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The Data Assimilation Problem:
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The Data Assimilation Problem:

A (Physical) system:
Atmosphere, coupled climate system...

A model of the physical system:
Represents system with discrete vector: the model ‘state vector'.
Approximates time evolution of system (poorly).

Observations of the system:
Have a (sometimes poor) estimate of observation error.
Could be sparse and irregular in time (and space).
Relation to model ‘state vector’ may be complicated.
May have very low information content.
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Data Assimilation increases inbrmation about all three pieces:
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Data Assimilation increases inbrmation about all three pieces:

(Physical) system:
Estimates of state (analyses, posteriors...).
Initial conditions for forecasts.
Enhanced (physical) understanding.
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Data Assimilation increases inbrmation about all three pieces:

(Physical) system:
Estimates of state (analyses, posteriors...).
Initial conditions for forecasts.
Enhanced (physical) understanding.

Model:
Estimates of model errors.
Relative characteristics of different models.
Improved model (find good values for model ‘parameters’).

Observations:
Estimates of observation errors.
Information content of existing or planned observations.
Observing system designs that provide increased information.
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Ensemble Fllter Products nav Available to Forecasters
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Ensemble Filter Products nawv Available to Forecasters
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Ensemble Filter Products nawv Available to Forecasters

1. Many other ensemble forecast products are available.
2. Most suffer from the same challenges outlined below.

3. Other ensemble generation methods may have additional issues.
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An intr oduction to Ensemble Filtering

1: Single variable and observation of that variable.
Let’s think of it as temperature at SLC.
(Slides are for a mid-winter ski day...inversion in the valley)
2. Single observed variable, single unobserved variable.
SLC temperature, Park City temperature.

That’s all there is... (without loss of generality).
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p(B|AC)P(A|C) _ p(B|AQ)p(A C)

Bayes rulep(A/ BC) =

p(B|C) [P(B[X)P(X| C)dx
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A. Prior estimate based on all greus information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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p(B| AC)P(A|C) _ p(B|AC)p(A| C)
p(B| C) [P(BX)p(x| O)dx
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A: Prior estimate based on all previous information, C.
B: An additional obsetion.
P(A| BC): Posterior (updated estimate) based on C and B.

Anderson: NSF August, 2006 16 6/18/07



P(BJAC)p(AIC) _ pP(BJACQ)P(AIC)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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P(B[AQP(AC) _ p(BAC)p(A|C)
p(B| C) [P(B[x)p(x| C)dx

Bayes rulep(A/ BC) =
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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p(B| AC)P(A|C) _ p(B| AC)p(A| C)
p(B| C) [P(BX)P(x| O)dx

Bayes rulep(A/ BC) =
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A: Prior estimate based on all previous information, C.
B: An additional observation.
P(A| BC): Posterior (updated estimate) based on C and B.
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Consistent Color Scheme Throughout

Green = Prior

Red = Obsewation

Blue = Rosterior
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p(B|AC)P(AIC) _ p(B|AQ)p(A|C)

Bayes rulep(A/ BC) =

p(B|C) [p(B[ ) p(X| C)dx
This product is closed for Gaussian distributions.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

This product is closed for Gaussian distributions.

0.6 , - :
;Posterlor PDFH
204
5 or P
P Prior P;D
S _
A OQ.2F e Sl

I
hO

6/18/07

22

Anderson: NSF August, 2006



Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(H1 21)N(Hg, 25) = CN(W, 2)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: L= (I + SH A (E g, + Z51)
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-
Mean: h = (Zil + Zil)_l(zilul + 251112)

_ 1
(2|‘|)d/2‘21 +

_— 01 _ U
Weight: ¢ 1/2expm—§[(u2—u1)T(Zl+Zg) Yy -1yl
22\ L] []

We’'ll ignore the weight since we immediately
normalize products to be PDFs.
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Product of tvoa Gaussians:

Product of d-dimensional normals with meagsandp, and
covariance matrices, andz, is normal.

N(up 21)N(Hp 25) = SN(H, 2)

Covariance: ¥ = (Z7t+Z7h)-

Mean: L= (I + SH A (E g, + Z51)
L ~ 1 01 _ U
Weight: ¢ = (2I'I)d/2‘21 " 22‘ 1/26Xp%1—§[(|12_ H1)T(Zl +3,) 1(“2_ Hy)] E

Easy to derive for 1D (d=1); just do products of exponentials.
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P(B|AC)P(AIC) _ pP(B|ACQ)P(AIC)

Bayes rulep(A/ BC) =

p(B| C) [P(B[x)p(x| C)dx
Ensemble filtersPrior is aailable as finite sample.
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Don’t know much about properties of this sample.

