
Thomas Schneider von Deimling Æ Hermann Held

Andrey Ganopolski Æ Stefan Rahmstorf

Climate sensitivity estimated from ensemble simulations
of glacial climate

Received: 29 May 2005 / Accepted: 18 January 2006 / Published online: 16 March 2006
� Springer-Verlag 2006

Abstract The concentration of greenhouse gases
(GHGs) in the atmosphere continues to rise, hence
estimating the climate system’s sensitivity to changes in
GHG concentration is of vital importance. Uncertainty
in climate sensitivity is a main source of uncertainty in
projections of future climate change. Here we present a
new approach for constraining this key uncertainty by
combining ensemble simulations of the last glacial
maximum (LGM) with paleo-data. For this purpose we
used a climate model of intermediate complexity to
perform a large set of equilibrium runs for (1) pre-
industrial boundary conditions, (2) doubled CO2 con-
centrations, and (3) a complete set of glacial forcings
(including dust and vegetation changes). Using proxy-
data from the LGM at low and high latitudes we
constrain the set of realistic model versions and thus
climate sensitivity. We show that irrespective of un-
certainties in model parameters and feedback strengths,
in our model a close link exists between the simulated
warming due to a doubling of CO2, and the cooling
obtained for the LGM. Our results agree with recent
studies that annual mean data-constraints from present
day climate prove to not rule out climate sensitivities
above the widely assumed sensitivity range of 1.5–4.5�C
(Houghton et al. 2001). Based on our inferred close
relationship between past and future temperature evo-
lution, our study suggests that paleo-climatic data can
help to reduce uncertainty in future climate projections.
Our inferred uncertainty range for climate sensitivity,
constrained by paleo-data, is 1.2–4.3�C and thus almost
identical to the IPCC estimate. When additionally ac-
counting for potential structural uncertainties inferred

from other models the upper limit increases by about
1�C.

Abbreviations DT2x: Climate sensitivity Æ
TCR: Transient climate response Æ GCM: General
circulations model Æ IPCC: Intergovernmental panel
on climate change Æ LGM: Last glacial maximum Æ
GHG: Greenhouse gas Æ CO2: Carbon dioxide Æ
SST: Sea surface temperatures Æ SAT: Surface air
temperature

1 Introduction

The ‘‘climate sensitivity’’ DT2x provides the most im-
portant measure for the sensitivity of the climate system
to changing atmospheric greenhouse gas (GHG) con-
centrations. It is defined as the global-mean equilibrium
surface air warming following a doubling of atmospheric
CO2 concentration. Two principal ways can be pursued
to determine DT2x.

The first (‘‘bottom–up’’) approach is based on a
quantitative understanding of the physical mechanisms:
the direct changes in radiation balance and associated
positive and negative feedbacks, such as water vapour,
cloud, albedo and lapse rate (vertical temperature profile)
feedbacks, which can be calculated by models. Although
the underlying processes can to some extent be validated
by observations of modern climate, there is still con-
siderable uncertainty in the strength of these feedbacks,
most notably the cloud feedback. Hence, it has not been
possible on this basis to reduce the range of uncertainty of
DT2x since the 1970s, when it was first estimated as 1.5–
4.5�C (Charney 1979). Recent studies with comprehensive
climate models (Stainforth et al. 2005) have shown that it
is possible to construct model versions with climate sen-
sitivities exceeding 10�C, which are consistent with annual
mean data of modern day climate characteristics. But
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when considering additional data information, such as
the annual cycle, it seems quite likely that those models
will show to be inconsistent with climatology.

The second (‘‘top–down’’) approach is to analyse how
climate has changed in the past when GHG concentra-
tions have changed. Several studies have attempted this
based on data for the last glacial maximum (LGM;
Hoffert and Covey 1992; Hansen et al. 1993; Covey et al.
1996). One of the difficulties here is that there is no direct
past analogue for a future large increase in GHG con-
centrations, with all other factors influencing climate
being the same as today. Generally, several climate for-
cings have changed simultaneously, making it difficult to
isolate the effect of GHGs, although this can be tried by
using multivariate analysis on long time series (Lorius
et al. 1990). Also, the mean climate state was different in
the past (e.g. much colder during Glacials), hence the
strength of feedbacks such as albedo or water vapour
feedback probably differed as well.

Here, we apply a ‘‘third way’’ of deriving DT2x, based
on systematically combining our understanding of the
physics with data from past climate evolution, including
uncertainty in both factors. The basic idea is to generate
an ensemble of many climate model versions with dif-
ferent parameters and hence different strengths of re-
levant feedbacks, in order to span the current uncertainty
in physical understanding, and then use observational or
proxy-data to constrain which subset of these models
(and hence what range of DT2x) is compatible with pre-
industrial climate and past climate evolution.

This method has previously been applied to the 20th
Century climate change, i.e. the period of anthropogenic
increase in CO2 concentration (Forest et al. 2002; Knutti
et al. 2002). The conclusion from these ensemble simu-
lations is that the anthropogenic warming signal is too
weak to effectively constrain DT2x, due to uncertainty in
the radiative forcing over the industrial period, in the
observational data and in the rate of ocean heat-uptake.
Further studies, which also focus on the historical
warming temperature signal, fail as well in effectively
constraining the DT2x range, particularly the upper
bound (Andronova and Schlesinger 2001; Gregory et al.
2002); i.e. within current physics uncertainty it is possi-
ble to construct models with a very high DT2x (�7�C),
and such models are not ruled out by the relatively small
20th Century warming if aerosol shading was large over
this period.

Here we apply this third method to the climate of the
LGM (�21 kyr BP). This period represents one of the
largest deviations from present climate in recent geologic
history, with estimates for global cooling from simula-
tions (Ganopolski et al. 1998; Kitoh et al. 2001; Hewitt
et al. 2003; Shin et al. 2003) ranging from 4 to 6�C.1

The LGM is promising for constraining DT2x since (1)
the GHG changes are large, (2) the climate signal is large,
(3) the cold climate persisted for millennia, so is in near-
equilibrium, (4) the forcing and response are reasonably
well known, and (5) successful simulations of glacial cli-
mate are available. In view of constraining high climate
sensitivities, uncertainty in maximum negative forcing
contributions from aerosols (Anderson et al. 2003)
affects—for the LGM—the lower, not upper limit of the
sensitivity range (unlike for modern climate constraints).

While some authors have discussed DT2x in the con-
text of a single LGM simulation (Hewitt and Mitchell
1997; Broccoli 2000), (to best of our knowledge) this
study represents the first estimate of DT2x that is based
on an ensemble of fully coupled simulations for the
LGM climate. An ensemble study with an atmospheric
general circulation model (GCM) coupled to a slab
ocean recently has been performed for PMIP-2 bound-
ary conditions (Annan et al. 2005). We accounted for a
complete set of the main radiative forcing changes be-
tween the pre-industrial and glacial climate, including
dust concentration and vegetation changes, which cru-
cially contribute to the cooling but which have been
neglected in previous simulations with coupled climate
models (Kitoh et al. 2001; Hewitt et al. 2003; Shin et al.
2003).

