change
around the early 1960s by �0.2 mm day�1 in the North-
ern Hemisphere (Fig. 2b) and around 1974 by �0.4 mm
day�1 in the Southern Hemisphere (Fig. 2c), while the
observations do not show such changes.

The NCEP–NCAR reanalysis 6-hourly precipitation
is an average over a 6-h period (centered at 0300, 0900,
1500, and 2100 UTC). We used the 6-hourly mean rates
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FIG. 1. Time series of annual precipitation averaged over world’s major river basins based on five
observational datasets: Chen et al. (2002), GPCP, CRU, and GPCC fixed-station (VASClimO) and
all-station (FullV3) products. Also shown on the top of each panel are long-term means of these products
in the above order.
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as the 3-hourly rates for the two 3-h periods within the
6-h period. The diurnal cycle of these 3-hourly precipi-
tation rates is closer to observed-precipitation fre-
quency (Dai 2001b) than linearly interpolated 3-hourly
rates.

b. Temperature

The NCEP–NCAR reanalysis 6-hourly surface air
temperature at 2-m height (Tr) was adjusted to have the
observed monthly value at each grid box according to

Tr, adj � �Tobs, m�Tr, m�Tr, �3�

where Tr, adj is the adjusted temperature, and Tobs, m

and Tr, m are observational and reanalysis monthly tem-
peratures for month m, respectively. All temperatures
are in kelvins.

There are several observational datasets available for
monthly surface air temperature over global land, and

there are only small differences among them (Folland
et al. 2001). Here we used the CRU temperature
dataset (Jones and Moberg 2003 and updates). We de-
rived Tobs, m by adding the monthly temperature
anomaly (relative to 1961–90 mean) from Jones and
Moberg (2003) to the CRU 1961–90 climatology (New
et al. 1999). For certain years, the CRU temperature
anomaly dataset contains missing data over small areas
(often in tropical Africa, South America, Arctic, and
Greenland). We filled the missing data with the NCEP–
NCAR reanalysis anomalies relative to the reanalysis
1961–90 mean. After the adjustment, the 6-hourly 2-m
temperature (at 0000, 0600, 1200, 1800 UTC) was then
linearly interpolated to 3-hourly resolution (at 0130,
0430, 0730 UTC, etc.). Figure 3 shows the difference
between the reanalysis and the filled observational tem-
perature. The reanalysis temperature is about 1°C
lower than the observed for the mean over global land
(Fig. 3a). In the Northern Hemisphere, the reanalysis

FIG. 2. Time series of annual precipitation averaged over global
(60°S–75°N) and hemispheric land areas from rain gauge obser-
vations (solid line) and the NCEP–NCAR reanalysis (dashed
line). The observations are derived from Chen et al. (2002) for
1948–96 and GPCP v2 (Adler et al. 2003) for 1997–2004 as de-
scribed in the text.

FIG. 3. Time series of annual surface air temperature averaged
over global (60°S–75°N) and hemispheric land areas from surface
observations (solid line) and the NCEP–NCAR reanalysis
(dashed line). The observations are from CRU (Jones and
Moberg 2003) with missing values being filled by the reanalysis
temperature anomaly added to the CRU 1961–90 climatology.
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temperature has a decreasing trend during 1948–72,
which is spurious and not evident in the observations
(Fig. 3b). Furthermore, the warming since the late
1970s is larger in the observations than in the NCEP–
NCAR reanalysis. This may be partly due to the fact
that atmospheric CO2 and other greenhouse gases were
kept constant in the reanalysis (Trenberth 2004).

The differences of annual mean temperature be-
tween the NCEP–NCAR reanalysis and the CRU
datasets mainly come from the differences in the clima-
tological fields. The large biases over mountainous ar-
eas, such as the Rockies, the Andes, and the Tibet Pla-
teau (not shown) are due to several factors including
elevation differences of the data grids, snow cover er-
rors in the reanalysis, large uncertainties in the reanaly-
sis land surface model (e.g., in Bowen ratio), errors in
reanalysis air flows over mountains (W. Ebisuzaki,
NCEP, 2005, personal communication). We emphasize
that the 2-m air temperature in the reanalysis is a 6-h
forecast and thus depends heavily on the model, and
that no surface station observations of air temperature
were assimilated into the reanalysis.

c. Surface downward solar radiation

Historical records of surface solar radiation are un-
available over most land areas (Gilgen et al. 1998). Nijs-
sen et al. (2001b) derived daily downward shortwave
radiation from daily temperature and precipitation data
using an iterative scheme suggested by Thornton and
Running (1999). When used in higher temporal resolu-
tion, the daily shortwave radiation is disaggregated
based on hourly potential solar radiation (Nijssen et al.
2001b; Maurer et al. 2002). Estimates of surface radia-
tion fields based on satellite observations have become
available recently (e.g., Zhang et al. 2004); however,
they are relatively short in length and often affected by
errors in satellite observations of clouds and other at-
mospheric properties, as discussed below.

Surface downward solar radiation is strongly affected
by cloud cover, and it is often modeled using cloudiness
data (e.g., Dobson and Smith 1988). The NCEP–NCAR
reanalysis downward solar radiation anomaly is highly
correlated with the reanalysis total cloud cover
anomaly (Fig. 4a). However, the reanalysis cloud cover
has a spurious downward trend over global land that is
not evident in station data (Fig. 4b). Because of this, we
decided to make use of available station data of cloud
cover anomaly to adjust the reanalysis monthly surface
solar radiation anomaly.