May naively assume it is random draw from ‘truth’.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

How can we take product of sample with continuous likelihood?
0.6
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Fit a continuous (Gaussian for now) distribution to sample.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Observation likelihood usually continuous (nearly always Gaussian).
0.6
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If Obs. Likelihood isn’'t Gaussian, can generalize methods below.
For instance, can fit set of Gaussian kernels to obs. likelihood.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Product of prior Gaussian fit and Obs. likelihood is Gaussian.
0.6
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Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.

Anderson: NSF August, 2006 30 6/18/07



Sampling Posterior PDF:

There are many ways to do this.
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Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.
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Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I
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Compute posterior PDF.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.
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Use deterministic algorithm to ‘adjust’ ensemble.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.

Anderson: NSF August, 2006 36 6/18/07



Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

0.6 ! ] I T
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Use deterministic algorithm to ‘adjust’ ensemble.
First, ‘shift’ ensemble to have exact mean of posterior.
Second, use linear contraction to have exact variance of posterior.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.
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x: = (xX*=xP)Qo"/6) +x" i=1,.., ensemble size.
p is prior,  uis update (posterior), overbar is ensemble mean,
o is standard deviation.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.
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Bimodality maintained, but not appropriately positioned or weighted.
No problem with random outliers.
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2. Single obseved variable, single unobseved \ariable
SLC temperature, temperature at Park City.

So far, have known observation likelihood for single variable.
Now, suppose model state vector has an additional variable.
Will examine how ensemble methods update additional variable.
Basic method generalizes to any number of additional variables.

Related to Kalman filter in subtle ways.
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable
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Observed Variable
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Assume that all we know
IS prior joint distribution.

One variable is observed.
(SLC temperature)
What should happen to
unobserved variable?
(Park City temp.)

Looks like a nasty
inversion...
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Ensemble filters: Updating additional prior state variables

Assume that all we know

. § . .

%4.2 T S * | is prior joint distribution.

£35 ~ -

3 * One variable is observed.
| Update observed
variable with one of
| previous methods.
3 ¥ ¥
2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

Unobs.

W B
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One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

. | Assume that all we know
E | | % % * | is prior joint distribution.

Unobs.

W B
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One variable Is observed.

| Update observed
variable with one of
| previous methods.

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
S
5 3.5 | | |
3 * i One variable is observed.
*%k * %
| Compute increments for
prior ensemble members
{ of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

9 4.2 | % % IS prior joint distribution.
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3 * i One variable is observed.
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| Compute increments for
prior ensemble members
{ of observed variable.
Increments
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Ensemble filters: Updating additional prior state variables

Assume that all we know

A 4.5 | . % * | is prior joint distribution.
o | .
- 73 * i One variable Is observed.
%o %
| Compute increments for
, | prior ensemble members
1 of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know

%4.2% T S * | is prior joint distribution.
£ 35 |
- '3 * i One variable is observed.
KRk ok
| Compute increments for
, | prior ensemble members
1 of observed variable.
Increments

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Assume that all we know
IS prior joint distribution.

W A

Unobs.

WO1RO101
£ FW¥
%*
%*
%*
%*

One variable is observed.

| Using only increments

% | guarantees that if

| observation had no

e * Impact on observed

Increments 1 variable, unobserved
_ variable is unchanged

1 (highly desirable).

¥ %

2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Unobserved State Variable

%
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—2 0 2 4

Observed Variable
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Assume that all we know
IS prior joint distribution.

How should the
unobserved variable be
Impacted?

First choice: least squares

Equivalent to linear
regression.

| Same as assuming

binormal prior.
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Ensemble filters: Updating additional prior state variables

5— . | Have joint prior
distribution of two
variables.

How should the
unobserved variable be
Impacted?

First choice: least squares

Unobserved State Variable
AN

Begin by findingeast

31*' . *

: : squares fit.
Increments  #*—% S '
% " % ue* " ]
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints =« ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —*_ ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 % i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

5 | | Have joint prior
distribution of two
variables.

Next, regress the
observed variable
Increments onto
Increments for the
unobserved variable.

Unobserved State Variable
AN

Equivalent to first finding
Image of increment in

1 —% i
Ichemints —* ** | joint space.
-2 0 2 4
Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) O* 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
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unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior
distribution of two
variables.

Regression: Equivalentto
first finding image of
Increment in joint space.

Then projecting from
joint space onto
unobserved priors.

Unobserved State Variable

3* : :
pcrements —* . * | Finally, multiply by prior
) Oale 2* 4 Sample correlation.

