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Overview

1. The Data Assimilation Problem

2. A Bayesian View of Ensemble Kalman Filteri

3. Challenges to Ensemble Filters

4. Adaptive Ensemble Filter Algorithms

5. Model and Observing System Development w
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The Data Assimilation Problem
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The Data Assimilation Problem

__________________________________________________

A (Physical) system:
Atmosphere, coupled climate system...
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Represents system with discrete vector: the m
Approximates time evolution of system (poorly
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The Data Assimilation Problem

__________________________________________________

A (Physical) system:
Atmosphere, coupled climate system...

______________________________________
A model of the physical system:

Represents system with discrete vector: the m
Approximates time evolution of system (poorly

______________________________________
Observations of the system:

Have a (sometimes poor) estimate of observa
Could be sparse and irregular in time (and sp
Relation to model ‘state vector’ may be comp
May have very low information content.
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Data Assimilation increases information about
______________________________________
(Physical) system:

Estimates of state (analyses, posteriors...).
Initial conditions for forecasts.
Enhanced (physical) understanding.
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Data Assimilation increases information about
______________________________________
(Physical) system:

Estimates of state (analyses, posteriors...).
Initial conditions for forecasts.
Enhanced (physical) understanding.

______________________________________
Model:

Estimates of model errors.
Relative characteristics of different models.
Improved model (find good values for mode
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Data Assimilation increases information about
______________________________________
(Physical) system:

Estimates of state (analyses, posteriors...).
Initial conditions for forecasts.
Enhanced (physical) understanding.

______________________________________
Model:

Estimates of model errors.
Relative characteristics of different models.
Improved model (find good values for mode

______________________________________
Observations:

Estimates of observation errors.
Information content of existing or planned ob
Observing system designs that provide incre
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Ensemble Filter Products now Available to

Environment Canada Operational GEM 16 m
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Ensemble Filter Products now Available to

University of Washington WRF En
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Ensemble Filter Products now Available to

1. Many other ensemble forecast products are a

2. Most suffer from the same challenges outline

3. Other ensemble generation methods may ha
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An intr oduction to Ensemble Filte

1: Single variable and observation of that variab
Let’s think of it as temperature at SLC.

(Slides are for a mid-winter ski day...inve

2: Single observed variable, single unobserved
SLC temperature,          Park City temperatu

That’s all there is... (without loss of generality).
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Bayes rule:

A: Prior estimate based on all previous information
B: An additional observation.

: Posterior (updated estimate) based o
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Bayes rule:
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Bayes rule:

A: Prior estimate based on all previous informa
B: An additional observation.
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Bayes rule:
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Bayes rule:

A: Prior estimate based on all previous informa
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Consistent Color Scheme Throu

Green = Prior

Red = Observation

Blue = Posterior
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Bayes rule:

This product is closed for Gaussian distribution
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Bayes rule:

This product is closed for Gaussian distribution
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2

1–+( ) 1– Σ1
1– µ1 Σ2

1– µ2+( )=
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

We’ll ignore the weight since we immediately
normalize products to be PDFs.

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2

1–+( ) 1– Σ1
1– µ1 Σ2

1– µ2+( )=

c
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2Π( )d 2⁄ Σ1 Σ2+ 1 2⁄--------------------------------------------------- 1
2
--- µ2 µ1–( )T Σ([–
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exp=
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

Easy to derive for 1D (d=1); just do products of 

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=
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Bayes rule:

Ensemble filters:Prior is available as finite sample

Don’t know much about properties of this samp
May naively assume it is random draw from ‘tru
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Bayes rule:

How can we take product of sample with contin

Fit a continuous (Gaussian for now) distribution
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Bayes rule:

Observation likelihood usually continuous (near

If Obs. Likelihood isn’t Gaussian, can generaliz
For instance, can fit set of Gaussian kernels to 

p A BC( )
p B AC( ) p A C( )

p B C( )
------------------------------------------

p B(
p∫ B(

----------= =

−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y

Prior PDF

O



6/18/07

 is Gaussian.