We first performed a linear regression analysis of the
monthly anomalies of the downward solar radiation
and total cloud cover from the reanalysis at each grid

box. We then used this radiation–cloud anomaly rela-
tionship and the monthly cloud cover anomaly data de-
rived from station records to compute monthly solar
radiation anomalies. We used the CRU_TS_2.02 cloud
cover data (New et al. 2002; T. D. Mitchell et al. 2004)
from 1948 to 1974; for 1975–2000, we also supple-
mented the CRU cloud data with our analysis of
3-hourly synoptic observations (Dai et al. 2006); for
2001–2004, the CRU data are unavailable and we used
our analysis only. Since surface cloud observations over
North America are unreliable after 1994 because of
widespread use of automated weather stations (Dai et
al. 2006), monthly cloud cover from 124 military sta-
tions within the contiguous United States that have
continuous human observations were used for January
1995–December 2004 over North America.

The NCEP–NCAR reanalysis 6-hourly surface
downward solar radiation (Sr) was adjusted at each grid
box according to

Sr, adj � �Sobs, m�Sr, m�Sr, �4�

where Sobs, m is the monthly solar radiation derived us-
ing the reanalysis radiation–cloud relationship and ob-
servational cloud data (derived by adding the estimated
radiation anomaly to the reanalysis mean amount), and
Sr, m is the reanalysis monthly solar radiation. The ad-
justed solar radiation (Sr, adj) was evaluated using the

FIG. 4. (a) Anomaly time series of annual surface downward
solar radiation (solid line, left ordinate) and total cloud cover
(dashed line; increases downward on the right ordinate) from the
NCEP–NCAR reanalysis averaged over global (60°S–75°N) land
areas. (b) Same as (a) except for surface-observed (solid line) and
the NCEP–NCAR reanalysis (dashed line) cloud cover. The cloud
observations are derived from the CRU_TS_2.02 dataset (New et
al. 2002; T. D. Mitchell et al. 2004) and our analysis of 3-hourly
synoptic observations (Dai et al. 2006).
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radiation data from the Global Energy Balance Ar-
chive (GEBA) database (Gilgen et al. 1998). The
GEBA data are available only for a limited number of
locations and often with short record length, so we used
them only for evaluation purposes. We used 95 stations
that have data from 1961 to 1990. We gridded the sta-
tion data to the T62 Gaussian grid by simply averaging
the data within each grid box, and selected the grid
boxes with at least 120 months of data over land areas.
The cloud-adjusted radiation covaries more closely
than the original reanalysis radiation with the GEBA
data for most locations; two such examples are shown in
Fig. 5. For instance, 40 out of 66 January time series
(61%) and 48 out of 70 July time series (69%) have
higher correlations with the GEBA data after the ad-
justment. The large differences of the mean in Fig. 5
result from the biases in the reanalysis mean solar ra-
diation and the fact that the GEBA data are point mea-
surements while the reanalysis data are grid-box aver-
aged values.

The above anomaly adjustment does not affect the
mean bias in the reanalysis radiation. To minimize the
mean bias, we used the surface downward solar radia-
tion data from July 1983 to June 2001 derived using an
atmospheric radiative transfer model and the cloud,
surface, and atmospheric properties from the Interna-
tional Satellite Cloud Climatology Project (ISCCP)

(Zhang et al. 2004). We did not directly use the ISCCP-
based solar radiation data because they have much
larger year-to-year variations than the cloud-adjusted
reanalysis radiation, which could cause discontinuities
of variability with earlier years. Furthermore, the mul-
tiyear to decadal variations in the ISCCP-based solar
radiation may be affected by spurious changes in the
ISCCP cloudiness data associated with changes in sat-
ellite orbits and instruments (Dai et al. 2006). The
cloud-adjusted reanalysis solar radiation over global
land is about 32 W m�2 larger than the ISCCP-based
estimate for 1983–2001 (Fig. 6). Because the global
mean of the ISCCP-based downward solar radiation
strongly correlates with the high-quality Baseline Sur-
face Radiation Network (BSRN) measurements for
1992–2001 (r � 0.98) with a small bias of 2.0 W m�2

(Zhang et al. 2004), we adjusted the mean of the cloud-
adjusted reanalysis radiation to the mean of the ISCCP-
based radiation at each grid box as described below.

The ISCCP radiation data are approximately 3-h av-
erages, while the NCEP–NCAR reanalysis radiation is
6-h averages. To match the diurnal phase of the two
datasets, we first smoothed the ISCCP 3-hourly data to
create approximately 6-hourly averages using 1–2–1
weighting. Then we stratified the smoothed data by the
6-h periods (centered at 0300, 0900, 1500, and 2100
UTC) and months, and then averaged them over the
1983–2001 period to derive 18-yr composite monthly
radiation fields for each 6-h periods. The same compos-
ite maps were derived from the cloud-adjusted reanaly-
sis radiation data. The reanalysis minus ISCCP differ-
ence maps of the 18-yr composites for each month and
each 6-h period were subtracted from the cloud-ad-
justed reanalysis radiation for each year of the 1948–
2004 period, so that the final adjusted radiation fields
have the same mean as the ISCCP radiation data for
the 1983–2001 period at each grid box. These cloud-
and bias-adjusted 6-hourly radiation data were then

FIG. 5. Comparisons of (a) January and (b) July surface down-
ward solar radiation at a station (52.38°N, 0°) from GEBA surface
observations (solid line), the NCEP–NCAR reanalysis (short-
dashed line), and cloud-adjusted reanalysis radiation (long-
dashed line). Also shown on the top of each panel are (from left
to right) correlation coefficients between the observed and cloud-
adjusted radiation and between the observed and unadjusted re-
analysis radiation.