Observed Variable

Anderson: NSF August, 2006 62 6/18/07



Ensemble filters: Updating additional prior state variables

Now have an updated

)
% | (posterior) ensemble for
S x ¥ | the unobserved variable.
S * e
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Obs.
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Ensemble filters: Updating additional prior state variables

Now have an updated

)
% | (posterior) ensemble for
© x ¥ | the unobserved variable.
S 4.5 : |
Q : Fitting Gaussians shows
it | that mean and variance
2 4'* l[ | have changed.
> |
235 * It
O Prior State Fit |
Dl 4

3 oy

-2024

Obs.
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Ensemble filters: Updating additional prior state variables

| | Now have an updated
Posterior Fit | | (posterior) ensemble for
| the unobserved variable.

Ol

P
ol

Fitting Gaussians shows
| that mean and variance
- 4| | have changed.

| Other features of the

Unobserved State Variable
D

3.5 -
Prior State Eit | prior distribution may
l also have changed.
3
e
2024

Obs.
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Ensemble filters: Updating additional prior state variables

CRITICAL POINT:

> _Posterior Fit, |
* ¥ | Since impact on
4.5 : | unobserved variable is
. simply a linear

| regression, can do this
' 1 | INDEPENDENTLY for
| any number of

| unobserved variables!

o
CL

Prior State Fit |
:L Could also do many at

- once using matrix
*ﬁ:’g algebra as in traditional
2024 Kalman Filter.

Obs.

Unobserved State Variable
D

w
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Phase 3: Generalize to gegpltal models and obse&twons

Dynamical system governed by (stochastic) Difference Equation:

dxt = f(xt, t) + G(xt, t)dBt, t=>0 (1)
Observations at discrete times:
yk:h(xk,tk)+vk; k=1 2 ...; e+ 1> 2ty (2)

Observational error white in time and Gaussian (nice, not essential).

Vi — N(O,Ry) (3)
Complete history of observations is:

Yo =4y 41 (4)
Goal: Find probability distrilstion for state at time t:

p(x 1] Y}) (5)
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Phase 3: Generalize to gegpltal models and obse&twons

State between observation times obtained from Difference Equation.
Need to update state given new observation:

p(X tk‘Ytk) = p(x, tk‘yk’ Ytk—l) (6)
Apply Bayes rule:
LY. ) = p(yk‘xk,Y )p(X, tk‘Ytk . -
k‘ 2 p(yk‘Ytk .
Noise is white in time (3) so:
p(yk‘xk, Ytk—l) = p(yk‘xk) (8)

Integrate numerator to get normalizing denominator:

PO Ve, 07 [ POKPIPO §Yy Jdx (©)
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Phase 3: Generalize to gegpltal models and obse&twons

Probability after new observation:
p(yk‘x) p(x t ‘Y

t
%’ K| Y tkD Ip(y &Pty | Yy E

(10)

Exactly analogous to earlier derivation except that x and y are vectors.

EXCEPT, no guarantee we have prior sample for each observation.

SO, let's make sure we have priors by ‘extending’ state vector.
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Phase 3: Generalize to gegpltal models and obse&twons

Extending the state vector to joint state-observation vector.

Recall: Yy = h(xk, tk) V) k=1 2 ... tk+ 1>tk2t0 (2)

Applying h to x at a given time gives expected values of observations.
Get prior sample of obs. by applying h to each sample of state vector x.

Let z = [X, y] be the combined vector of state and observations.
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Phase 3: Generalize to gegpltal models and obse&twons

NOW, we have a prior for each observation:

p(yk‘z) p(Z, tk‘ tk
Vg = _
P %Y, 0 J'p(yk\é)p(&tk\Ytk_l

(10.ext)
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Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8ety

Let vy, be composed of s subsets of observatiogg: = {y&, yﬁ, yi}

Observational errors for obs. in set | independent of those In set |.

Then:p(y(2) - 1 P(%(2
=1

Can rewrite (10.ext) as series of products and normalizations.
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Phase 3: Generalize to gegpltal models and obse&twons

One more issue: how to deal with many observations in8et y

Implication: can assimilate observation subsets sequentially.

If subsets are scalar (individual obs. have mutually independent error
distributions), can assimilate each observation sequentially.

If not, have two options:
1. Repeat everything above with matrix algebra.

2. Do singular value decomposition; diagonalize obs. error covariance
Assimilate observations sequentially in rotated space.
Rotate result back to original space.