Our study shows that the LGM climate is likely to
constrain the upper end of the DT2x range. At least
within the range of processes captured by our
model—and provided that the simulated relationship
between LGM cooling and CO2 warming covered in our
ensemble does not strongly differ from that simulated by
different GCMs (see Section 5)—a high DT2x (larger
than �5.3�C) cannot be reconciled with most recent
paleo-proxy estimates of cooling between the LGM and
pre-industrial climate.

2 Methods

Using the CLIMBER-2 model of intermediate com-
plexity (see Section 3) we performed a large set of en-
semble simulations for pre-industrial, doubled CO2

concentration and glacial boundary conditions (Ta-
ble 1). For all simulations we perturbed the same set of
11 model parameters, which mainly affect the model-
inherent feedback strengths, to derive a set of model
versions with differing climate sensitivities.

2.1 Sampling strategy

We selected those parameters of CLIMBER-2 that
are most influential on the model-intrinsic climate
sensitivity (for details on our choice, see Appen-
dix 7.3). As (Forest et al. 2002; Knutti et al. 2002)
have done for their parameter choices, we explored
the—in our case—11-dimensional parameter space
according to a Monte Carlo scheme. First, for any of

1 It should be noted that those LGM simulations do not account
for the forcing effects of dust and vegetation changes. If these
forcings are included as further boundary conditions an additional
global surface air temperature (SAT) cooling of about 1.5 to 2�C
can be expected (Schneider von Deimling et al., in preparation).
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the 11 perturbed parameters we specified the interval
for which the related parametrisation is meaningful
according to the authors of the model. For our study,
these authors represent the ‘‘experts’’ specifying ‘‘prior
knowledge’’ according to the requirements of the
Bayesian school. As no pronounced prior knowledge
on correlations among the parameters was formulated,
we follow the standard procedure and assume the prior
distribution as uncorrelated among the parameters.
Furthermore, as a continuous cut-off at the boundaries
appears most natural we assume symmetrically beta-
distributed (shape parameter of 1.75) (uncorrelated)
parameters, hence, we conservatively assume a rather
broad maximum of any marginal prior distribution.
Finally, as we vary some parameters over orders of
magnitude, we link the distributions to the logarithms
of the parameters rather than the parameters them-
selves. We sampled this 11-dimensional, uncorrelated
prior by a Latin-Hypercube scheme that represents an
efficient variant of the Monte Carlo method. This
sampling resulted in quite a narrow range of DT2x

(2.0–3.8�C) for an ensemble of 5,000 model runs (in
the following termed ‘‘uncorrelated ensemble’’) even
before applying any constraining information from
observational data. While so far we have followed the
standard procedure to initialise a rigorous Bayesian
analysis, we also would like to ensure that the intervals
we derive for DT2x are predominantly a result of cli-
mate data constraints rather than the prior probability
density chosen. In fact there is a long history of cri-
ticism of the fact that a result of a Bayesian scheme
may strongly depend on the subjective choice of the
prior distribution (for an overview, see Berger 1985
and Walley 1991, for a discussion in the context of
climate sensitivity, see Frame et al. 2005). Hence, in
the spirit of robust Bayesian statistics, we employ a
second prior distribution that shall lead to much more
conservative estimates of DT2x. For that we modified
the sampling scheme with the aim of a higher
weighting of those parameter combinations that yield
low and high DT2x, thus increasing the sampling
probability for the tails of the resulting distribution of
DT2x. We achieved a large range of DT2x by positively

(negatively) correlating (factor ±0.9) all atmospheric
parameters whose variations change DT2x in the same
(opposite) direction, e.g. we systematically (not ran-
domly) combine positive and negative contributions to
DT2x of each parameter, and thus of the corresponding
feedbacks.2 In addition, we replaced the beta dis-
tribution by a uniform distribution, again stressing
extreme values for DT2x. We call the ensemble gener-
ated from this second prior the ‘‘correlated ensemble’’.
The resulting frequency distribution looks rather uni-
form (thus gives approximately equal weight to all
model versions with different climate sensitivities) in
contrary to the more normal-like shape of DT2x, de-
rived from the uncorrelated ensemble (which peaks at
2.8�C).

2.2 Representation of dust forcing

The impact of dust probably represents the largest un-
certainty in radiative forcing of LGM climate due to
incomplete knowledge of its regional distribution and
radiative properties (Claquin et al. 1998; Sokolik and
Toon 1999). For the tropics, where the forcing by LGM
dust is largest and postulated to be of the same order as
of lowered CO2 concentrations, it is very likely that the
long-term climatic effect is a cooling (Harrison et al.
2001; Claquin et al. 2003).

Our climate model does not include a dust cycle, thus
radiative effects of dust are prescribed as monthly top-
of-the-atmosphere anomalies of the short-wave radia-
tion, which have been calculated for modern and LGM
boundary conditions, including dust concentration
changes, from several ECHAM-5 (Stier et al. 2004) si-
mulations (M. Werner, personal communication 2004).

Figure 1 shows the impact of dust forcing on the
LGM cooling for the tropical oceans, which will serve
as a focus area in our analysis (besides the region of

Table 1 Overview of model simulations and applied boundary conditions

Year Forcing Parameter setting

SIM_2CO2 1–3,500 Pre-industrial boundary conditions Ensemble-1
3,501–3,570 1% CO2 increase (280–560 ppm)
3,571–6,500 Constant CO2 (560 ppm)

SIM_LGM 1–3,500 LGM ice sheets, CO2, dust, solar insolation, vegetation Ensemble-1
SIM_LGM0.5 1–3,500 Same as SIM_LGM, but only 50% dust forcing Ensemble-1
SIM_CO2_LGM 1–3,500 Pre-industrial conditions, but CO2 = 180 ppm Ensemble-2
SIM_abCO2_LGM 1–3,500 Same as SIM_LGM, but CO2 = 280 ppm Ensemble-2
SIM_uncor 1–6,500 Same as SIM_2CO2 Ensemble-3
SIM_uncor_LGM 1–3,500 Same as SIM_LGM Ensemble-3

Ensemble-1: 1,000 parameter combinations, uniform-distributed, atmospheric parameters correlated. Ensemble-2: 500 parameter com-
binations, beta-distributed, correlations as in Ensemble-1. Ensemble-3: 5,000 (only pre-industrial consistent for SIM_uncor_LGM)
parameter combinations, beta-distributed, uncorrelated

2 The parameter correlations neither cause the inferred quasi-linear
relation between DT2x and the magnitude of LGM cooling (Fig. 5),
nor systematic differences in the model results, as can be seen in
Fig. 6.
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Eastern Antarctica) for the comparison of simulated
and reconstructed glacial temperatures. The im-
plementation of the radiative impact of glacial dust
(100% scenario, Table 1) implies an additional global
forcing of about �1.2 W/m2 (�2.1 W/m2 for the tro-
pics, 0.3 W/m2 for eastern Antarctica), which translates
into an additional global SAT cooling of about 0.5 to
1.4�C [0.4–0.9�C for tropical sea surface temperatures
(SSTs), 0.4–1.8�C for eastern Antarctica] for DT2x be-
tween 1.5 and 4.5�C. The effect of a potential positive
forcing caused by dust impact on snow albedo is small
except in the area of high northern latitudes and thus is
not crucial for our study.

