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ABSTRACT

The Community Atmosphere Model (CAM) has been interfaced to the Data Assimilation

Research Testbed (DART), a community facility for ensemble data assimilation. This pro-

vides a large set of data assimilation tools for climate model research and development.

Aspects of the interface to the CESM software are discussed and a variety of applications

are illustrated, ranging from model development to the production of long series of anal-

yses. CAM output is compared directly to real observations from platforms ranging from

radiosondes to Global Positioning System satellites. Such comparisons use the temporally

and spatially heterogeneous analysis error estimates available from the ensemble to provide

very specific forecast quality evaluations. The ability to start forecasts from analyses, which

were generated by CAM on its native grid and have no foreign model bias, contributed to

the detection of a code error involving Arctic sea ice and cloud cover. The potential of

parameter estimation is discussed. A CAM ensemble reanalysis has been generated for more

than 15 years. Atmospheric forcings from the reanalysis were required as input to generate

an ocean ensemble reanalysis that provided initial conditions for decadal prediction experi-

ments. The software enables rapid experimentation with differing sets of observations and

state variables, and the comparison of different models against identical real observations,

as illustrated by a comparison of forecasts initialized by interpolated ECMWF analyses and

by DART/CAM analyses.
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1. Introduction

Data assimilation (DA) has long been recognized as an indispensable tool in numeri-

cal weather forecasting for generating realistic initial and boundary conditions, for melding

diverse observations into gridded analyses which have been used for model forecast verifica-

tion (Lynch 2006), and for added quality control of observational systems. Until recently,

its usefulness for climate model development has not been compelling enough to warrant

the effort of implementing the best available DA algorithms. That effort has been greatly

reduced by the advent of ensemble DA, so that climate model development and research

can now benefit greatly and directly from the variety of tools available from DA. Several

generations of the Community Atmosphere Model (CAM, the atmospheric component of the

Community Earth System Model (CESM)) can now be used with ensemble DA using the

Data Assimilation Research Testbed (DART).

The DART algorithm and software are described briefly here (Section 2), but the focus

of this paper is a description of the DART/CAM interface (Section 3) and the application

to CAM of the tools available in DART (Sections 4 and 5). A deeper description of DA and

DART is available in the references below, and in an overview paper (Anderson et al. 2009).

2. The Data Assimilation Research Testbed

a. Overview of Ensemble Data Assimilation

Data assimilation is the combination of information from a model forecast and observa-

tions of a physical system to produce an improved model estimate called an analysis. The

analysis can be used as initial conditions for subsequent model forecasts. Ensemble DA uses

a set (ensemble) of model forecasts to compute the sample covariance between model state

variables and forecast estimates of observations. These covariances are then used in Bayes’

theorem to compute an ensemble of model state analyses (Anderson 2003). Each analysis can
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be regarded as an approximately equally likely draw from an analysis probability distribu-

tion. An illustration of such an ensemble is presented in Fig. 1. The ensemble mean analysis

is often used as a best estimate of the model state. Ensemble Kalman filter algorithms for

geophysics were described in Evensen (1994) and Burgers (Burgers et al. 1998).

Most operational centers for numerical weather prediction use variational methods of DA.

However, the Meteorological Service of Canada has been running an ensemble DA system

since 2005 (Houtekamer et al. 2009). Recent results have suggested that ensemble systems are

now competitive with variational systems for geophysical DA (Buehner et al. 2010; Miyoshi

et al. 2010). In addition to the analysis, ensemble assimilation systems provide an estimate

of the analysis error distribution.

b. DART

DART has been developed since 2002 at the National Center for Atmospheric Research as

a community facility which makes high quality, theoretically-based data assimilation avail-

able to the geoscience research community, while requiring little expertise in DA on the part

of users (www.image.ucar.edu/DAReS/DART).

The modularity of DART makes the interface to new models and observations straight-

forward and clean. As an example, CAM3.5+Chem was interfaced to DART in less than

a month by a scientist unfamiliar with both the model and DART (Section 3.a). CAM3.5

refers to a version developed before the CCSM4 release (Gent et al. 2012) to focus on the

implementation of the finite volume core developed by Lin (2004). Hereafter “-FV” will refer

to CAM executables using the finite volume core. In addition, “CAM4” and “CAM5” will

refer to the FV version, unless noted otherwise. “Chem” refers to a simple chemistry model

interfaced to CAM to enable forecasts of some chemical species (Arellano et al. 2007). As

a result of this straightforward interface, DA with the most current versions of CAM and

other full-complexity models has been possible for several years.