FIG. 6. Comparisons of monthly surface downward solar radia-
tion averaged over global (60°S–75°N) land areas from the
ISCCP-based radiation dataset (solid line; from Zhang et al. 2004)
and the cloud-adjusted reanalysis radiation (dashed line) from
July 1983 to June 2001. Also shown on the top of the panel is the
mean difference (cloud-adjusted reanalysis minus ISCCP).
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used as 3-hourly data by simply applying the same
6-hourly values over the two 3-h intervals within a 6-h
period.

d. Specific humidity, wind speed, and surface
pressure

Six-hourly surface specific humidity (q) from the re-
analysis was adjusted using the adjusted surface air
temperature and original relative humidity from the re-
analysis data. Comparisons between the adjusted q and
observed q during the 1976–2004 periods (from Dai
2006) showed good agreement. Because surface wind
speed and air pressure were calibrated with observa-
tions in the reanalysis and because observational
datasets for these variables are not readily available, we
used the reanalysis data for these two variables directly.
These 6-hourly data were linearly interpolated to
3-hourly resolution (at 0130, 0430, 0730 UTC, etc.).
Wind speed was taken directly from the 10-m wind
components from the reanalysis.

3. Model and simulations

The CLM3 is a comprehensive land surface model
designed for use in coupled climate system models. It is
described in detail by Dai et al. (2003) and Oleson et al.
(2004). In the CLM3, spatial heterogeneity of land sur-
face is represented as a nested subgrid hierarchy in
which grid cells are composed of multiple land units,
snow/soil columns, and plant functional types (PFTs).
Each grid cell can have a different number of land units,
each land unit can have a different number of columns,
and each column can have multiple PFTs. Biogeophysi-
cal processes are simulated for each subgrid land unit,
column, and PFT independently and each subgrid land
unit maintains its own prognostic variables. The grid-
averaged atmospheric forcing is used to force all sub-
grid units within a grid cell. CLM3-simulated processes
include 1) vegetation composition, structure, and phe-
nology; 2) absorption, reflection, and transmittance of
solar radiation; 3) absorption and emission of longwave
radiation; 4) momentum, sensible heat (ground and
canopy), and latent heat (ground evaporation, canopy
evaporation, plant transpiration) fluxes; 5) heat transfer
in soil and snow including phase changes; 6) canopy
hydrology (interception, throughfall, and drip); 7) snow
hydrology (snow accumulation and melt, compaction,
water transfer between snow layers); 8) soil hydrology
(surface runoff, infiltration, subsurface drainage, redis-
tribution of water within the column, which has 10 lay-
ers and a fixed depth of 3.43 m); 9) stomatal physiology
and photosynthesis; 10) lake temperatures and fluxes;

11) routing of surface runoff to streams and rivers and
to oceans; and 12) volatile organic compounds; see Dai
et al. (2003) and Oleson et al. (2004) for details of the
treatment of these processes and model setups.

Bonan et al. (2002b), Zeng et al. (2002), and Dickin-
son et al. (2006) examined the CLM3 as part of a
coupled climate system model. Global annual averages
of temperature and precipitation over land appear to be
within the uncertainty of observational datasets but
their seasonal cycles seem to be too weak. These studies
suggest that the departures from observations appear to
be mainly a consequence of deficiencies in the model
atmospheric forcing rather than of the land processes,
although certain land model deficiencies have been
found over various regions, especially over the Amazon
(Dickinson et al. 2006).

In this study, we ran the CLM3 in an offline mode
forced with the observation-based forcing data de-
scribed above. Because the water content in deep soil
layers takes hundreds of years to spin up and stabilize,
we started from the spunup condition of a 480-yr offline
simulation forced with recycled 1979–98 NCEP–NCAR
reanalysis data (Bonan et al. 2002a). We then ran 220 yr
with our 1948–2002 forcing data (recycled after each
55-yr segment) before starting the final 57-yr simulation
analyzed here. During the final 57-yr period, the water
content in the deepest soil layers vary very slowly and
may be considered at equilibrium for our purpose. All
of our 55-yr recycled runs and the final 57-yr run were
at CLM3’s standard resolution of T42 (�2.8°), with the
river routing scheme at 0.5° resolution. To test for the
effect of resolution, we also ran the CLM3 at 0.5° reso-
lution. For regional and large-scale variations discussed
here, the two simulations are comparable, and we
therefore only use the T42 simulations in this paper.

4. Evaluation of model simulations

The CLM3-simulated land surface conditions were
evaluated using available observational data listed in
Table 2. They include historical records or estimates of
streamflow and continental freshwater discharge, sur-
face runoff, and soil moisture. It is important to note
that differences between the model simulation and vali-
dation data may result from errors in the atmospheric
forcing data, the land model, and the validation data.
Separating and quantifying the individual contributions
of these errors are a challenging task. Our goal here is
to evaluate the simulated fields for their potential ap-
plications in climate change analyses.