3 Model simulations

We use a climate model of intermediate complexity
(CLIMBER-2), consisting of a dynamical–statistical
2.5-dimensional atmosphere model (with parametrisa-
tions of the synoptic-scale activity), coupled without flux
adjustments to a multi-basin, zonally averaged ocean
model (Petoukhov et al. 2000). The simulated atmo-
spheric and oceanic characteristics of the pre-industrial
climate agree well with observational data (Petoukhov
et al. 2000). Several sensitivity studies, e.g. of the model’s
response to a CO2 concentration increase, qualitatively
agree with results of GCMs (Ganopolski et al. 2001).
Driven by natural and anthropogenic forcings, the
model reproduces the temperature variations over the
last millennium (Bauer et al. 2003). Simulated glacial
climate shows many characteristics seen in proxy-data,
both for the mean state (Ganopolski et al. 1998) and for

abrupt climate changes (Ganopolski and Rahmstorf
2001). An important requirement for this study is that
the model simulates the key feedbacks that determine
DT2x (Colman 2003), namely the cloud, water vapour,
albedo and lapse rate feedback. This is the case, with
simulation of two cloud types, atmospheric lapse rate
and tropopause height, a thermodynamic sea-ice and a
land snow-cover module. In contrast to more simplified
models, DT2x is not a tuning parameter in our model,
but arises from the model physics.

In our ensemble we considered uncertainties in 11
model parameters that strongly affect the above feed-
backs. For those model versions consistent with present
day climate, a comparison with GCM results (Colman
2003) shows that the realized spread in the individual
feedbacks is comparable to the ranges covered by dif-
ferent GCMs, with the exception of water vapour feed-
back, which is at the lower end of the GCM range (with
a relatively narrow spread) in our ensemble. Yet the
range of combined water vapour and lapse rate feed-
backs (these two are strongly anti-correlated in GCMs)
overlaps with the lower half of the GCM spread and,
more importantly, the sum of all feedbacks in our en-
semble covers essentially the entire GCM range. Hence,
in terms of the variation of climate feedbacks, our en-
semble compares well with a sampling of more complex
models.

Previous ensemble-based studies have inferred much
larger DT2x values (e.g. Stainforth et al. 2005) than si-
mulated in our study but have not reported so far the
range of perturbed feedbacks strengths. The large spread
of climate sensitivity in those studies implies a much
larger sum of all feedbacks than discussed, e.g. by

1 1.5 2 2.5 3 3.5 4 4.5 5
–1

–0.9

–0.8

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

Climate sensitivity ∆T
2x

[°C]

∆S
S

T
(d

us
t)

–
∆S

S
T

(n
o 

du
st

)[
° C

]

Fig. 1 Additional tropical SST
cooling through dust forcing.
Shown is the difference in
annual mean tropical SST
cooling (globally averaged from
30�N to 30�S) between model
versions which account for dust
forcing [green dots: 100% dust
forcing (SIM_LGM, see
Table 1), blue dots: 50% dust
forcing (SIM_LGM0.5)] and
the same model versions
without being forced by glacial
dust. For a climate sensitivity of
3�C the additional cooling
affected by LGM dust
concentration changes is about
0.6�C (0.3�C) for 100% (50%)
dust forcing
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Colman (2003), who has analysed GCMs with a DT2x

between 2.2 and 5.7�C. A larger perturbation of the in-
dividual feedbacks than covered in our study might en-
large the spread of model realizations (see Fig. 6) and
thus the range of inferred climate sensitivity. We account
for the impact of a more extreme scanning of the rea-
lized feedback strengths by discussing the impact of
structural uncertainty on our results in Section 5.

The parameter ranges were chosen by expert judg-
ment (see Appendix 7.4). We sampled the parameter
space in a Monte Carlo manner as discussed in the
subsection on sampling strategy (see above), first gen-
erating the uncorrelated ensemble, SIM_uncor, Table 1.
This strategy yielded a range of 2.2–3.7�C for DT2x (5–
95%). Then we introduced correlations among the at-
mospheric parameters in order to enhance sampling of
the tails of the probability distribution for DT2x to fully
span the DT2x range covered by fully coupled GCMs
(correlated ensemble, SIM_2CO2).

Using pre-industrial boundary conditions we per-
formed 1,000 CLIMBER-2 runs in which we varied the
11 parameters simultaneously. DT2x for each of the
1,000 model versions was calculated by running the
model into equilibrium for 280 and for 560 ppm CO2

(Table 1). Together with the glacial ensembles discussed
below and some additional tests, a total of about 70
million years of model simulations was performed for
this study, requiring 100-cpu months on an IBM Power-
4 processor (1.1 GHz).

Figure 2a shows the frequency distributions of the
global-mean SAT for both equilibria. The correspond-
ing distribution of DT2x (Fig. 2b, white bars) ranges
from 1.3 to 5.5�C. Figure 2c shows the transient climate
response (TCR), defined as the global-mean SAT in-
crease, averaged over a 20 year period, centred at the
time of CO2 doubling (year 70 of a 1% per year CO2

increase). This diagnostic also reflects the lag induced by
ocean heat-uptake and is more directly relevant to cli-
mate change in the 21st Century than the equilibrium
climate sensitivity.

Because of a broad range chosen for each of the
model parameters, large discrepancies of simulated pre-
industrial climate and observational data can result.
Hence, we constrained the ensemble to models con-
sistent with present-day climate. For this purpose we
defined data-constraints for global characteristics of
surface temperature, precipitation, sea-ice extent, vo-
lume averaged ocean temperature, as well as for Atlantic
northward heat transport and North Atlantic over-
turning strength (see Appendix 7.2). These consistency
criteria reduce the original ensemble size by about 90%,
which demonstrates that the parameter choices not only
strongly affect the temperature response to CO2, but also
the present-day climate. However, the present-day data
constraints hardly reduced the range of DT2x. Thus the
chosen parameter combinations yield a subset of model
versions (Fig. 2, blue bars), which span a broad range of
DT2x and which all are consistent with present-day
climate characteristics. This result is in line with most

recent findings of GCM studies (Murphy et al. 2004;
Stainforth et al. 2005), which demonstrate that model
versions with a high DT2x cannot be ruled out by annual
mean data of modern climate.