Good news: Most geophysical obs. have independent errors!
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Applying an Ensemble Filter

1. Use model to advanessembl€3 members here)

to time at which next observation becomes available.

Ensemble state Ensemble state at
estimate after using time of next obser-
previous observation vation (orior).
(analysis.

/S —

N By N
b,

tk ’tk+1
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Applying an Ensemble Filter

2. Get prior ensemble sample of observation, y=h(x), by
applying forward operator h to each ensemble member.

-
*
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T heory: observations’

from Instruments with
uncorrelated errors ca

\be done sequentially.)
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Applying an Ensemble Filter

3. Getobserved valuandobservational error distribution

from observing system.

*
*e
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Applying an Ensemble Filter

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

N TN

- — e,

>y

(Note: Difference between
different flavors of ensent-
ble filters is primarily in

@bservation Increment. y

-
*
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Applying an Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

?
|

(Theory: impact of
observation increments on
each state variable can be
handled sequentially!

s 4 \_

-
*

Anderson: NSF August, 2006 78 6/18/07



Applying an Ensemble Filter

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

: Observation in red.
- T Prior ensemble in green.
!‘, ". * (l',
et L -
‘e ‘e, e . .’-, Tt . .
: 4. P N it
- ‘ Ad - - ‘. - -
LT me EE L T :
P N ST serving all three state
. i,
"-.'; ":,'.: "% e,
* - L . -
',: .'"":r,.' : SoLnSe - .
PR i, ol e W :
%0 Wit ame V. . b .
TR . " . S T . . - .
. z":»."o ~," St e -
B )

ODbs. error variance = 4.0.

4 20-member ensembles.

20 -20
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

Observation In red.

. Prior ensemble in green.

W
-

.
g

4

-

20 -20
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

bservation In red.

rior ensemble in green.
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

bservation In red.

rior ensemble in green.
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

Observation In red.

Prior ensemble in green.

Ensemble is passing through
unpredictable region.
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

Observation In red.

Prior ensemble in green.

Part of ensemble heads for
one lobe, the rest for the
other.
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

Observation in red.

..

Prior ensemble in green.
The prior is not linear here.

Standard regression might be
pretty bad.

20
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Some Fun with the Lorenz-63 3-\ariable Chaotic Model.

M
R Ob lon in red
S servation In red.
-‘\\ o - I:'
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SR [he prior i1s not linear here
N - 0 e ¥
T ey e, ' .
N . t% .. -
N _ .t R . _
- CRRME .8 -
- AR LI v - -
) et e et S Y _ . s
et LTI - A B -
e - ., N ot c"_" ‘-’.‘i‘ _0:’.:: “"'”': : :. v, :
N - e - !."g\?,’i" .O,’“:- K '.. - --:..0.
- . - L) - “ - .
20 RPN & 3 M L

On the other hand...

20 Hard to contrive examples
~10 this bad.

10 Behavior like this not
apparent in real assimilations.
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Basic filter implementation is subject to erprs.
3. ‘Gross’ Obs. Errors

2. h errors; s _ 4. Sampling Error;
Replresentateness '- L=~ "7 7" Gaussian Assumption
\ r 7
| *4@»
\ 1 1
\ : v y — - - Y

\_» ————— ~~
tk+2 \
A
|
|
1
1
7‘ —- - ,l’
V4 ’
1. Model Error 5. Sampling Error:”

Assuming Linear
Statistical Relation
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Regression sampling error and filter divergence

3 Sp-has
| MIN=0.12

Unobserved State Variable
(@)

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain
| unchanged.

| Let observations be of

Antarctic wind velocity.

| State variable Is

Park City temperature.
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Regression sampling error and filter divergence

3 Sp-has

¥

Unobserved State Variable

MN=0.12
* ok

Anderson: NSF August, 2006

After Obs. 1
* %

e

Sample Correl. = 0.49

e

-2 0 2
Observed Variable

90

Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Finite samples from joint

| distribution will have
| non-zero correlation

(expected |corr| = 0.19

| for 20 samples).

After one observation,

1 unobs. variable mean and

S.D. change.
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Regression sampling error and filter divergence

N w
<Wn
i

o

Unobserved State Variable
(@)
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After Obs. 21

Sample Correl. = -0.24

—2 0 2

Observed Variable

91

Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

Unobserved mean
| follows arandom walk as

more obs. are used.
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Regression sampling error and filter divergence

After Obs. 41

N W
2
i
O
o¢]
o

AFek
* *

Il o ek

B gk k *

Unobserved State Variable
(@)

Sample Correl. = 0.01

| e

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

Suppose unobserved

| Unobserved standard
| deviation is persistently
decreased.