AC) p A C( )
x)p x C( )dx

---------------------------------

2 4

bs. Likelihood
Anderson: NSF August, 2006 30

Bayes rule:

Product of prior Gaussian fit and Obs. likelihood

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.

Exact properties of different methods may be u
Trial and error still best way to see how they pe
Will interact with properties of prediction models
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

Compute posterior PDF.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
Second, use linear contraction to have exac
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

    i = 1,..., ensemb

p is prior,      u is update (posterior),    overbar i
σ is standard deviation.
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Ensemble Filter Algorithms:

Ensemble Adjustment (Kalman) Filter.

Bimodality maintained, but not appropriately po
No problem with random outliers.
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2: Single observed variable, single unobse
SLC temperature,             temperatur

So far, have known observation likelihood for si

Now, suppose model state vector has an additio

Will examine how ensemble methods update ad

Basic method generalizes to any number of add

Related to Kalman filter in subtle ways.
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state

Assum
is prio

One v

Comp
prior e
of obs

3
3.5

4
4.5

5

U
no

bs
.

−2 0 2 4
Observed Variable

Increments



6/18/07

 variables

e that all we know
r joint distribution.

ariable is observed.

ute increments for
nsemble members
erved variable.
Anderson: NSF August, 2006 47

Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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CAL POINT:

 impact on
erved variable is
 a linear
sion, can do this
ENDENTLY for

umber of
erved variables!

 also do many at
using matrix
ra as in traditional
n Filter.
Anderson: NSF August, 2006 66

Ensemble filters: Updating additional prior state
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nd observations

ference Equation:

(1)

(2)

 (nice, not essential).

(3)

(4)

 t:

(5)

tk t0≥>
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Phase 3: Generalize to geophysical models a

Dynamical system governed by (stochastic) Dif

Observations at discrete times:

Observational error white in time and Gaussian

Complete history of observations is:

Goal: Find probability distribution for state at time

dxt f xt t,( )= G xt t,( )dβt+ t 0≥,

yk h xk tk,( )= vk k;+ 1 2 … tk 1+;, ,=

vk N 0 Rk,( )→

Yτ yl tl τ≤;{ }=

p x t Yt,( )
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nd observations

 Difference Equation.

(6)

(7)

(8)

ator:

(9)

1
)

------

x
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Phase 3: Generalize to geophysical models a

State between observation times obtained from
Need to update state given new observation:

Apply Bayes rule:

Noise is white in time (3) so:

Integrate numerator to get normalizing denomin

p x tk Ytk
,( ) p x tk yk Ytk 1–

,,( )=

p x tk Ytk
,( )

p yk xk Ytk 1–
,( ) p x tk Ytk –

,(

p yk Ytk 1–
( )

-----------------------------------------------------------------------=

p yk xk Ytk 1–
,( ) p yk xk( )=

p yk Ytk 1– 
  p yk x( ) p x tk Ytk 1–

,( )d∫=
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nd observations

(10)

t x and y are vectors.

 each observation.

 state vector.

1
)

)dξ
---------
Anderson: NSF August, 2006 69

Phase 3: Generalize to geophysical models a

Probability after new observation:

Exactly analogous to earlier derivation except tha

EXCEPT, no guarantee we have prior sample for

SO, let’s make sure we have priors by ‘extending’

p x tk Ytk
, 

 
p yk x( ) p x tk Ytk –

,(

p yk ξ( ) p ξ tk Ytk 1–
,(∫

---------------------------------------------------------=
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nd observations

on vector.

(2)

ues of observations.

mple of state vector x.

 observations.

1 tk t0≥>
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Phase 3: Generalize to geophysical models a

Extending the state vector to joint state-observati

Recall:

Applying h to x at a given time gives expected val

Get prior sample of obs. by applying h to each sa

Let z = [x, y] be the combined vector of state and

yk h xk tk,( )= vk k;+ 1 2 … tk +;, ,=
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nd observations

(10.ext)
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Phase 3: Generalize to geophysical models a

NOW, we have a prior for each observation:

p z tk Ytk
, 

 
p yk z( ) p z tk Ytk 1–

,( )

p yk ξ( ) p ξ tk Ytk 1–
,( )dξ∫

------------------------------------------------------------------=
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nd observations

ons in set yk?