To test whether LGM proxy-data can be used to re-
duce uncertainty in the range of DT2x, we then ran the
full ensemble of models for LGM boundary conditions
(SIM_LGM). By performing both the CO2 doubling and
the LGM experiment for each model, we automatically
account for differences in feedbacks and climate re-
sponse between colder and warmer climates. We do not
need to assume the same sensitivity to CO2 changes for
LGM conditions as for CO2 doubling; we thus avoid an
important problem that arises in purely data-based es-
timates of DT2x.

The main forcing changes between pre-industrial and
LGM climate are accounted for in the simulation by
lowered GHG concentrations (CO2, CH4, N2O; Petit
et al. 1999), existence of large northern hemisphere ice
sheets (Peltier 1994), increased atmospheric dust con-
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Fig. 2 Frequency distributions for pre-industrial climate character-
istics (correlated ensemble, 1,000 runs). (a) Simulated equilibrium
global-mean surface air temperature (SAT) for 280 ppm (blue) and
560 ppm CO2 (red), corresponding distribution of (b), climate
sensitivity DT2x, calculated as the difference of the two equilibria,
and (c), transient climate response (TCR). Blue bars (b and c)
denote model versions consistent with present-day data. The
pronounced tails (b and c) result from the chosen sampling scheme
(see Section 2)
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centration, changes in vegetation and insolation (Berger
1978). Vegetation cover is prescribed from an LGM
CLIMBER-2 run with interactive vegetation scheme.
Dust forcing is prescribed as top-of-the-atmosphere ra-
diative anomalies (M. Werner, personal communication
2004, see Section 2) derived from the ECHAM-5 model
(Stier et al. 2004).

For DT2x between 2.5 and 3.5�C—a typical range for
many climate models—the simulated global cooling with
CLIMBER-2 (6–7.5�C) is several degrees more than that
simulated in other studies (Kitoh et al. 2001; Hewitt
et al. 2003; Shin et al. 2003). This systematic difference
can be attributed to the combined effect of vegetation
changes and dust forcing (about 1.5 to 2.0�C for the
considered range of DT2x, Schneider von Deimling et al.,
in preparation), which was not accounted for in the
previous studies.

In order to estimate the fraction of LGM cooling
attributable to lowered CO2 concentrations, we per-
formed two additional ensembles, in which (1) CO2 has
been lowered to its glacial value (180 ppm, implicitly
accounting for CH4 and N2O changes) while keeping all
other boundary conditions fixed to pre-industrial values
(SIM_CO2_LGM, Table 1), and—to account for non-
linearities—(2) all boundary conditions have been set to
LGM conditions, but CO2 fixed to its pre-industrial
value of 280 ppm (SIM_abCO2_LGM). In the
latter case we calculate the contribution of CO2 to SST
cooling as the difference between this ensemble
(SIM_abCO2_LGM) and the ensemble with all LGM
forcings contributing to the temperature response. It can
be seen (Fig. 3) that the ratio is increasing for increasing
DT2x and that (2) (green dots) yields slightly higher

estimates than (1) (blue dots). In order to compare the
ratio of CO2 attributable cooling with other studies,
which have neglected dust and vegetation forcing, we
performed a third ensemble, which is equivalent to (1)
but disregards forcing of LGM dust and vegetation
changes. The resulting values for the ratio (red dots)
span a range consistent with results from Shin et al.
(2003) and slightly smaller than estimated by Kim
(2004).

Figure 4a illustrates the simulated SAT decrease be-
tween pre-industrial and LGM climate. The ice sheet
forcing maxima in the northern hemisphere are clearly
reflected by the temperature response, whereas minima
of LGM cooling are found in tropical regions.

Figure 4b shows the ratio of CO2 attributable cooling
(averaged over both ensembles) to total LGM cooling.
The more distant from the northern hemisphere ice
sheets, the larger is the relative effect of CO2, reaching
maximum values of about 50% in large areas of the
southern hemisphere (Fig. 4b).

The global LGM cooling pattern looks qualitatively
similar for different parameter choices, although some
pronounced differences exist in well-defined regions.
Figure 4c shows the standard deviation of simulated
LGM cooling for all model versions consistent with
present-day climate. A maximum spread of SAT de-
crease exists in the northern Atlantic, which can be ex-
plained by the regionally large impact of the sea-ice
albedo feedback, which is strongly coupled to the loca-
tion of North Atlantic convection sites (Ganopolski
et al. 1998). A second, much broader maximum is found
in the western Antarctic (Schneider von Deimling et al.,
in preparation).
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lowering. Shown is the ratio of
annual mean LGM cooling,
which is attributable to CO2

concentration changes, to total
LGM cooling for tropical SSTs
(globally averaged from 30�N
to 30�S). We performed two
additional ensembles, in which
we forced the model (1) only by
LGM CO2 changes (blue dots,
SIM_CO2_LGM), and (2) by
all glacial forcings but CO2

(green dots,
SIM_abCO2_LGM). The
impact of vegetation and dust
forcing on this ratio is
illustrated by showing a third
ensemble (red dots, equivalent
to (1), but without forcing
contributions from dust and
vegetation)
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4 Constraining the climate sensitivity range

Figure 5 shows the relation between the simulated
warming due to a doubling of CO2 and the magnitude of
LGM cooling for tropical and high latitude regions. The
strong correlation between DT2x and LGM cooling is
striking. Model realizations consistent with present day
data (blue dots) show a quasi-linear relationship be-
tween DT2x and LGM cooling. This close link is not
dependent on the exact choice of the present-day data-
constraints and is the basis for our approach of con-
straining DT2x. Implications of structural uncertainty
and the issue of model dependence of this relation are
discussed in Section 5.

When looking for the best region for applying the
LGM data-constraints, several criteria have to be con-
sidered. Well-calibrated proxy data need to be available,
GHGs should be an important forcing in the region, and
the response should not be affected too much by regional
small-scale dynamics, which cannot be resolved by our

coarse-resolution model. The northern high latitudes are
dominantly affected by the presence of the large con-
tinental ice sheets, with GHGs contributing only little to
the signal (Fig. 4b). This makes them less suited despite
the availability of Greenland ice-core data. Several Ant-
arctic ice cores provide temperature estimates from
southern high latitudes, yet covering a comparably small
region of the globe. Numerous sediment-data are avail-
able from tropical ocean sites, allowing large-scale aver-
aging over the entire tropical ocean belt (thus the
importance of local processes is minimized and the relative
importance of global forcings, i.e. the effect of well-mixed
GHGs, is maximized). Tropical land areas are smaller and
more affected by regional factors; data coverage is sparse
and temperature reconstruction complicated by un-
certainties of potential lapse rate changes. Hence, we
chose the tropical oceans as our most reliable test region.