a. Effects of the adjustments to the forcing dataset

Figure 7 shows the effects of various adjustments to
the forcing data by comparing the seasonal variations of
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streamflow rates for world’s 10 largest rivers. The simu-
lations were done using three different forcing datasets,
that is, the original NCEP–NCAR reanalysis, the re-
analysis with precipitation adjustment only, and the
fully adjusted forcing data. The streamflow from the
unadjusted reanalysis forcing (original) has the largest
bias in the annual mean and seasonal amplitude and
phase. The precipitation adjustment (PAdj) has the
largest improvement (as compared to the temperature
and other adjustments), with the amplitude and phase
close to the fully adjusted run. The temperature and
humidity adjustments (not shown) have only small ef-
fects on the river outflow. They decrease the runoff
slightly, mainly because the adjustments increase the
surface air temperature, which enhances evaporation
and thus reduces the runoff. The solar radiation adjust-
ment increases the runoff because the adjustment de-
creases the surface downward solar radiation, which
reduces evaporation and thus enhances the runoff. This
makes Changjiang and Brahmaputra much closer to ob-
servations, but overestimates the outflow and delays
the phase by about one month for the Mississippi (not
shown). The fully adjusted (i.e., standard) run shows
improved agreement with observations, but there are
still noticeable discrepancies, as discussed below.

b. Streamflow

Since the CLM3 routes surface runoff into river
channels and simulates streamflow directly, historical
records of streamflow from gauge measurements (Dai
and Trenberth 2002) provide an independent, rigorous
evaluation of land surface hydrology in the CLM3 and
the forcings on river-basin scales. Figure 8 compares, on
logarithmic scales, the CLM3-simulated long-term-
mean downstream river flow rates with observations
from nearby gauges (from Dai and Trenberth 2002) for
the world’s 200 largest rivers. Niger (number 27), Zam-
beze (number 36), and Nile (number 83) are not in-
cluded, because their flow rates are unrealistically low
in the observational dataset, with runoff efficiency
(river flow divided by its basin-averaged precipitation)

around 0.03. The simulated and observed streamflow
rates are highly correlated (r � 0.97 on linear scales and
0.83 on logarithmic scales), with a mean bias (relative to
the observation) of �8.9 km3 yr�1. The large scattering
for the smaller rivers in Fig. 8 reflects the fact that
streamflow rates for small rivers are more difficult to
simulate in percentage terms than for large rivers.

The CLM3 underestimates the outflow from the
Amazon River (the upper-right dot in Fig. 8) substan-
tially (by 40%), which is a common bias in many other
CLM3 simulations (including runs coupled to an atmo-
spheric model). Dickinson et al. (2006) found that over
the Amazon annual evaporation of canopy intercepted
water is 34% of rainfall in the CLM3, about twice of
what is considered reasonable. Furthermore, 64% of
total rainfall over the Amazon is returned to the atmo-
sphere by evapotranspiration, compared with observa-
tional estimates of �50%. Besides these model biases,
large uncertainties exist in current estimates of rainfall
over the Amazon basin because of sparse observations,
as suggested by the large spreads shown in Fig. 1.

Seasonal variations of streamflow for world’s 10 larg-
est rivers are simulated reasonably well by the CLM3
(Fig. 7). For example, the CLM3 reproduces the sea-
sonal amplitude and phase for the Amazon River, with
a maximum in May and a minimum in November, while
the above-mentioned bias exists throughout the year.
The mean features of the annual cycle are also captured
for the Congo, Orinoco, Changjiang, Brahmaputra,
Mississippi, Yenisey, and, to a lesser extent, for the
Lena and Mekong. One exception is the Paraná River,
which has little seasonal variation in the observations
but a considerable annual cycle in the CLM3 simula-
tion. A possible explanation is that streamflow in the
Paraná is strongly regulated by large areas of lakes and
wetlands in the basin, which smooth out the seasonal
variations caused by precipitation (Dai and Trenberth
2002), but these processes have not yet been included in
the CLM3. The remarkable match between the simu-
lated and observed peak flow in June for the Yenisey
River suggests that the snow model in the CLM3

TABLE 2. Datasets used to validate model simulation. All are monthly unless stated otherwise.

Variables Type and coverage Resolution Period Source and reference

Streamflow Station, land 1–100� year Dai and Trenberth (2002)
Discharge Global land 1° � 1° Climatology Dai and Trenberth (2002)
Runoff Global 0.5° � 0.5° Fekete et al. (2000)
Soil moisture Station, land 10–21 years Robock et al. (2000)

Illinois 19 stations 1981–2001 Hollinger and Isard (1994)
China 43 stations 1981–91 Robock et al. (2000)
Mongolia 42 stations 1978–93 Robock et al. (2000)
Former USSR 50 stations 1972–85 Vinnikov and Yeserkepova (1991)
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FIG. 7. Mean annual cycle of river outflow rates (102 km3 month�1) for the world’s 10 largest rivers simulated by the CLM3 compared
to observation (dark line; from Dai and Trenberth 2002). The simulations are based on three different forcing datasets: Original �
unadjusted NCEP–NCAR reanalysis; PAdj � the reanalysis with the precipitation adjustment only; and Standard � fully adjusted
forcing. The 	1 std dev range of the observed outflow rates for each month is shown by the error bars.
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worked well over that basin, although the simulated
spring-to-early summer peak flows are slightly delayed
in the Mississippi and Lena Rivers, and is only 50% of
the observed peak flow for the Lena River.