 of those in set j.

rmalizations.

yk
1

yk
2 … yk

s, , ,{ }=
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Phase 3: Generalize to geophysical models a

One more issue: how to deal with many observati

Let yk be composed of s subsets of observations:

Observational errors for obs. in set i independent

Then:

Can rewrite (10.ext) as series of products and no

yk

p yk z( ) p yk
i z( )

i 1=

s

∏=
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ons in set yk?

equentially.

y independent error
 sequentially.

a.

e obs. error covariance.
ated space.

dent errors!
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Phase 3: Generalize to geophysical models a

One more issue: how to deal with many observati

Implication: can assimilate observation subsets s

If subsets are scalar (individual obs. have mutuall
distributions), can assimilate each observation

If not, have two options:
1. Repeat everything above with matrix algebr

2. Do singular value decomposition; diagonaliz
Assimilate observations sequentially in rot
Rotate result back to original space.

Good news: Most geophysical obs. have indepen
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re)
ilable.
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Applying an Ensemble Filter.

Ensemble state
estimate after using
previous observation
(analysis).

Ensemble state at
time of next obser-
vation (prior).

tk tk+1

1. Use model to advanceensemble (3 members he
to time at which next observation becomes ava

*
*
*
*
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=h(x), by
ember.

servations
ments with
ed errors can
equentially.
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Applying an Ensemble Filter.

2. Get prior ensemble sample of observation, y
applying forward operator h to each ensemble m

Theory: ob
from instru
uncorrelat
be done s

y

*
*
*
*

h h
h
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Applying an Ensemble Filter.

3. Getobserved valueandobservational error distr
from observing system.

y

*
*
*
*

h h
h
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y

ce between
rs of ensem-
imarily in
crement.
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Applying an Ensemble Filter.

4. Findincrement for each prior observation ense
(this is a scalar problem for uncorrelated observ

y

*
*
*
*

h h
h Note: Differen

different flavo
ble filters is pr
observation in
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y

 impact of
tion increments on
te variable can be
 sequentially!
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Applying an Ensemble Filter.

5. Use ensemble samples of y and each state v
regress observation increments onto state varia

y

*
*
*
*

h h
h

Theory:
observa
each sta
handled
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variable are updated,
bservation...

y

tk+2
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Applying an Ensemble Filter.

6. When all ensemble members for each state 
have a new analysis. Integrate to time of next o

y

*
*
*
*

h h
h

tk
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r variance = 4.0.
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Some Fun with the Lorenz-63 3-Variable Ch
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Prior ense
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Some Fun with the Lorenz-63 3-Variable Ch
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Some Fun with the Lorenz-63 3-Variable Ch

Observati
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Some Fun with the Lorenz-63 3-Variable Ch
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Some Fun with the Lorenz-63 3-Variable Ch
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Some Fun with the Lorenz-63 3-Variable Ch

Observati
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on in red.

mble in green.

is not linear here.

regression might be
.
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Some Fun with the Lorenz-63 3-Variable Ch

Observati

Prior ense

The prior 
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is not linear here.

er hand...

ntrive examples

like this not
in real assimilations.
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Some Fun with the Lorenz-63 3-Variable Ch

Observati

Prior ense

The prior 

On the oth

Hard to co
this bad.

Behavior 
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y

tk+2

pling Error;
ian Assumption

 Error;
inear
elation
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Basic filter implementation is subject t

y

*
*
*
*

h h
h

tk

1. Model Error

2. h errors;
Representativeness

4. Sam
Gauss

5. Sampling
Assuming L
Statistical R

3. ‘Gross’ Obs. Errors
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence

Suppo
state v
be un
obser

Unobs
should

Unobs
deviat
decre

Expec
is neg
zero s

−3

−2

−1

0

1

2

3

U
no

bs
er

ve
d 

S
ta

te
 V

ar
ia

bl
e SD=0.88

MN=0.12

SD=0.40
MN=0.12

After Obs. 61

Sample Correl. = 0.26

−2 0 2
Observed Variable



6/18/07

se unobserved
ariable is known to

related to set of
ved variables.