Reconstructed SSTs from various types of proxy-
data have been discussed controversially over the past
decades, particularly the magnitude of tropical tem-
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c

Fig. 4 Regional characteristics
of LGM cooling (SIM_LGM).
a SAT change (LGM—pre-
industrial); b ratio of CO2

attributable SAT cooling to
total LGM SAT cooling. a and
b are representative for a model
version with DT2x of 3�C, c
shows the standard deviation of
DSAT for all model versions
consistent with present day
climate
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perature response. Yet in recent years the analysis of
different reconstruction techniques has led to reject
very low and high large-scale cooling (Crowley 2000;
Lea et al. 2003; Niebler et al. 2003). To derive a robust
SST data constraint we use an objectively interpolated
data set (Schäfer-Neth and Paul 2003), which com-
prises a large set of sediment cores of stringent quality
and age control (about 300 for the Atlantic). We focus
on data from the tropical Atlantic (20�N–20�S), which
are based on GLAMAP reconstructions (Sarnthein
et al. 2003), having been derived from transfer func-
tions (TFs) of faunal assemblages of foraminifera.
Accounting for reconstruction uncertainties of each
data core and for uncertainty in the pattern of SST
cooling, this data set yields a range of averaged tropical
Atlantic SST cooling of 3.0�±0.9� (2r, Appendix 7.4).
When considering an average over all ocean basins,
slightly reduced SST anomalies would have to be ap-
plied for our analysis. A crucial issue of such an esti-
mate is in how far the result is proxy-dependent.
Geochemical SST reconstructions (Mg/Ca and alke-
none methods) are in agreement with reconstructions
from faunal TFs for low latitudes (Bard 2001; Rosell-
Mele et al. 2004; Barker et al. 2005). Systematic dif-
ferences arise in the eastern equatorial Atlantic (espe-
cially in upwelling regions), where geochemical
methods (GCs) suggest a less pronounced maximum
cooling (about 4�C; Rosell-Mele et al. 2004; Barker
et al. 2005). We account for this possible bias by
creating an alternative data set by limiting maximum
tropical cooling of the original data set to 4�C, and
recalculate the mean and associated error. In the fol-
lowing, we present results from the first set only, which
yields the largest uncertainty spread (see Appendix 7.4).

To infer DT2x from LGM data, one could go back to
the unconstrained ensembles, proceed according to
Bayes’ formula, for both the uncorrelated as well as the
correlated ensemble, and present the most extreme va-
lues for DT2x quantiles as robust estimates. However, we
would like to make use of the relations displayed in
Fig. 5: a suggested linear relation between LGM cooling
and DT2x. For that we apply an ‘‘interval method’’ (see
Appendix 7.1) that we find to be even more conservative
than a Bayesian procedure, and that incorporates the
information of both ensembles: we fit the linear relation
from the constrained correlated ensemble as the latter is
more informative in the tails of the distribution than the
uncorrelated ensemble. However, we derive the error
bars (for an interpretation of these error bars, see Ap-
pendix 7.1) of the linear relation from the much more
scattered unconstrained ensemble. Such an evaluation is
displayed in Fig. 6. Considering the error margins (5–
95%) from our fitting procedure (Fig. 6) we then de-
termine a DT2x range, which is consistent with mean
tropical Atlantic SST cooling (Appendix 7.1). The re-
sulting range of 1.3–3.5�C (0.9–2.1�C for TCR) for our
standard LGM design (SIM_LGM) is notably smaller
than that estimated by the intergovernmental panel on
climate change (IPCC; Houghton et al. 2001).

5 Uncertainties affecting the estimate

Our constrained DT2x ranges crucially depend on (a) the
universality of our inferred quasi-linear relationship
between future warming and past cooling, thus on the
model structure, (b) the applied glacial boundary con-
ditions, and (c) the reliability of reconstructed paleo-
temperatures.

Concerning (a), simulations with comprehensive cli-
mate models realized within the PMIP-2 project will be
published in the near future and will help to answer the
key question, whether the close correlation of LGM
tropical cooling with DT2x (Fig. 5a, b) is specific to our
model, or whether it is valid more generally. A similar
study with a multi-model ensemble would help to clarify
the importance of processes not resolved by our model
(e.g. ENSO). Physical reasoning makes a close link be-
tween mean glacial tropical cooling and DT2x plausible.
Mean glacial tropical cooling largely reflects lower CO2

values, and is as such the inverse of an increased CO2

experiment.
However, the shape, location and the uncertainty of

such a relation (Fig. 5) depend on the model used and
how or which processes are resolved or parameterised in
the model. In contrast to the close linear relationship
found in CLIMBER-2, Annan et al. (2005) find a much
weaker correlation of glacial SST and climate sensitivity
in an atmospheric GCM coupled to a slab ocean. They
infer deviations of the individual simulations from a
linear approximation at least five times larger than in
our model. Although this may be an artifact of a slab
ocean with fixed heat transport, we take this larger
spread as a measure for uncertainty when using struc-
turally different models and enlarge our inferred spread
estimate by a factor of 5. The resulting upper limit of
DT2x is shifted by 1�C towards larger sensitivities. Ad-
ditional to uncertainty in the spread an offset in the re-
gression line (Fig. 6) may introduce a further bias. At
this stage there are too few model realizations with fully
coupled comprehensive climate models to quantify this
effect. As all available PMIP-2 simulations clearly fall
inside our considered uncertainty range3 when enlarging
the spread, we assume to thus account for structurally
different models in a representative way.

The crucial issues for determining CO2 sensitivity
from an inverse glacial experiment are (1) what fraction
of tropical glacial cooling is due to CO2 and how much
is due to other forcings and horizontal energy transport,
and (2) whether there are strongly asymmetric feedbacks
for warming and cooling not correctly captured by our
model. Concerning (1), we have included uncertainty in
aerosols, glacial ice sheets and GHG concentrations (see
next section)—and we note that the horizontal energy

3 For inference of consistency we compare PMIP-2 results with
CLIMBER-2 simulations which are based on PMIP-2 boundary
conditions (excluding forcing contributions by glacial dust and
vegetation).
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transport out of the tropics in other models is unlikely to
be considerably outside the range covered in our en-
semble, which yields a range of 1.4–2.0 for the ratio of
global to tropical SAT cooling. Concerning (2), pro-
cesses not captured by our model (e.g. ENSO-dynamics)
may play a role, but this would only change our DT2x

estimate if such processes affect the mean SST of the
tropics in a strongly asymmetric way for LGM and CO2-
doubling. Hence it remains open in how far a multi-
model ensemble would show a much wider spread (like,
e.g. seen in Annan et al. 2005) than seen in Fig. 5a. Note
that derivations of DT2x purely based on paleo-data (e.g.
Lea 2004) implicitly assume a symmetry between
warming and cooling and a fixed fraction of glacial
cooling attributable to CO2.