To evaluate the variability at time scales longer than
one year, we compared time series of water-year (from
October-September) mean streamflow from observa-
tions and the CLM3 simulation for the world’s 10 major
rivers, except number 5 Brahmaputra and number 10
Mekong whose streamflow records are too short, plus
four smaller rivers that have long records (Fig. 9). To
emphasize the variability, we use different scales for the
observed and CLM3 curves because mean biases exist
for many rivers (as shown in Figs. 7 and 8). The simu-
lated and observed streamflow covary closely on both
interannual and longer time scales for all of the 12 riv-
ers except the Yenisey and Lena Rivers. Large decadal
variations are evident in both observed and simulated
flows for many of the rivers. For example, the Congo
River had relatively high streamflow in the 1960s when
low streamflow occurred in the Paraná River. In the
much smaller Susquehanna basin in the northeast
United States, relatively low flows occurred in the
1960s followed by high flows in the 1970s. Streamflow
has increased since the 1950s in the Mississippi and
Paraná Rivers due to increased precipitation in these
regions (Dai et al. 1997).

The correlation between observed and simulated

streamflow for the two Russian rivers (Yenisey and
Lena) is relatively low (Fig. 9). For Lena, the correla-
tion increases to 0.66 when the calendar year instead of
the water year is used. For Yenisey, observations sug-
gest an upward trend since the 1960s, which is not evi-
dent in the CLM3 simulation (Fig. 9). Records from the
next upstream gauge at P. Tunguska along the Yenisey
River covary (r � 0.67) with the farthest downstream
flow from a gauge at Igarka (shown in Fig. 9), suggest-
ing that the Yenisey streamflow data are reliable. The
discrepancy between precipitation and streamflow over
major Russian rivers has been noticed before (e.g., Be-
rezovskaya et al. 2004). Errors in precipitation data due
to sparse rain gauges (Chen et al. 2002) and undercatch
(Adam and Lettenmaier 2003) over Russia likely con-
tributed to the relatively low correlation and large
negative biases between the observed and CLM3-
simulated streamflow. Another possibility is that recent
warming over Eurasia may have increased the thawing
of permafrost (which changes runoff but is not simu-
lated in the CLM3) and thus contributed to the stream-
flow increases. However, McClelland et al. (2004) con-
cluded that permafrost thawing is unlikely to be a major
contributor to the observed streamflow increases in the
Yenisey and other Russian rivers. Warming-induced
changes in snowmelt should mostly alter the annual
cycle, with small effects on the annual mean flow. With-
drawal of stream water for industrial and agricultural
use during recent decades should decrease the river
flow while large dams should mostly alter its annual
cycle (Yang et al. 2004); they cannot explain the up-
ward trend in Yenisey’s flow rates since the 1960s, as
pointed out by Dai et al. (2004).

c. Continental freshwater discharge

The second evaluation is against the observation-
based estimates of continental freshwater discharge
into the ocean basins at each latitude, which is impor-
tant for freshwater budgets within the oceans and for
regional (e.g., Nakamura 1996) and global thermoha-
line (e.g., Dai et al. 2005) ocean circulations through
changes in density. To estimate continental discharge, a
river transport model that routes terrestrial runoff into
correct river mouths is needed. Since time series of
continental discharge into the individual and global
oceans cannot be reliably estimated from incomplete
gauge records of streamflow alone (Dai and Trenberth
2002), the CLM3 simulated river outflow can supple-
ment the gauge data if they are evaluated to be reason-
able.

Figure 10 shows the (smoothed) latitudinal distribu-
tion of long-term-mean annual continental freshwater

FIG. 8. Scatterplot of observed (from Dai and Trenberth 2002)
and CLM3-simulated long-term-mean river outflow rates (km3

yr�1) for the world’s 200 largest rivers. The linear (r) and loga-
rithmic (rlog) correlation coefficients as well as the mean bias
(simulated minus observed) are shown.
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discharge into the global oceans. The CLM3 simulated
discharge reproduces the peak outflows from the
world’s largest rivers, although the model underesti-
mates the discharge within 8°S–22°N. This is especially
true for the Amazon, with 0.21 Sv (1 Sv 
 106 m3 s�1)
in the observations and only 0.13 Sv in the CLM3, con-
sistent with the large negative bias in Amazon stream-
flow identified in section 4a. This is also the case for the
Atlantic Ocean because the Amazon accounts for more
than one-third of the total discharge to the Atlantic. In
section 5, we reevaluate the continental discharge after
we alleviate the evapotranspiration bias for the Ama-
zon basin. For the Pacific Ocean, the difference in the
accumulated discharge between the CLM3 and the 921-
river-based estimate increases from south of 30°N and
reaches about 0.5 Sv. For the Indian Ocean, the CLM3
slightly underestimates the 921-river-based accumu-
lated discharge north of 20°N, while overestimates it
south of 20°N (not shown). Note that the CLM3-
simulated discharge south of 60°S (Fig. 10) should be
interpreted cautiously as the forcing data, especially
precipitation, are unreliable at those latitudes. In sum-
mary, despite the biases associated with errors in pre-

FIG. 10. Long-term-mean annual freshwater discharge (Sv) into
the global oceans smoothed using a 5° lat running mean from
observation-based estimates (solid line; from Dai and Trenberth
2002) and the standard CLM3 simulation (dashed line).

FIG. 9. CLM3-simulated (dashed) and the observed (solid) water-year (October–September) river outflow rates for world’s 10 largest
rivers (except No. 5 Brahmaputra and No. 10 Mekong whose records are too short), and four smaller rivers that have long records. Also
shown on the top of each panel are (from left to right) long-term means of the observed and CLM3-simulated rates, and the correlation
coefficient (r) between the two curves.
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cipitation and other forcing data and the inadequate
resolution to resolve complex terrain in the river rout-
ing scheme, the CLM3-simulated continental discharge
is reasonable.

d. Runoff

Next we evaluate the CLM3-simulated total runoff.
The evaluation data we used are from Fekete et al.
(2000, 2002), who used long-term-mean streamflow
data from 663 gauge stations to calibrate the global
runoff fields calculated from a water balance model,
resulting in a monthly climatology (mostly for the 1950–
90 period) of runoff at 0.5° resolution. Although not
pure observational data, their runoff fields probably
represent one of the best estimates of global runoff
currently available.