The basic ensemble assimilation algorithm is straightforward to implement for low order
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models which assimilate simple, synthetic observations, but can none-the-less yield useful

results for theoretical studies. For full-complexity models it is necessary to use additional

algorithms to maximize assimilation performance, while minimizing the computational ex-

pense. DART provides a flexible suite of these algorithms, some of which are briefly described

below. In the past such algorithms have required tuning of assimilation parameters, but our

experience has shown that the DART versions are either self-tuning or the assimilation is

sufficiently insensitive to the parameter, so that almost no tuning is required from users,

especially for the CAM lineage of models.

1) Ensemble Inflation

Assimilation of each observation causes the spread of the ensemble to decrease, as more

information is added to the state of knowledge of the system. Any error sources which are not

included in the observation error or model spread cause the spread to decrease more than is

justified. This can be corrected for the large atmospheric models used in DART by inflating

the spread periodically. DART can use user-provided inflation fields, or employ a heirarchical

Baysian filter (HBF) to use the observations to determine appropriate inflation values as a

function of time, space, and model variable (Anderson 2009). Each observation can increase

the inflation via the heirarchical Baysian filter, but during periods of fewer observations the

HBF cannot respond to the relative lack of observations. To prevent inflation from remaining

too large when observation counts decrease, the inflation is damped to some percentage of

its previous value during each assimilation. So the adaptive inflation algorithm has two basic

tuning parameters, one that controls how rapidly inflation values adapt to inconsistencies

between model forecasts and observations, and one that controls how rapidly inflation is

damped. Tuning experiments in CAM and several other global and regional atmospheric

models revealed that good performance was obtained in all cases with a standard pair of

values. This experience suggests that it is not necessary to explore the inflation parameters

when implementing DART with a new version of CAM. An example of such an inflation
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field can be found in Anderson et al. (2009), Figure 13.

2) Localization

The probability distribution of a variable is represented in ensemble DA by an ensemble

of draws from that distribution. Large models, such as CAM, motivate the use of ensembles

which are too small to accurately represent the gaussian distribution assumed by the DA

algorithm. This results in non-negligible correlations between widely separated variables,

which are believed, a priori, to be uncorrelated (Anderson 2007a). Localization is a mecha-

nism for telling the assimilation algorithm that it should ignore such spurious correlations.

DART can employ a user-specified localization distance (the half-width of a Gaspari-Cohn

distribution (Gaspari and Cohn 1999)), or modify this value based on the local density of

observations (Torn 2010). Tuning exercises for the localization have been performed in sev-

eral CAM versions and in other global atmospheric models, and the user-specified values of

0.2 radians in the horizontal and 1000 hPa in the vertical have resulted in good performance

in all cases. This suggests that tuning of the horizontal localization is not necessary when

implementing DART with new versions of CAM. However, tuning of the vertical localization

may be required to use new types of remote sensing observations with CAM.

3) Sampling Error Correction

The leading source of error in many ensemble DA applications is sampling error due to

the use of small ensembles. DART provides an algorithm that can reduce sampling error by

applying a correction factor for state variable increments that is a function of the ensemble

size and the sample correlation of a state variable with an observation (Anderson 2011).

This correction improves the performance of relatively small ensembles, e.g. 20 members,

but has negligible effect on the performance of larger ensembles, e.g. 80 members.
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4) DART/CAM leverages code resources

DART has a large user community of modelers and observations experts. New interfaces

and features contributed from this community are added to the DART software repository

for general use. These contributions and the modularity of DART enable two kinds of

comparison studies. One consists of using CAM to assimilate differing sets of observations.

As an example, DART/CAM was one of the first global assimilation systems to assimilate

observations from the COSMIC constellation of Global Positioning System radio occultation

instruments. Fig. 2 shows the fit to observations for 3 experiments; one having assimi-

lated the observations used in the NCEP/NCAR reanalysis (temperature and winds from

radiosondes, aircraft, ACARS, and satellite drift winds), and the others having assimilated

those, plus COSMIC GPS observations (Anthes et al. 2008). Note that Fig. 2 shows the fit to

observations at the locations of the radiosonde observations, but that the GPS observations

at other locations are able to improve that fit. The fit of 6 hour forecasts to observations is

shown, because the forecasts have less potential for being “overfit” to the observations, which

would give an inflated and erroneous estimate of the agreement between the observations

and the model. Another example is the novel hyper-spectral radiance retrieval (Liu and Jun

2010), which is being studied in NCAR’s Weather Research and Forecasting regional model

(WRF), but can immediately be used in CAM assimilations.