erved variable
remain unchanged

erved standard
ion is persistently
ased.

ted change in |SD|
ative for any non-
ample correlation!
Anderson: NSF August, 2006 94

Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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g error:

 is small
ce in priors.
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r and correct for it.
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Ways to deal with regression samplin

1. Ignore it: if number of unrelated observations
and there is some way of maintaining varian

2. Use larger ensembles to limit sampling error.

3. Use additionala priori information about relatio
observations and state variables.

4. Try to determine the amount of sampling erro



6/18/07

g error:
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e from observation.
olynomial.

2000
?)
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Atmospheric assimilation problems.
Weight regression as function of horizontaldistanc
Gaspari-Cohn: 5th order compactly supported p
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 variable pairs.
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Can use other functions to weight regression.
Unclear whatdistance means for some obs./state
Referred to asLOCALIZATION.
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g error:

r and correct for it:

le correlation.

rge sample correl.

easure sampling error.

with a sample removed.

efficients and weight.
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Ways to deal with regression samplin

4. Try to determine the amount of sampling erro

A. Could weight regressions based on samp
Limited success in tests.
For small true correlations, can still get la

B. Do bootstrap with sample correlation to m
Limited success.
Repeatedly compute sample correlation

C. Use hierarchical Monte Carlo.
Have a ‘sample’ of samples.
Compute expected error in regression co
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g error:
 ensembles.

N-member ensem-

s. increments for
.

s. / state pair:
mples of regression

β.
y inβ implies state
rements should be

regression confi-
r,α.
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Ways to deal with regression samplin
4C. Use hierarchical Monte Carlo: ensemble of

y

*
*
*
*

H H
H

y

tk+2

tk

y

*
*
*
*

H H
H

y

tk+2

tk

M independent
N-member
Ensembles

M groups of 
bles.

Compute ob
each group

For given ob
1. Have M sa

coefficient,
2. Uncertaint

variable inc
reduced.

3. Compute 
dence facto

β1

βΜ

Regression
Confidence
Factor,α
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g error:

 ensembles.

es 4 groups of 20.

efficient,βi.

inimizes:

te increments).
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Ways to deal with regression samplin

4C. Use hierarchical Monte Carlo: ensemble of

Split ensemble into M independent groups.
For instance, 80 ensemble members becom

With M groups get M estimates of regression co

Find regression confidence factorα (weight) that m

Minimizes RMS error in the regression (and sta

αβi β j–[ ]2

i 1 i j≠,=

M
∑

j 1=

M
∑
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g error:

 ensembles.

t regression byα.

has repeated
ations, can
te sample mean or

n statistics forα.

 can be used in
quent assimilations
calization.

mple mean regression)
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Ways to deal with regression samplin

4C. Use hierarchical Monte Carlo: ensemble of
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Localization in GCM can be very complex.    Surface Pre
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rior uncertainty
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tate variables.

othly decrease
0 as function of
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Dealing With Ensemble Filter Er

y

*
*
*
*

h h
h

y

tk+2

tk

1. Model Error

2. h errors;
Representativeness

4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

Fix 1, 2, 3
HARD bu

Often, ens

1-4: Cova
Increase p
to give ob

5. ‘Localiz
obs. impa
‘nearby’ s

Often smo
impact to 
distance.

3. Gross Obs. Errors
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
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=> ‘true’ distribution.
ufficient prior variance.

fident, obs. ignored
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Sampling error, some model errors lead to ins

3. Can lead to ‘filter divergence’: prior is too con
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Sampling error, some model errors lead to ins

3. Naive solution is Variance inflation: just incre

4. For ensemble member i,
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
.
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Most model errors also lead to erroneous sh

3. Again, prior can be viewed as being TOO CE
−4 −2 0
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

"TRUE" Prior PDF Error in Mea



6/18/07

ance Inflation

=> ‘true’ distribution.
ift in entire distribution.