3 — S—
o SD=0.88 | After Obs. 61 state variable is known to
8 2t 1 be unrelated to set of

= .

g . . % observed variables.

2 * * % .

s * ok, * Unobserved variable

N 0 s . |

- R * should remain unchanged
>

(D)

7))

@)

e

c

D

Sample Correl. = 0.26

ﬁ*m * i Expected change in |SD|

_2 0 5 IS negative for any non-
Observed Variable Z€ro sample correlation!
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Regression sampling error and filter divergence

After Obs. 81

N W
3
2
i
o
o¢]
o

ale,,gkale

****gl* I

Unobserved State Variable
(@)

Sample Correl. = 0.25

frmmmme s |
—

-2 0 2
Observed Variable

Anderson: NSF August, 2006 94

Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Unobserved variable

| should remain unchanged

| Unobserved standard
| deviation is persistently

decreased.

i Expected change in |SD|

IS negative for any non-
zero sample correlation!
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Regression sampling error and filter divergence

After Obs.” 101

N W
k3
n
i
o
o¢]
o

¥

Unobserved State Variable
(@)

Sample Correl. = -0.29

oo

-2 0 2
Observed Variable
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Suppose unobserved
state variable is known to

1 be unrelated to set of

observed variables.

Estimates of unobs.

| become too confident

| Give progressively less
I weight to any meaningful

observations.

1 End result can be that

meaningful obs. are
essentially ignored.
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Regression sampling error and filter divergence

Plot shows expected
absolute value of sample
: correlation vs. true
"""""""""""""""""""" o e correlation.

 —

O
o

Errors decrease with
sample size and for large
Ireal correlations].

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

O
o))

o
~

Expected [Sample Correlation|

10 Members
02k—A 20 Members |
40 Members
0 _ 80 Members
0 0.5 1

True Correlation
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Ways to deal with igression sampling error:

1. Ignore it: if number of unrelated observations is small
and there is some way of maintaining variance in priors.

2. Use larger ensembles to limit sampling error.

3. Use additiona priori information about relation between
observations and state variables.

4. Try to determine the amount of sampling error and correct for it.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
O1

—2%00 —1000 0 1000 2000
. Distance from Observation (Km?)
Atmospheric assimilation problems.

Weight regression as function of horizordatancefrom observation.
Gaspari-Cohn: 5th order compactly supported polynomial.
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Ways to deal with igression sampling error:

3. Use additional a priori information about relation between
observations and state variables.

1

Regression Weight
o
O1

—2%00 —1000 0 1000 2000
Distance from Observation (Km?)
Can use other functions to weight regression.

Unclear whatlistancemeans for some obs./state variable pairs.
Referred to aEOCALIZATION.
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Ways to deal with igression sampling error:

4. Try to determine the amount of sampling error and correct for it:

A. Could weight regressions based on sample correlation.
Limited success in tests.
For small true correlations, can still get large sample correl.

B. Do bootstrap with sample correlation to measure sampling errol
Limited success.
Repeatedly compute sample correlation with a sample removed

C. Use hierarchical Monte Carlo.

Have a ‘sample’ of samples.
Compute expected error in regression coefficients and weight.
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Ways to deal with igression sampling error:

4C. Use hierarchical Monte Carlo: ensemble of ensembles.

* ¥ kot

I independent { Regression

Confidence
-member ' Factor,a

N ;/)

3k e

Anderson: NSF August, 2006

M groups of N-member ensem-
bles.

Compute obs. increments for
each group.

For given obs. / state pair:

1. Have M samples of regression
coefficient,f3.

2. Uncertainty i3 implies state
variable increments should be
reduced.

3. Compute regression confi-
dence factorm.
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Ways to deal with igression sampling error:
4C. Use hierarchical Monte Carlo: ensemble of ensembles.

Split ensemble into M independent groups.
For instance, 80 ensemble members becomes 4 groups of 20.

With M groups get M estimates of regression coefficignt,

Find regression confidence facto(weight) that minimizes:

M M 5
> > [O‘Bi—Bj]
j=1 i=11i#]

Minimizes RMS error in the regression (and state increments).
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Ways to deal with igression sampling error:

4C. Use hierarchical Monte Carlo: ensemble of ensembles.