Another comparison consists of using the identical assimilation algorithm and observation

set, but assimilating into CAM and another model. For instance, comparisons to assimila-

tions in GFDL’s AM2 atmospheric model have provided insight into CAM biases (Pincus

et al. 2011).
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3. DART/CAM

a. CAM Versions Supported

The DART/CAM interface was originally written for CAM2.0.1, which used the Eulerian

core (Kiehl et al. 1996) converted to the Arakawa A-grid for output. Arellano (Arellano et al.

2007) used that as the basis for an interface to CAM3.1-FV on the Arakawa D-grid to enable

chemical data assimilation. The FV core promised enhanced transport characteristics for

improved chemistry. The interface has since been used extensively with CAM3.1, CAM3.5

and several development versions leading up to CAM4 (Gent et al. 2012) and CAM5 (Rasch

et al. 2012). To date, resolutions used include T42, and T85 for the Eulerian core (“T”

means triangular truncation (Kiehl et al. 1996)), and 4 × 5◦ (for testing), 1.9 × 2.5◦ and

0.9 × 1.25◦ for the FV core. The interface has been extensively tested with the Eulerian

(Žagar et al. 2010) and FV cores (Arellano et al. 2007; Pincus et al. 2011; Lauritzen et al.

2011).

b. Adaptation to CAM Features

1) Supports Arbitrary Number of Additional Tracers

The definition of the “state” of the CAM atmosphere is somewhat flexible; besides the

usual dynamical variables and temperature, it can include an arbitrary number of tracers,

such as moisture and chemical species. DART/CAM accomodates this flexibility by allowing

specification of the model state without recompiling DART. An example of how this could

be used is that assimilations could be run with a full set of chemical species supporting a

complex chemical model, then with a reduced set of species supporting a simpler chemical

model.

While the interface has been coded to be as insensitive as possible to CAM’s dynamical

core, resolution, and model state variables, some aspects of current CAMs have required
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special treatment.

2) Model top damped region

CAM is strongly damped near the model top, which challenges the assimilation algorithm.

The variables there are not free to adjust to the observations, and the ensemble spread can

become too small for the assimilation algorithm to work. Two mechanisms exist to sidestep

this problem. The primary tool allows the user to specify a height, above which the influence

of observations on state variables will be reduced as a function of the distance above the

specified height. This height is usually set to 150 hPa, and the influence of observations falls

to 0 by about 54 hPa. In the 26-level resolution (CAM4) these correspond to levels 11 and

6, as counted from the top. The secondary mechanism enables a user to specify a height,

above which no observations will be used. This is usually quite flexible, but must be set to

100 hPa or less for GPS radio occultation observations. These two mechanisms interact with

the localization to determine how much influence an observation will have on a given state

variable.

3) Bounded model variables

Another challenge to the assimilation algorithm comes from the bounded nature of some

model variables, e.g. tracers which must be non-negative, or cloud fraction, which must

remain between 0 and 1. The spread inflation algorithm can push the values of these variables

outside of their ranges for some ensemble members. In many cases the damage from this

is minimal, because CAM will reset them to the proper range when it starts, but if such

variables are the primary interest of the assimilation (Pincus et al. 2011), DART includes

a rank-histogram assimilation algorithm, which can accomodate such variables (Anderson

2010).
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4) The Poles

The current CAM grids (Arakawa A for the Eulerian core, Arakawa D for the FV core)

have no grid points poleward of the first and last latitudes, but there can be observations

there. Rather than perform a relatively expensive interpolation involving all the most pole-

ward grid points, the user can specify a maximum latitude for observations to be assimilated.

5) The Surface

The topography of CAM only approximates the real topography, near which some obser-

vations are taken. For observations which are below the lowest model level no interpolation

from the model grid to the observation location is possible. Currently, rather than take

the risk of extrapolating the CAM model state to the observation location, the assimilation

algorithm ignores those observations.

c. Continuing Development

The future of geophysical computing appears to be on massively parallel hardware, which

is leading to the adoption of dynamical core(s) on horizontally non-rectangular grids, which

offer better scaling on thousands of processors. Examples include the Spectral Element core

on the cubed sphere (Taylor et al. (2008, 2012)) and other, even less-structured grids. This is

not a fundamental problem for DART/CAM because DART and CAM are separate programs

which communicate with each other via a conceptually simple interface, and DART uses the

parallel assimilation algorithm (Anderson and Collins 2007) to facilitate excellent scaling up

to thousands of processors for CAMs with high resolution or a large number of tracers.