Accounting for uncertainty in the glacial forcings, we
consider uncertainty in the forcing contributions of
glacial dust, ice sheets and GHGs. Firstly we evaluate
the impact of a possible overestimation of dust forcing in
our study on DT2x by running an identical ensemble with
the dust radiative anomaly reduced by 50% (see Fig. 1).
A reduction of the dust forcing by a factor of 2 leads to a
small shift (about 0.3�C) of the DT2x range to higher
values. A much stronger forcing than assumed in our
100% scenario seems unlikely, or one would expect a
stronger correlation between tropical SSTs and dust in
the atmosphere over a complete glacial cycle.4 Total
LGM ice volume is known from sea level lowering, the
maximum spatial extent of the ice sheets is well known
from moraine signatures. Thus uncertainty in glacial ice

sheet forcing is mainly given by uncertainty in the shape
and in the albedo of the ice sheets. We therefore reduced
the standard model parameters of ice sheet albedo by
10% and derived an increase of the upper DT2x limit of
0.5�C. The sensitivity of our results to changes in the ice
sheet shape was investigated by replacing Peltier’s ICE-
4G ice sheet reconstruction (Peltier 1994), which we use
for our standard LGM design, with ICE-5G (Peltier
2004), with most pronounced differences between the
two in the Eurasian region. The difference for tropical
Atlantic SST cooling between those two experiments is
rather small (0.2�C, for a climate sensitivity of �3�C).
To quantify uncertainty in GHG forcing we re-run the
ensemble for an equivalent5 CO2 concentration of
170 ppm, which is closer to the PMIP-2 design than our
standard experiment with 180 ppm (SIM_LGM), which
is more at the lower end of recent estimates of glacial–
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Fig. 5 Dependence of LGM
cooling (relative to the pre-
industrial climate) on DT2x for
different regions. Shown is (a),
annual mean of average (20�N–
20�S) global tropical SST
cooling; and annual mean
average SAT cooling for (b),
tropical land (30�N–30�S), (c),
Greenland, (d), eastern
Antarctica. Green points
represent the entire ensemble
(1,000 runs, SIM_LGM), blue
points only model versions
consistent with present day
climate (123 runs)

4 Ice and sediment cores indicate a drastic increase of dust de-
position rate at the MIS4/MIS3 boundary (around 60 kyr BP),
while SST cooling in the tropics is rather moderate at that time.
Multivariate analysis of tropical SST and Antarctic dust con-
centration (Lea 2004) provides an upper estimate for the impact of
dust on glacial temperature. Moreover, when accounting for the
fact that only part of the glacial SST signal should be attributed to
the increase in dust concentration and that changes in dust con-
centration coincide with CO2 drop, ice sheet growth and sea level
lowering, the effect of dust on LGM cooling is smaller than esti-
mated by multivariate analysis (Lea 2004).
5 This concentration yields the same radiative forcing as the sum of
individual GHG forcings resulting from changes in CO2, CH4 and
N2O concentrations.
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interglacial GHG concentration changes. This addi-
tional decrease of 10 ppm lowers the upper limit of DT2x

by 0.1�C.
For our further analysis we combine all considered

forcing uncertainties by discussing a minimum and a
maximum scenario of glacial radiative forcing
(SIM_LGM and SIM_LGM0.5, see Table 1).

We assembled the effects of both scenarios in Fig. 7,
by light-blue and dark-blue solid intervals, respectively.

Finally the uncertainty range of our inferred climate
sensitivities depends on the reliability of the applied
paleo-data. The fact that fundamentally different proxy
reconstructions (such as TFs and GCs) yield consistent
results for most regions of low latitudes, as, e.g. sug-
gested by first results of a huge multi-proxy inter-com-
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Fig. 7 Climate sensitivity estimates. The dark (light) blue intervals
represent the 5–95% range (estimated from an interval method) of
DT2x consistent with LGM cooling for a minimum (SIM_lowRF)
and maximum (SIM_highRF) assumption of glacial forcing,
illustrated for mean tropical Atlantic SST cooling (3.0±0.9�C,
solid lines) and Antarctic cooling (5.4±1.4�C, dashed lines).
Vertical green dashed lines represent the DT2x range resulting from

the present day data consistent parameter ensemble without
applying LGM constraints. Other recent DT2x estimates [5–95%;
Forest et al. 2002; Knutti et al. 2002; Murphy et al. 2004 (weighted
PDF)] are shown for comparison (see legend). Note that structural
uncertainty may introduce an additional uncertainty to our results
yielding a maximum estimate for DT2x of 5.3�C
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parison project (Kucera et al. 2005), enhances the
credibility of the considered SST paleo-temperature es-
timates.

When accounting for uncertainty in model parameter
choices, in glacial forcings and in reconstructed paleo-
temperatures, our results suggest a range for DT2x (de-
rived by the interval method) of 1.2–4.3�C (0.9–2.6�C for
TCR). As described in more detail in Appendix 7.1, our
intervals represent conservative estimates of 5–95%
quantiles. Structural model uncertainty is difficult to
quantify but likely to increase the inferred range. When
considering a spread (discussed in Fig. 6) which is by a
factor 5 larger than inferred from our results, then cli-
mate sensitivities up to about 5.3�C cannot be ruled out.

For the reasons given above, our data constraint is
strongest for reconstructed tropical SSTs (based on the
Atlantic). Nevertheless it is instructive to also consider
other data types and regions. Tropical land data are
subject to larger uncertainty (3.5–7�C cooling; Farrera
et al. 1999; Pinot et al. 1999), but yield similar estimates
of DT2x (Fig. 5b). Ice-core data from Antarctica (about
5.4±1.4�C cooling above the temperature inversion, and
8±2�C surface cooling; Vimeux et al. 2002; Jouzel et al.
2003; Watanabe et al. 2003) constrain DT2x in-
dependently from low latitudes, showing highly con-
sistent results with tropical SST-based estimates (Fig. 7,
note the small difference between solid and dashed blue
intervals). Our model-data comparison for Eastern
Antarctica is not biased by an overestimate of altitude
changes in the ice sheet. We only apply changes in ice
sheet altitude due to sea level lowering (120 m) for
Eastern Antarctic. Comparison of ice-core temperatures
from Greenland (18–20�C surface cooling; Dahl-Jensen
et al. 1998) with our model simulations again yields
consistent DT2x estimates (Fig. 5c), but this should not
be over-interpreted given the small size of Greenland
and the coarse model resolution. Overall, the fact that
very different absolute temperature changes in high and
low latitudes all yield very similar estimates of DT2x

gives additional credence to our results.