1 ‘
= Group Size 2 . .
0.0} croupsize4 1| \Weight regression bg.
= Group Size 8
S 0.8f = =+ Group Size 16 |
O
8 07 If one has repeated
8 06 observations, can
g o3 generate sample mean or
S ol median statistics fan.
ke
@ 0.3
g 02 Meana can be used in
o1 subsequent assimilations
, tveea, as a localization.
0 1 3 4

Q: Ratio of sample standard deviation to mean

a is function of M andQ = ZB/B (sample SD /sample mean regression)
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Localization in GCM can be very complex.

u mean factor level 1

60 1
50 I0.9
0.8
40 10.7
30 (> 10.6
10.5
20 10.4
10 0.3
0.2
0 0.1

-10
20 40 60 80 100
u mean factor level 4

1
IO.9
0.8
10.7
10.6
10.5
10.4
10.3
0.2
0.1

20

40 60 80 100
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u mean factor level 2

60 1
50 IO.9
0.8
40 @ 10.7
10.5
20 10.4
10 0.3
o 0.2
0.1

-10
20 100

PStoU

u mean factor level 5

60 1
50 IO.9
0.8
40 10.7
10.5
20 - 10.4
10 10.3
o 0.2
0.1

-10 0

20 40 60 80 100

104

u mean factor level 3

60 1
50 I0.9
0.8
40 10.7
. 10.5
20 10.4
10 0.3
0 0.2
0.1

-10
20 40 60 80 100

cross section at row 18

0.8t

0.6

0.4;

0.2¢

60 80 100

Surface Pressure Obs. at 20N, 60E
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Dealing Wth Ensemble Filter Errors

Fix 1, 2, 3 independently

'3. Gross Obs. Errors

HARD but ongoing.

5. Sampling Error,"
Assuming Linear
Statistical Relation

1. Model Efror

2. h errors; ’ 4. Sampling Error;
Representateness # = T =Gaussian Assumpti
1
. y
1 L
' A
\
.
* ‘ -— .y,

DnOften, ensemble filters...
1-4: Covariance inflation,
Increase prior uncertainty
to give obs more impact.

5. ‘Localization’: only let

obs. impact a set of
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‘nearby’ state variables.
Often smoothly decrease

Impact to 0 as function of
distance.
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.

Probability

—

O1
3
gy
C
]

3

5
5
O
TI

I
hO
I
I
N
I
 —
o
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance

Variance Deficient PDE ™,

] S — R T — S — :
5 "“TRUE" Prior PDF/ %
@] : ' ; :

o SN AR S 1
E 0.5 : '
ek e e o e

94 -3 —2 -1 0

3. Can lead to ‘filter divergence’: prior is too confident, obs. ignored
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance

Variance Deficient PDE ™,

| S — R T — S — :
5 "“TRUE" Prior PDF/ %
Q : ' : ' :

o SN AR S 1
E 0.5 : '
ek e e o e

94 -3 —2 -1 0

3. Naive solution is Variance inflation: just increase spread of prior
4. For ensemble memberirh,flate(>ﬁ) = JX(Xi —X) + X
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.

0.8

"TRUE" Prior PDF

Probability
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Most model errors also lead to erroneous shift in entire distribution.

0-8—TRUE Prior PDF Error in Mean (from model)
2\0.6' """""""""""""""""""""""""""""""""""""""" "," """" \; """"" R -
O Y AN A a R -
e " ‘\
x ‘
Q.2F o N ""'-l """"""""""""""" ‘\‘ """"""""""""""" -
0 5 ek oy e
-4 -2 0) 2 4

3. Again, prior can be viewed as being TOO CERTAIN
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Model/Filter Error; Filter Dvergence and &fiance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Most model errors also lead to erroneous shift in entire distribution.

0.8

"TRUE" Prior PDF Error in Mean (from model)

s N

O
o))

Probability
o
N

O
N

3. Again, prior can be viewed as being TOO CERTAIN

4. Inflating can ameliorate this
5. Obviously, if we knew E(error), we'd correct for it directly
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Physical Space &fiance Inflation

Inflate all state variables by same amount before assimilation

Capabillities:
1. Can be very effective for a variety of models.
2. Can maintain linear balances.
3. Stays on local flat manifolds.
4. Simple and inexpensive.

Liabilities:
1. State variables not constrained by observations can ‘blow up’.
For instance unobserved regions near the top of AGCMs.

2. Magnitude oA normally selected by trial and error.
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Physical space a@riance inflation in Lorenz-63

Observation outside prior: danger of filter divergence
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Physical space a@riance inflation in Lorenz-63

After inflating, observation is in prior cloud: filter divergence avoided
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Physical space a@riance inflation in Lorenz-63

Prior distribution is significantly ‘curved’
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Physical space a@riance inflation in Lorenz-63

Inflated prior outside attractor. Posterior will also be off attractor.
. Can lead to transient off-
ST T attractor behavior or...