RTAIN

or it directly

2 4

n (from model)

ariance Inflated
Anderson: NSF August, 2006 111

Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Most model errors also lead to erroneous sh

3. Again, prior can be viewed as being TOO CE
4. Inflating can ameliorate this
5. Obviously, if we knew E(error), we’d correct f
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Physical Space Variance Inflatio

Inflate all state variables by same amount befor

Capabilities:

1. Can be very effective for a variety of mod

2. Can maintain linear balances.

3. Stays on local flat manifolds.

4. Simple and inexpensive.

Liabilities:

1. State variables not constrained by observ

For instance unobserved regions near th

2. Magnitude ofλ normally selected by trial a
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Physical space covariance inflation in L

Observation outside prior: danger of filter diverg
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Physical space covariance inflation in L

After inflating, observation is in prior cloud: filter
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Physical space covariance inflation in L

Prior distribution is significantly ‘curved’
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Physical space covariance inflation in L

Inflated prior outside attractor. Posterior will als
Can lead 
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Adjunct Algorithms Developed for DART Can 

1. Adaptive Error Tolerant Filters.
Automatically detect error in assimilation s
Add uncertainty when model disagrees wi
Can deal with LARGE model, observation
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

Assumes that prior and observation are sup
Is it model error or random chance?
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

3. Inflating increases expected separation.
Increases ‘apparent’ consistency between p

−4 −2 0
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Prior PDF Obs. Likeli

Inflated S.D.
Expected Separa

Actual 3.698 SDs

σprior
2 σ+



6/18/07

Tolerate Errors.

ystem.
th observations.
, and filter error.

emble sampling errors.

 problems.
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Adjunct Algorithms Developed for DART Can 

1. Adaptive Error Tolerant Filters.
Automatically detect error in assimilation s
Add uncertainty when model disagrees wi
Can deal with LARGE model, observation

2. Hierarchical filters detect and avoid small ens
Ensemble of ensembles for tuning period.
Limit impact of observations as required.
Eliminate unnecessary calculation.

Can apply filters without tuning to large



6/18/07

all three pieces:

l system.

or characteristics.

ion.

ar tangent replacement).
Anderson: NSF August, 2006 121

Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observations.
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward and backward sensitivity analysis (adjoint and line
Select appropriate values for model parameters.
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DART/CAM NWP Assimilation: Janu

Model: CAM 3.1 T85L26.

Initialized from a climatological distribution (hu

Observations: Radiosondes, ACARS, Satellite W

Subset of observations used in NCAR/NCEP

Compare to NCEP operational, T254L64, uses
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Af ter 6 hours.

CAM
starts with
climatology!
Nearly zonal.
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NCEP

DART/CAM

Difference.
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Af ter 1 day.
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NCEP

DART/CAM

Difference.
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Af ter 3 days.

CAM gains
zonal
structure.
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NCEP

DART/CAM

Difference.
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observed.
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NCEP

DART/CAM

Difference.
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Hemisphere

NWP system.
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6-Hour Forecast Observation Space Tem

Tropics Northern 

DART/CAM competitive with operational 
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Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.

High quality analyses (re-analyses).
_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observations.
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward and backward sensitivity analysis (adjoint and line
Select appropriate values for model parameters.
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T CO observations.

ted by Kevin Raeder.
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High-quality analysis of CO in Finite Volume CAM

Assimilate standard observations plus MOPIT

Work by Ave Arellano and Peter Hess suppor
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Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observ
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward and backward sensitivity analysis (adjoint and line
Select appropriate values for model parameters.



6/18/07

rvtions in WRF

eric electric field.

 low earth satellite.
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Assimilating GPS Radio Occultation Obsea
Assimilated as refractivity along beam path.
Complicated function of T, Q, P and ionosph

Get a sounding as GPS satellite sets relative to
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Assimilating GPS Radio Occultation Obsea

Weather Research and Forecasting Model.
Regional Weather Prediction model.
Configured for CONUS domain, 50 km grid.

Several hundred profiles available from CHAMP
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rvtions in WRF

 close to GPS profiles.

adiosonde profiles.

M, GFDL, GFS...
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Assimilating GPS Radio Occultation Obsea

Evaluating Impact of GPS Observations.