The CLM3-simulated mean annual total (including
surface and subsurface) runoff averaged over global
land is 0.74 mm day�1, which is 0.03 mm day�1 or 4%
lower than the Fekete climatology (0.77 mm day�1).
This underestimation is consistent with the undercatch
of precipitation by rain gauges (Adam and Lettenmaier
2003) and by gridded precipitation datasets due to oro-
graphic effects (Adam et al. 2006). It may also result
from other biases in the forcing data, such as the rain-
day frequency biases in the NCEP–NCAR reanalysis
(Cullather et al. 2000; Serreze and Hurst 2000; Sheffield

et al. 2004), and the biases in the number of above-
freezing days that force snowmelt.

The seasonal runoff difference maps (Fig. 11), how-
ever, suggest that there are other processes (e.g., re-
lated to land water storage) contributing to the CLM3
runoff biases. Undercatch biases of solid precipitation
by rain gauges in boreal spring in northern mid- and
high latitudes cannot explain the large positive bias
(�0.5–1.5 mm day�1or 100%–200% of Fekete clima-
tology) in the simulated runoff in these regions, where
runoff also has large negative biases (��0.2 to �1.0
mm day�1 or �50% to �100%) in summer. The rea-
sons for the overestimation of runoff in northern mid-
and high latitudes in spring and underestimation in
summer may be linked. If spring melt (and therefore
runoff) is overestimated, then summer soil moisture
and melt (and runoff) will be underestimated. The rea-
son for the overestimation in spring may be due to
inaccurate snow physics in the model and/or how the
model differentiates between rain and snow. Another
factor is that the model is tuned to high-frequency, low-
intensity precipitation, which also causes underestima-
tion of runoff in the summer.

Another feature is the negative bias (��0.3 to �1.5
mm day�1 or �20% to �30%) in all seasons over tropi-
cal land areas, especially in the Amazon basin, which
significantly reduces the streamflow in the Amazon
River. These seasonal biases are very large in percent-

FIG. 11. Long-term-mean differences of total runoff (mm day�1) from the CLM3 simulation and observation-based estimates (from
Fekete et al. 2000, 2002) for the four seasons (a) December–February, (b) March–May, (c) June–August, and (d) September–
November.
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age terms. As pointed out in section 4b, this suggests
too much evapotranspiration over the Amazon, consis-
tent with the findings of Dickinson et al. (2006).

Figure 12 shows the partial correlation, in which the
effects of other variables are removed, of the simulated
annual runoff with three forcing variables: annual pre-
cipitation, air temperature, and downward solar radia-
tion. It clearly shows that runoff is determined pre-
dominantly by precipitation, with a global land mean
partial correlation coefficient of 0.70 and thus contrib-
uting about 49% to the total variance of runoff. Surface
temperature and solar radiation are negatively corre-
lated with runoff over most land areas as surface evapo-
ration generally increases with these two variables.
However, seasonally, these variables clearly play an im-
portant role in snowmelt and resulting runoff.

e. Soil moisture

There are only sparse records of soil moisture (Ro-
bock et al. 2000) that can be used to evaluate the CLM3
simulation. The soil moisture stations (see Table 2 and
Robock et al. 2000) were averaged over regions defined
by latitudes and longitudes to facilitate comparisons
with the gridded model output because soil moisture
has large variability at point and grid scales (Robock et
al. 1998; Entin et al. 1999). A few very close stations
were averaged first and then combined with other sta-
tions to obtain the arithmetic mean for the region (Dai
et al. 2004).

For Illinois, the simulated monthly soil moisture con-
tent follows closely with the observed, with a correla-
tion of 0.73 (0.87 with the annual cycle included) (Fig.
13a). The mean annual cycle (Fig. 13b) and its monthly
tendency (Fig. 13c) are also well simulated by the
CLM3, although the model underestimates the mean
soil moisture content by about 60 mm or about 20%,
mainly in southern Illinois. The simulated monthly soil
moisture content anomaly over the former USSR re-
gions 1 and 2 (Figs. 14a,b) and east and south China
(Figs. 14c,d) also covary with the observation, but with
positive biases, especially in the two former USSR re-
gions and south China. Significant correlations with
limited soil moisture data are also found over Mongo-
lia, although substantial mean biases exist (not shown).

Partial correlations of the CLM3-simulated annual
soil moisture content with three forcing variables (Fig.
15) suggest that soil moisture content is positively af-
fected by precipitation, but negatively correlated with
surface temperature and solar radiation over most land
areas, consistent with the notion that precipitation in-
creases soil wetness while higher surface temperatures
and solar heating increase evaporation.

5. Effects of precipitation frequency on
evaporation and runoff

Because it rains only a fraction of the time, precipi-
tation frequency and intensity are two other character-
istics that can be as important as the amount in parti-
tioning rainfall into storage and runoff (Trenberth et al.
2003). For example, a severe thunderstorm may create
a lot of surface runoff or even flash floods, but still
leave the subsurface soil dry. In contrast, hours of light,
stratiform rain can moisten the soil thoroughly with
little runoff.