6 Implications

Our results demonstrate that the tropical cooling during
the LGM, as reconstructed with increasing accuracy
from various types of proxy data, can provide a con-
straint on the upper limit of DT2x. The effectiveness of
such a constraint will crucially depend on the question
how robust the link between simulated glacial cooling
and future warming (DT2x) proves to be, when an en-
semble of structurally different models is considered.
Simulation results from intercomparison studies (such as
PMIP-2) will provide a first step towards quantifying
this uncertainty. Assuming that our inferred close re-
lationship between LGM cooling and CO2 warming
represents a universal characteristic seen as well in
comprehensive climate models and assuming that the
mean tropical Atlantic SST cooling during the LGM

(averaged from 20�N to 20�S) was in the range of
3.0±0.9�C we then infer the range of consistent climate
sensitivities. When additionally accounting for un-
certainty in the glacial forcing our method gives a 5–
95% range (conservatively estimated from an interval
method; Fig. 7, solid blue intervals) of 1.2–4.3�C (up to
about 5.3�C if structural uncertainties are accounted for)
for the climate sensitivity to CO2 doubling (0.9–2.6�C
for the TCR).

These results are corroborated by DT2x estimates
based on reconstructed Antarctic cooling (Fig. 7, dashed
blue intervals). A comparison of our inferred relation-
ship between glacial cooling and CO2 warming with
results of comprehensive climate models (e.g. PMIP-2)
will help to clarify the degree of model dependence of the
exact results of our simulations. The promising outcome
of this study suggests that further investigations with
multi-model ensembles will be worthwhile, especially in
the view of a successful first multi-thousand-member
GCM ensemble (Stainforth et al. 2005), to analyse the
importance of structural uncertainties for our applied
methodology of constraining climate sensitivity. Pro-
gress in reducing the range of DT2x will also come from
including more regions with high-quality paleo-climatic
proxy-data for the LGM (e.g. Kucera et al. 2005).
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7 Appendices

7.1 Consistency criteria

For our interval method simulated climate character-
istics have to lie within the ranges of all seven data-
constraints to be regarded as consistent with the data
(see Appendix 7.2). This prerequisite leads to an ex-
tensive rejection of parameter combinations (about
90%). Further constraints, which account for latitudinal
model characteristics, have not proven to further con-
strain DT2x (not shown). Application of paleo-data-
constraints to this strongly constrained ensemble (123
out of 1,000 model runs) results in even fewer paleo-
consistent model realizations. To derive statistically ro-
bust estimates of DT2x we therefore approximate the
inferred relationship between DT2x and LGM SST
cooling by a linear regression (Fig. 6, solid red curve).
The fit uses the simulation results of the correlated en-
semble (blue dots), which covers a broad range of DT2x.
We read the consistent DT2x range from the fit-curve
(pink asterisks). Then we account for the additional
uncertainty on DT2x caused by deviations from the fit.
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This is realized by choosing the 5–95% of the deviation
spread (represented as red dashed lines), estimated from
the uncorrelated ensemble (orange dots), as it provides
larger deviations than for the correlated ensemble and
thus yields a more conservative uncertainty measure.
Using the fit and the spread estimate, we then determine
DT2x ranges (green asterisks), which are consistent with
the assumed LGM cooling.

The same methodology cannot be applied for con-
straining TCR, as the linear relationship between LGM
cooling and equilibrium warming does not hold for the
transient model response. Therefore, for TCR, we re-
place the linear fit by the more general function type
f ðxÞ ¼ aðx� x0Þb (with fMTCR, xMLGM cooling) and
furthermore allow the standard deviation r of the re-
siduals to vary with x as a quadratic function r(x). In
fact we observe r to mildly expand at the tails of the fit.
We determine the coefficients of that function as a
maximum likelihood estimate, assuming a Gaussian
distribution of the residuals for each x. Both fitting
procedures (the one for f(x) as well as for r(x)) are
performed with the correlated ensemble that is more
informative in the tails of r(x). However, as for the
linear fitting procedure, we would like to obtain a con-
servative estimate in the sense that the uncorrelated
ensemble displays larger values of r. Hence we assume
the same shape r(x) for the uncorrelated ensemble, but
allow for an overall upscaling cr(x), c being estimated
from a quadratic fit. In summary, we have generalised
the linear fitting f(x) including constant r(x) to a non-
linear fit f(x), r(x), yet ensuring that the average r(x) is
obtained from the uncorrelated ensemble.

One may ask what would be the consequences if one
applied this non-linear procedure to the estimates of
DT2x as well. We have tested for that and found only
minor changes in the derived intervals. The bounds of
the intervals are shifted at maximum by 0.2�C to the
extremes in one case (for tropical constraints) and much
less otherwise. Hence we conclude that our results de-
rived for DT2x are very robust against the choice of fit-
ting curve. As a final remark on our results for TCR we
would like to stress that this study is designed to con-
strain a characteristic of equilibrium temperature
change. To effectively constrain the range of TCR,
transient data information should be included in the
analysis.

As a final remark on our interval method we would
like to discuss its relation to a more formal procedure
that would independently sample (‘‘IS-scheme’’) the
error distribution of the paleo-constraint and the error
distribution of the fit (the latter generated from the
deviation of the uncorrelated ensemble from the fit).
Intervals derived from the IS-scheme could strictly be
interpreted as quantiles. However, the interval trans-
parently derived from our method is more conservative
(larger) than the interval derived from the IS-scheme.
In order to clarify this we would like to discuss a
linear relation f (that we suppose to hold for climate
sensitivity) first: there, our scheme simply adds the

paleo and the fitting error, while IS would add ac-
cording to Pythagoras (in the Monte Carlo scheme, the
variances would add), as the paleo and the fitting error
are statistically independent. Our scheme can be in-
terpreted as choosing the worst case of perfect corre-
lation of paleo and fitting error, leading to strictly
larger error bars than the IS-scheme. As the relation
f between TCR and LGM cooling is only slightly
non-linear, the same statement holds for TCR as well.
Finally, both schemes lead to identical results
for vanishing fitting error, even for very non-linear,
however, monotonous relations.