Case 1: Assimilate radiosondes EXCEPT those
Case 2: Also assimilate GPS profiles.

Look at reduction in error from close (unused) r

NOTE: Identical code allows assimilation in CA
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 Errors in WRF
t pair).
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 mean & rms error (g/kg)
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GPS Radio Occultation Impact on T and Q
Each plot displays bias (left pair) and RMS (righ
Red curves include GPS: reduced bias and RMS.
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Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observations.

Design observing systems that provide incre
_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward and backward sensitivity analysis (adjoint and line
Select appropriate values for model parameters.
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Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observations.
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward and backward sensitivity analysis (adjoint and line
Select appropriate values for model parameters.
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Example of low-resolution assimilation c
CAM spectral vs. FV for January, 2003: Tem

Spectral
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Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observations.
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward/backward sensitivity analysis (adjoint/li
Select appropriate values for model parameters.
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Ensemble Sensitivity Analysis

Can compute correlation (covariance) between
analysis quantity and ALL other forecast an
or functions thereof at any time lag.

Can get same information as unlimited number
linear tangent integrations over arbitrary per

Explore relations between variables, observatio

Example 1: Base point is 500 hPa mid-latitude te
Look at impact on evolution of 500hP

Similar to linear tangent integration.
Significant correlations from 20 member T85 en
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Forward in Time Sensitivity (Linear Tangen
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Forward in Time Sensitivity (Linear Tangen

Time lag 06 hours: 500 hPa Temperature to 5
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Forward in Time Sensitivity (Linear Tangen

Time lag 12 hours: 500 hPa Temperature to 5
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Forward in Time Sensitivity (Linear Tangen

Time lag 18 hours: 500 hPa Temperature to 5
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Forward in Time Sensitivity (Linear Tangen

Time lag 24 hours: 500 hPa Temperature to 5
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Forward in Time Sensitivity (Linear Tangen
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Ensemble Sensitivity Analysis

Can compute correlation (covariance) between
analysis quantity and ALL other forecast an
or functions thereof.

Can get same information as unlimited number
linear tangent integrations over arbitrary per

Explore relations between variables, observatio

Example 2: Base point is 500 hPa mid-latitude z
Look at impact of previous 500 hPa t

Compare to an adjoint integration.
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Backward in Time Sensitivity (Adjoint eq

Time lag -00 hours: 500 hPa Zonal Velocity to 50
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Backward in Time Sensitivity (Adjoint eq

Time lag -06 hours: 500 hPa Zonal Velocity to 50
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Backward in Time Sensitivity (Adjoint eq

Time lag -12 hours: 500 hPa Zonal Velocity to 50
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Backward in Time Sensitivity (Adjoint eq

Time lag -18 hours: 500 hPa Zonal Velocity to 50
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Backward in Time Sensitivity (Adjoint eq

Time lag -24 hours: 500 hPa Zonal Velocity to 50

+

degrees east

de
gr

ee
s 

no
rt

h

 

135 180
30

40

50

60

70



6/18/07

uivalent)

0 hPa Temperature

 

225

K

−1

−0.5

0

0.5

1

Anderson: NSF August, 2006 153

Backward in Time Sensitivity (Adjoint eq

Time lag -30 hours: 500 hPa Zonal Velocity to 50
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Assimilation increases information about 
_________________________________________________

1. Get an improved estimate of state of physica

Initial conditions for forecasts.
Includes time evolution and ‘balances’.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing or planned observations.
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system.

Evaluate model systematic errors.
Forward and backward sensitivity analysis (adjoint and line

Select appropriate values for model parame



6/18/07

 Data Assimilation.

AM assimilation of
 wave drag effi-
 parameter.

ic values are noise
d be 0).

ciency< ~4    sug-
 by modelers.

ar convection.
r ‘Wrong Reason’.

LL model problems
Anderson: NSF August, 2006 155

Climate Model Parameter Estimation via Ensemble
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Problem: large negative values over tropical land ne
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DART)

 DART.
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Data Assimilation Research Testbed (

Software to do everything here (and more) is in

Requires F90 compiler, Matlab.

Available from www.image.ucar.edu/DAReS/.
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