A common problem in the offline and coupled CLM3
simulations is the systematic underestimate of runoff
fields in the Tropics (the Amazon basin, tropical Africa,
and Indonesia region) (Fig. 11). This implies positive
biases in surface evapotranspiration. A possible reason
for these biases is that 3-h mean precipitation rates
were applied to all time steps, whereas in reality pre-
cipitation occurs only part of the time (Dai 2001a). To
minimize this problem, we used seasonally and diur-
nally varying precipitation frequency maps from Dai
(2001a,b) to modify the 3-hourly mean precipitation
rates, so that on average precipitation has a realistic
combination of frequency and intensity, in addition to
the correct amount. For example, with a time step of 20
min with the CLM3, if the precipitation frequency is
11% (i.e., 1/9) at a grid box, then the 3-h total precipi-
tation is allowed to occur only in one of the nine 20-min
time steps within the 3-h time period at a rate of 9 times
the 3-h mean rate. It should be noticed that the fre-
quency adjustment is imperfect because it does not
change the reanalysis daily precipitation frequency and
intensity.

Figure 16 shows that the largest differences in land
evaporation and runoff between the frequency-ad-
justed and standard (i.e., forced with 3-hourly mean
precipitation rates) runs occur in the Tropics, where
evaporation decreases and runoff increases. This is es-
pecially true in the Amazon basin, where runoff in-
creases by 0.5–1.5 mm day�1 and total evaporation de-
creases by a similar amount. In contrast, the difference
is small at middle and high latitudes (Fig. 16), where
precipitation occurs more frequently than in the Trop-
ics (Dai 2001a). However, the precipitation frequency
adjustment does increase annual runoff in northern
midlatitudes mostly by increasing the runoff (i.e., re-
ducing the negative bias) in summer. It has only small
influences in spring and autumn, and little effect in win-
ter. This is because nondrizzle precipitation at middle
and high latitudes is most frequent in December–Feb-
ruary (DJF). This high-frequency band at northern lati-
tudes disappears in June–August (JJA) and is weaker
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FIG. 12. Maps of partial correlation coefficients between the CLM3-simulated annual total runoff and the input annual forcing:
(a) precipitation, (b) temperature, and (c) surface downward solar radiation.
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in March–May (MAM) and September–November
(SON) as the synoptic activity weakens (Dai 2001a).

For the 200 largest rivers, the mean bias of annual
streamflow is 6.4 km3 yr�1 and the correlation is 0.98 in
the frequency-adjusted run (Fig. 17), which are im-
provements over �8.9 km3 yr�1 and 0.97, respectively,
in the standard run. In particular, the streamflow rate is
greatly improved for the Amazon River, with the long-
term mean increased by 31% to 4248 km3 yr�1. Al-
though it is still lower than the station data, the negative
bias is half of that in the standard run. As a result, the
accumulated discharge to the global ocean (Fig. 18) is
much closer to the 921-river-based estimate than the
standard run, especially in the Tropics (Fig. 10). The
most significant change is for the Atlantic Ocean be-
cause of the improved Amazon outflow.

While the adjustment of the precipitation rates using
observed-precipitation frequency maps should result in
more realistic precipitation forcing, the CLM3 may
have been tuned to unrealistic high frequency and low

intensity of precipitation from atmospheric general cir-
culation models (Dai and Trenberth 2004). This may
explain why the simulated streamflow from the Congo
and Paraná is too high in the frequency-adjusted run
(not shown). Therefore, we presented results from the
standard run in most of our analyses.

6. Summary and concluding remarks

To provide a realistic atmospheric forcing dataset for
land model development and for long-term simulations

FIG. 13. Observed soil moisture content within the top 0.9-m
depth (solid) compared with the CLM3 simulated values (dashed)
over Illinois for the same period: (a) monthly anomaly time series;
(b) mean annual cycle (with the 	1 std dev error bars); and (c)
mean soil moisture tendency for each month. Also shown on the
top of each panel is the correlation coefficient (r) between the two
curves; in (a) the second value is the correlation coefficient in-
cluding the annual cycle.

FIG. 14. Monthly anomaly time series of observed soil moisture
content within the top 1-m depth (solid) averaged over (a) the
former USSR region 1 (50°–55°N, 70°–100°E), (b) region 2
(47.5°–55°N, 45°–60°E), (c) east China (32.5°–35.0°N, 110°–
120°E), and (d) south China (22.5°–25.0°N, 102.5°–110.0°E) com-
pared with the CLM3-simulated values (dashed). Also shown on
the top of each panel are (from left to right) the correlation co-
efficients (r) between the two anomaly curves and monthly time
series with the annual cycle.
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FIG. 15. Maps of partial correlation coefficients between the CLM-simulated annual soil moisture content within the top 1-m depth
and the input annual forcing: (a) precipitation, (b) temperature, and (c) surface downward solar radiation.
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of historical land surface conditions, we have produced
a global, 3-hourly forcing dataset for driving the CLM3
from 1948 to 2004. The simulations were evaluated with
available data of streamflow, continental freshwater
discharge, surface runoff, and soil moisture.