¥ B ‘. B 1 b}
. - ., - ‘e, -
.. - - ., [}
Wov . ‘,
o 4 . r, . . .
""‘ \‘.‘ * Yt Lt t . -
N . O A -
LA . LTt e e
* . ‘v, e e, W T ':“-o .-
< hid . (AT~ XS TR SIS S
R L Y ."."0’! & ".‘g..’-: P
. . - . .-”‘0 ﬁ,‘_ --.0_ ’\:$', D
N - F XS D 7 RN PO
. Vg Bl T, (e
.t M cAE ettt % SR
RRSADR PR % T I ST P -
MDA N wl -,..-‘,‘.3 .
B -
eyt 5‘ :’0 .‘0“.3':!..". " 0"’ :‘" T .
A i Lk o it IO D e :
1 e b, st 5L . et RS L. i -
bY 0 RS L see-ggt 0led 0, .
L TR . “"0‘5':3‘ R YIRS A ‘.‘ . s 1 1
-+ “
A SO A : servation in re
. N
LRSI s .‘.a.s..,e-eat«.;»w AR . .
ar P M I R 5 A O L T L L -
. . e oA DR [ 20 Y 0.;;'.».,a- R . L4 ., -
B R T '--",'{::.. S, R 2L e .,
. - Y et - L
. f‘.“_; SITNe Wl . . .0“

20 Prior ensemble in green.

Inflated ensemble in magenta.

20 -20

Anderson: NSF August, 2006 116 6/18/07



Adjunct Algorithms De&eloped for [ART Can blerate Errors.

1. Adaptive Error Tolerant Filters.
Automatically detect error in assimilation system.
Add uncertainty when model disagrees with observations.
Can deal with LARGE model, observation, and filter error.
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod
060 /NN
3 Actual 4.714 SDs :
S04F ) : — L -
DE_’ Expected Sepaypation
0.2 ) SiDr— \ o — S.Do\ :
94 - o 0 2 4

. . 2 2
2. Expected(prior mean - obs.ervatlon)/erprior + Ogps

Assumes that prior and observation are supposed to be unbiased.
Is it model error or random chance?
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Variance inflation for Obseawions: An Adaptie Error Dlerant Filter

1. For observed variable, have estimate of prior-observed inconsisten:

0.8 ! ! !
Prior PDF _ - Obs. Likelihgod

2\0.6' """""""""""" 'I',"' """ \\“ """"""""""""""""" N\ .
3 : Actual 3?.698 SDs
804 e e -
O ' Expected Sef ratlon
o 0.2} '”ﬂa.t.l.S.D.. ............... ‘.\. e —_— S Do\ -

94 o R 0 - 2 4

2
2. Expected(prior mean - observatlon)/gpnor + O0,ps
3. Inflating increases expected separation.
Increases ‘apparent’ consistency between prior and observation.
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Adjunct Algorithms Deeloped for [ART Can Dlerate Errors.

1. Adaptive Error Tolerant Filters.
Automatically detect error in assimilation system.
Add uncertainty when model disagrees with observations.
Can deal with LARGE model, observation, and filter error.

2. Hierarchical filters detect and avoid small ensemble sampling error:
Ensemble of ensembles for tuning period.
Limit impact of observations as required.
Eliminate unnecessary calculation.

Can apply filters without tuning to large problems.
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Assimilation increases information about all three pieces:

1. Get an improved estimate of state of physical system.

Initial conditions for forecasts.
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DART/CAM NWP Assimilation: Januar?2003

Model: CAM 3.1 T85L26.

Initialized from a climatological distribution (huge spread).

Observations Radiosondes, ACARS, Satellite Winds.

Subset of observations used in NCAR/NCEP reanalysis.

Compare to NCEP operational, T254L64, uses radiances.
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NCEP reanalyses, 500mb GPH, Jan 01 06Z Af ter 6 hOU [S.
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NCEP reanalyses, 500mb GPH, Jan 02 00Z

Geopotential height agpm
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NCEP

DART/CAM

Difference.
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NCEP reanalyses, 500mb GPH, Jan 08 00Z Af ter 7 dayS .

Geopotential height gpm
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6-Hour ForecasDbservation Space Temperature RMS

6-Hour Forecast RMS Error: Tropics 6-Hour Forecast RMS Error: Northern Hemisphere
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DART/CAM competitve with operational NWP system.
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Assimilation increases information about all three pieces:

1. Get an improved estimate of state of physical system.

High quality analyses (re-analyses).
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High-quality analysis of CO in Finitedlume CAM-CHEM model.