7.2 Choice of tolerable intervals for ‘‘realistic’’ model
versions

It is still not well understood how model biases in si-
mulation of modern climate affect climate sensitivity.
Yet results from models, which produce a ‘‘realistic’’
modern climate state, might be preferable to ‘‘un-
realistic’’ models. The strict and objective criteria of
realistic model performance would be a requirement for
model simulations to fall within the range of un-
certainties of observed climate characteristics. However,
even state-of-the-art climate models (GCMs) have sys-
tematic errors in simulation of different climate char-
acteristics, which are often much larger than
observations uncertainties (Covey et al. 2003). A more
subjective way to assess the degree of model realism is to
accept as tolerable the magnitude of errors typical for
other climate models. Because this is an implicit target
for any climate model development and tuning, the se-
lection of such subjective criteria mimics a suite of
models, which will be treated by other modellers as
suitable for climate studies. To constrain models with
empirical data we use seven global climate character-
istics, which are listed below. All of these characteristics
(except for the ocean temperature) have been used in
SAR and TAR IPCC (Houghton et al. 1996; 2001) re-
ports for model-data inter-comparison: we considered as
tolerable the following intervals for the annual means of
the following climate characteristics which encompass
corresponding empirical estimates: global SAT 13.1–
14.1�C (Jones et al. 1999); area of sea ice in the Northern
Hemisphere 6–14 mil km2 and in the Southern Hemi-
sphere 6–18 mil km2 (Cavalieri et al. 2003); total pre-
cipitation rate 2.45–3.05 mm/day (Legates 1995);
maximum Atlantic northward heat transport 0.5–
1.5 PW (Ganachaud and Wunsch 2003); maximum of
North Atlantic meridional overturning stream function
15–25 Sv (Talley et al. 2003), volume averaged ocean
temperature 3–5�C (Levitus 1982). Thus the chosen
ranges—while being somewhat subjective—represent to
the first approximation typical scattering of simulations
with different AOGCMs (e.g. SAR and TAR IPCC re-
ports) (Houghton et al. 1996; 2001) and encompass
observational data of key present day climate char-
acteristics.
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7.3 Parameter choice

In our study the range of simulated DT2x is affected by
accounting for uncertainty in 11 model parameters, nine
representing atmospheric characteristics (affecting
parametrisations of cloud optical depth, height of
clouds, lapse rate, tropopause height) and two describ-
ing mixing processes in the ocean. For each run all
parameters have been simultaneously perturbed over the
following expert derived ranges (values in {brackets}
denote the standard setting for CLIMBER-2.3):

Ocean parameters: horizontal and vertical ocean diffu-
sivity kH=200–5,000 {2000} m2/s, kV=0.1–1.0·10�4
{0.3·10�4} m2/s at top, 1.1–2.0·10�4 {1.3·10�4} m2/s at
ocean bottom (vertical profile after Bryan Lewis).
Optical depth of cloudiness: ODc ¼ ð1�RccÞ�
ðOD1 �OD2 � cosðlatitudeÞ2Þþ Rcc�OD3, with Rcc
relative amount of cumulus clouds, OD1=9.0–11.5
{10.2}, OD2=6.6–8.4 {7.7}.
Tropopause height: Ct=0.74–0.76 {0.75} (see Eq. (3)
from Petoukhov et al. 2000); a further parameter
(ACO21=0.3–0.65 {0.5}) has been perturbed, which af-
fects the value of integral transmission function of at-
mosphere (D) in Eq. (3).
Lapse rate: aq=625–4440 {1,110} (kg/kg)�2; C0=
4.7–5.2·10�3 {5.0·10�3} K/m; C1=3.6–4.4·10�5 {4.0·
10�5} m�1 (Eq. (2) of Petoukhov et al. 2000).
Height of stratiform clouds: c1=0.165–0.200 {0.185}
(Eq. (34) of Petoukhov et al. 2000).
Radiative forcing of CO2: ACO2

¼ 0:70�0:76 f0:755g
(Eq. (6.7) from V. Petoukhov, A. Ganopolski,
M. Claussen 2003, PIK report No. 81).

The modification of all feedback parameters results in
changes of the sum of all feedbacks (water vapour,
cloud, lapse rate and albedo), spanning a minimum–
maximum range of 71% (63%) of the mean value for the
correlated (uncorrelated) ensemble. Parameter varia-
tions, which affect the CO2 radiative forcing, result in a
range of 16% (28%) of the mean forcing.

7.4 Quantification of paleo-data uncertainties

To estimate the uncertainty range (2r) for mean tropical
SST cooling, we consider the error contributions from
(a) large-scale patterns in the ocean data temperature
field, which hamper a direct comparison with a coarse-
resolution model, and (b) the statistical error for each
reconstructed paleo-temperature value.

We refer to an interpolated data set (Schäfer-Neth
and Paul 2003) from which we use the variance
V=(1.41�C)2 as the starting point to estimate an un-
certainty range for the spatial mean of the data field. In
order to do so, we need to consider the correlation

structure of the individual error sources. The data were
interpolated using a kriging method (Schäfer-Neth et al.
2005), which basically takes into account data points in
the vicinity of a location to be reconstructed, weighted
by the ocean correlation structure. This results in a
spatially smoothed correlation structure of the inter-
polated oceanic temperature field, with only (b) being
affected by the smoothing. The most extreme version of
smoothing (compatible with the requirement that (a) is
not affected) would result in a spatial clustering of (b) on
the same scale as (a). That simplifies the discussion as
then we can estimate 2r � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V =ðN � 1Þ
p

, where N is
given by the number of uncorrelated Atlantic ocean
areas between 20�N and 20�S. With a correlation length
of �10–15� we obtain a rough estimate of N�12 for the
tropical Atlantic sector. For less extreme versions of
smoothing we were allowed to use larger values of N as
more independent sources within (b) had entered V. In
that sense 2r � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V =ðN � 1Þ
p

with N�12 provides a
conservative estimate. We thus derive an estimate of
2.96±0.85�C of the 2r range for mean tropical Atlantic
SST cooling.

We cannot address, however, systematic errors in
paleo-temperature reconstructions beyond the quality
tests of TF methods, as, e.g. described in Pflaumann
et al. (2003). Reconstructed temperature anomalies from
GCs agree with TF based LGM cooling estimates for
most regions of low latitudes (Bard 2001; Niebler et al.
2003; Barker et al. 2005). Yet some systematic bias arises
for regions of pronounced cooling (especially in the
eastern tropical Atlantic). To account for this bias we
confine maximum cooling in our used data set to 4�C
(which corresponds to the upper limit of tropical
Atlantic SST cooling derived by GC methods; Rosell-
Mele et al. 2004; Barker et al. 2005). This shifts the mean
about 0.2�C to less cooling and at the same time narrows
the standard deviation of mean SST cooling. Thus this
revised data estimate, which might be regarded as more
representative for GC reconstructions, is included in the
range of 2.96±0.85�C of our FT-based estimate and is
not separately discussed for constraining DT2x.

Given pronounced spatial inhomogeneities we em-
phasize that by describing mean tropical Atlantic SST
anomalies, we discuss the mean annual cooling averaged
from 20�N to 20�S over the whole Atlantic sector. Thus
the effect of sediment cores, which show strong local
effects (e.g. in upwelling regions) is minimized, and the
mean SST anomaly should be more representative for
large scale tropical conditions (dominated by large scale
forcings, such as lowered CO2 concentrations). Model-
ling and data-analysis studies show that the mean
cooling for the tropical Atlantic section is slightly larger
than comparable estimates from the Pacific and Indian
sector. When considering a global tropical SST data-
constraint, an average tropical cooling of about 2.5�C
would have to be considered to constrain the same DT2x

range (as derived from tropical Atlantic).
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