The forcing dataset covers the global land areas at
3-hourly and T62 (�1.875°) resolution from 1948 to
2004. It includes precipitation, surface air temperature,
downward solar radiation, specific humidity, wind
speed, and air pressure. To correct the spurious long-
term changes and biases in the NCEP–NCAR reanaly-
sis precipitation, surface air temperature, and solar ra-
diation fields, we combined the intramonthly variations
from the NCEP–NCAR 6-hourly reanalysis with
monthly time series derived from station records of
temperature and precipitation. Surface downward solar
radiation from the reanalysis was first adjusted for
variations and trends using monthly station records of
cloud cover anomalies and then for mean biases using
satellite observations of recent decades. Six-hourly sur-
face specific humidity from the reanalysis was adjusted

using the adjusted surface air temperature and original
relative humidity from the reanalysis data. Surface
wind speed and air pressure were interpolated directly
from the reanalysis data. A series of CLM3 runs were
conducted to assess the effects of the adjustments to the
NCEP–NCAR reanalysis data. The precipitation ad-
justment was found to have the largest improvement,
while the temperature and radiation adjustments have
only small effects.

When forced by this dataset, the CLM3 reproduces
many aspects of the long-term mean, annual cycle, in-
terannual and decadal variations, and trends of stream-
flow for many large rivers (e.g., the Orinoco, Chang-
jiang, Mississippi, etc.), although substantial biases
exist. The simulated long-term-mean freshwater dis-
charge into the global and individual oceans is compa-
rable to 921 river-based observational estimates. Ob-
served soil moisture variations over Illinois and parts of
Eurasia are generally simulated well, with the dominant
influence coming from precipitation. It is also shown
that unrealistically low intensity and high frequency of

FIG. 16. (a) Total evaporation and (b) total runoff differences of the CLM3 simulation with precipitation
frequency minus the standard CLM3 simulation for the 1948–2004 annual mean.

OCTOBER 2006 Q I A N E T A L . 971



precipitation, as in most model-simulated precipitation
or observed time-averaged fields, result in too much
evaporation and too little runoff, which leads to lower
than observed river flows. This problem can be reduced
by adjusting the precipitation rates using observed-
precipitation frequency maps.

The forcing dataset created here likely contains con-
siderable errors. For example, we used the rain-gauge-
based estimates of land precipitation from Chen et al.
(2002) and the GPCP v2 (Adler et al. 2003, for 1997–
2004 only). Chen et al. precipitation is not corrected for
wind-induced undercatch biases, which are most pro-
nounced for solid precipitation and may be as high as
12% for annual precipitation over global land (Adam
and Lettenmaier 2003). Neither precipitation product is
corrected for the topography-related underestimate
bias over mountainous regions that could be 10% or
more locally (Adam et al. 2006), although this is likely
minimized by the large network of rain gauges used by
Chen et al. to create their monthly climatology. The
correction of the undercatch biases due to winds, wet-
ting, and evaporation requires additional historical data
such as surface wind speed, precipitation phase (liquid
versus solid), and rain gauge types (Legates et al. 2005),
which are not readily available on a global scale. The
precipitation biases, as well as the human influences on
natural streamflow, such as withdrawal of stream water
and dams and reservoirs, hamper our ability to pre-

cisely evaluate the CLM3 simulations using historical
records of streamflow, although our results suggest that
the CLM3 evaporates too much over tropical rain for-
ests, especially in the Amazon.

The adjustment of the solar radiation using the often-
incomplete cloudiness data also likely contains large
uncertainties as historical records of cloud cover con-
tain large uncertainties and have sparse sampling over
many regions such as Africa and South America. While
the adjustment of the precipitation rates using ob-
served-precipitation frequency maps should result in
more realistic precipitation forcing, this adjustment is
imperfect as it does not correct the bias in the reanalysis
rain-day frequency. Furthermore, many land surface
models such as the CLM3 may have been tuned to
unrealistically high frequency and low intensity of pre-
cipitation, as these land models are usually coupled to
atmospheric general circulation models whose precipi-
tation fields often contain these biases (Dai and Tren-
berth 2004).

These uncertainties and biases in the forcing dataset
suggest that the CLM3 simulations of land surface con-
ditions likely contain biases and comparisons with
streamflow and other observations will be imperfect.
Nevertheless, running land surface models with our
forcing data provides a better framework for testing
model physics and parameterizations than using re-
analysis or atmospheric model data, as the latter often

FIG. 18. Long-term-mean annual freshwater discharge into the
global oceans smoothed using a 5° lat running mean from obser-
vation-based estimates (solid line; from Dai and Trenberth 2002)
and the CLM3 simulation with realistic precipitation frequency
(dashed line).

FIG. 17. Scatterplot of observed and CLM3-simulated (with re-
alistic precipitation frequency) long-term-mean annual river out-
flow rates (km3 yr�1) for the world’s 200 largest rivers. The linear
(r) and logarithmic (rlog) correlation coefficients as well as the
mean bias (simulated minus observed) are shown.
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contain much larger biases in precipitation, tempera-
ture, and other fields. Our results show that the CLM3
historical simulations capture many aspects of the ob-
served variations in streamflow and soil moisture, sug-
gesting that they may be used to supplement available
observations to study the interannual to multidecadal
variations in surface runoff, soil moisture, and evapo-
ration, whose historical records are sparse or unavail-
able. Future improvements to the forcing data, in par-
ticular with corrections for the undercatch and topog-
raphy-induced biases in precipitation and increased
resolution for regional modeling, as well as new devel-
opments in the CLM3 such as improved representa-
tions of the mean soil moisture content (e.g., by using
more realistic soil layer depth and removing/routing
subsurface runoff at a slower pace than surface runoff),
routing of runoff (e.g., at higher than 0.5° resolution
and including water balances of lakes, reservoirs, and
wetlands), human influences on streamflow, and
groundwater, are required for these models to be able
to simulate past land surface conditions realistically.
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