Assimilate standard observations plus MOPITT CO observations.

Work by Ave Arellano and Peter Hess supported by Kevin Raeder.
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Impact of Assimilation in Modeled CO

No Assimilation @700 hPa 041706 18Z

ii=ie] — 150 —-120 — =0
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Assimilating MOPITT CO provides
important constraints to regional
CO distribution in the troposphere.

Assimilation @700 hPa 041706 18Z

180

123 150 —150 —12C —4a0

Suggests the utility of assimilation
in providing better initial/boundary
conditions to regional CO forecasts.
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Assimilation increases information about all three pieces:

2. Get better estimates of observing system error characteristics.

Estimate value of existing or planned observations.
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Assimilating GPS Radio Occultation Obsatiens in WRF

Assimilated as refractivity along beam path.
Complicated function of T, Q, P and ionospheric electric field.

Get a sounding as GPS satellite sets relative to low earth satellite.
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Assimilating GPS Radio Occultation Obsatens in WRF

Weather Research and Forecasting Model.
Regional Weather Prediction model.
Configured for CONUS domain, 50 km grid.

Several hundred profiles available from CHAMP satellite.

GPS RO locations in CONUS domain, Jan 1-10, 2003
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Assimilating GPS Radio Occultation Obsatens in WRF
Evaluating Impact of GPS Observations.

Case 1. Assimilate radiosondes EXCEPT those close to GPS profiles
Case 2: Also assimilate GPS profiles.

Look at reduction in error from close (unused) radiosonde profiles.

NOTE: Identical code allows assimilation in CAM, GFDL, GFS...
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GPS Radio Occultation Impact on T and Q Errors in WRF

Each plot displays bias (left pair) and RMS (right pair).
Red curves include GPgduced bias and RMS.
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Assimilation increases information about all three pieces:

2. Get better estimates of observing system error characteristics.

Design observing systems that provide increased information.
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Assimilation increases information about all three pieces:

3. Improve model of physical system.

Evaluate model systematic errors.
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Example of lev-resolution assimilation comparisons.

CAM spectral vs. FV for January, 200Emperature Bias
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Assimilation increases information about all three pieces:

3. Improve model of physical system.

Forward/backward sensitivity analysis (adjoint/linear tangent proxy).
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Ensemble Sensiity Analysis

Can compute correlation (covariance) between ANY forecast or
analysis quantity and ALL other forecast and analysis quantities
or functions thereof at any time lag.

Can get same information as unlimited number of adjoint and
linear tangent integrations over arbitrary periods.

Explore relations between variables, observations, or functions thereo
Example 1 Base point is 500 hPa mid-latitude temperature.
Look at impact on evolution of 500hPa temperatures.

Similar to linear tangent integration.
Significant correlations from 20 member T85 ensemble.
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 00 hours: 500 @Plemperature to 500 aPlemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 06 hours: 500 aPlemperature to 500 @Plemperature
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degrees north

degrees east
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 12 hours: 500 @Plemperature to 500 aPlemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 18 hours: 500 @Plemperature to 500 aPlemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 24 hours: 500 @Plemperature to 500 aPlemperature
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Forward in Time Sensitrity (Linear Tangent eqgwalent)

Time lag 30 hours: 500 aPlemperature to 500 aPlemperature
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Ensemble Sensiity Analysis

Example 2 Base point is 500 hPa mid-latitude zonal velocity.
Look at impact of previous 500 hPa temperature.

Compare to an adjoint integration.
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -00 hours: 500 aFZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -06 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -12 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -18 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -24 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Backward in Time Sensitrity (Adjoint equialent)

Time lag -30 hours: 500 @FZonal \¢locity to 500 hB Temperature
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Assimilation increases information about all three pieces:

3. Improve model of physical system.

Select appropriate values for model parameters.
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Climate Model Rrameter Estimation via Ensemble Data Assimilation.

T21 CAM assimilation of
gravity wave drag effi-
ciency parameter.

Oceanic values are noise
(should be 0).

(5 9|O 1éO 270 O< efficiency< ~4 sug-
H | D gested by modelers.
-10 -5 0 5 10

Positive values over NH land expected.
Problem: large negative values over tropical land near convection.
May reduce wind bias in tropical troposphere, but for ‘Wrong Reason’.

Assimilation tries to use free parameter to fix ALL model problems
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Data Assimilation Researcle3tbed (ART)

Data
Assimilation

Research
Testbed

Software to do everything here (and more) is in DART.
Requires F90 compiler, Matlab.

Available from www.image.ucar.edu/DAReS/.
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