In the opposite direction from increasingly complex grids, the DART/CAM interface is

compatible with the Single Column CAM (Park and Truesdale 2011), but no additional

development or testing has been done to investigate the ramifications for DA of having a

single column in CAM. This mode has been used in WRF (Hacker and Rostkier-Edelstein
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2007).

The new “multi-instance” capability in CESM enables it to advance an ensemble of states

of a model component for the same forecast period. DART/CAM adapts this feature to data

assimilation by making CESM stop and call DART to assimilate observations whenever they

are available. This will facilitate coupled assimilations using the atmosphere, ocean, and land

as active components. Each CESM component will potentially be influenced directly by all

available observations, even observations of a different part of the earth system.

4. Using DART/CAM for climate model evaluation and

development

a. Forecast Verification, Analysis Error and Observation Space Diagnostics

Climate model fidelity is typically measured against gridded analyses that are a merging

of observations with model forecasts using data assimilation. In most cases, no estimate of

the errors associated with the analyses is provided, so it is impossible to objectively judge

whether a model result is consistent with the analyses. An ensemble analysis like those

produced by DART can provide an estimate of analysis and forecast uncertainty.

Climate model performance can also be evaluated in “observation space” by using the

gridded model variables to compute estimates of available observations. Comparing these

estimates to actual observations is referred to as evaluating performance in “observation

space”. For observations like a radiosonde temperature, this only requires spatial interpola-

tion from the model grid, while observations like a COSMIC radio occultation may require

much more complicated functions of the model variables.

Evaluating the significance of differences between actual observations and model esti-

mates requires error estimates for both the observations and the model. The former comes

from instrument designers while the ensemble spread available from a DART assimilation
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provides the latter. Spaghetti plots like Fig. 1 are one way to visualize the spatial hetero-

geneity of the ensemble. The spread also evolves with time as a function of the atmospheric

state and the available observations.

Given estimates of uncertainty for both the ensemble model estimates of an observation

and the observation itself, the significance of differences between them can be estimated. The

“total spread”, the square root of the sum of the ensemble variance and the error variance

associated with the observation, is the expected value of the difference between the model

ensemble mean and the observed value.

DART has tools to use the extensive information available in the model ensemble to

evaluate model performance in observation space. Examples can be seen in Anderson et al.

(2009), Figures 3 and 12. Figure 3 here provides information about a CAM assimilation in

the tropics. This assimilation is stable, as shown by the limited variability of the RMS error

as a function of time. The DART observation quality control algorithm discards observations

that are unexpectedly different from the model ensemble estimate. Figure 3 shows that the

number of rejected observations is not large, generally less than 10%. This fraction does

not vary significantly in time providing further evidence that the assimilation is working

appropriately. In a carefully tuned ensemble assimilation system using a model and obser-

vations with small systematic errors (bias), the ensemble total spread should provide a good

estimate of the RMS error between the ensemble mean and the observations. Figure 3 shows

generally good agreement for this CAM assimilation. Instances of large differences between

the RMS error and the total spread are confined to 06 and 18 GMT. At these times, the

number of radiosondes available in the tropics is very small so that sampling error can lead

to larger differences. This temporal variability highlights the difficulty of assigning a single

“quality” score to a small set of model analyses or forecasts. Similar plots for other regions,

times, and observation types show even richer variety of behaviors. Similar plots of model

time-mean error (bias) relative to the observations are particularly useful for identifying

model (or observational) error.
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In contexts where comparison to analyses is still preferred, the frequent analyses produced

by DART/CAM enables evaluation of CAM forecast error, without the confounding error of

a foreign model being used in the analyses (see also Section 5.a and Kay et al. (2011)).

b. Cloud-Associated Parameterization Testbed (CAPT)

For much of the last decade the CAPT project (Phillips et al. 2004, and www-pcmdi.llnl.

gov/projects/capt) has used short-term forecasts to gain insights into parameterization

errors in climate models (Klein et al. 2006; Xie et al. 2008). To date CAPT has initialized

these forecasts from analyses provided by operational weather centers for reasons that are

partially pragmatic (ensemble DA methods were just emerging when the project started,

while variational methods require adjoint and tangent-linear models not normally available

for climate models) and partially reflected the belief that DA was best left to experts. Non-

expert users of DA are unlikely to exploit all the observation types used in operational

analyses, particularly not the satellite radiance observations that must be carefully processed

to remove biases. Using fewer observations in conjunction with an assimilating model whose

short-term biases have not been explored (as is typical for climate models) might lead to

substantially less realistic initial conditions.

But there are several reasons why identifying parameterization deficiencies can be en-

hanced by using the same model in the forecast and data assimilation processes. One is

that the numerical weather prediction model that generates the initial conditions for the

climate model forecast is certain to have its own set of systematic errors. These errors will

result in errors in the climate model forecast that are related to the external model. It is

extremely difficult to isolate the errors due to the climate model in this situation. Secondly,

even if the analyzing model is unbiased, interpolation can lead to initial conditions that are

not in large-scale balance, so that very short-term (1 day or less) forecasts are dominated

by spin-up not associated with forecast model error. Finally, using foreign initial conditions

in the atmosphere usually requires special efforts (normally “nudged” runs) to initialize the
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land model to be consistent with the state of the atmosphere.

For these reasons the CAPT project has begun using DART to provide ensemble DA and

ensemble forecasts. Analyses produced using CAPT and DART will be useful in diagnosing

model error only to the extent that the initial conditions are themselves accurate. Figure 4

shows six-hour forecast errors in tropical temperature for two sets of forecasts with CAM4-

FV: one with the model running at nominal 1◦ resolution from analyses provided by the

European Centre for Medium Range Weather Forecasts (interpolated from the original T799

resolution; roughly 1/4◦ resolution), and another from an ensemble reanalysis (described in

Section 5.a below) using DART and a 2◦ version of the model. The evaluation is performed

in observation space (see Section 4.a) against radiosonde temperature observations which

fell within 3 standard deviations of the DART/CAM ensemble mean. Errors in forecasts

from the DART ensemble reanalysis are larger than from the ECWMF conditions (and in

extratropical regions, the differences are larger still) due to some combination of reduced

model resolution and smaller numbers of observations used in the analyses. This comparison

illustrates the ability of DART to readily provide a direct comparison of different models

(or versions) against the same set of observations. We plan to increase the DART/CAM

resolution to 1◦ and extend this comparison to cover one or more years. Such changes in the

model(s) used in DART are simple to implement, and facilitate model development.

c. Evaluating Boundary Layer Response to Sea Ice Loss

Kay et al. (2011) (hereafter referred to as “Kay2011”) used short-term CAM4 forecasts

starting from DART/CAM analyses to evaluate the boundary layer response in CAM to

observed sea ice loss during the 2007 melt year, the most extreme melt year on record

(Stroeve et al. 2008). The Kay2011 work was motivated in part by the contrast between

observations, which revealed little cloud response to mid-summer sea ice loss (Kay and

Gettelman 2009), and the response in CAM4, which showed large low cloud increases over

newly open water. Indeed, reduced clouds associated with large-scale circulation is a factor
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that enhanced sea ice loss during the 2007 melt season (Kay et al. 2008). The Kay2011

study found that while the September CAM4 boundary layer response to sea ice loss was

qualitatively consistent with observations, the July CAM4 forecasts developed unrealistic

cloud increases over regions that became ice-free. This was traced to a parameterization

error; the failure to explicitly require an unstable boundary layer for the formation of low

clouds. Kay2011 implemented a physically motivated improvement to the CAM4 low cloud

parameterization and were able to verify that it improved the cloud response to sea ice loss

(Fig. 5). This discovery and solution was greatly facilitated by the ability to start CAM

from DART/CAM analyses.

More recently, work has been undertaken to examine the boundary layer response to

sea ice loss in winter. Open polar water in winter provides a source of both heat, which

destabilizes the boundary layer, and moisture, the combination of which should lead to

a warmer boundary layer and increased cloudiness. The influence of variations in sea ice

extent and atmospheric circulation on such winter temperature and cloud anomalies can

be evaluated with short-term DART forecasts. For example, Fig. 6 shows the influence of

December 2007 sea ice anomalies on the atmosphere by comparing pairs of 24-hour forecasts,

which start from the same analyses but use either climatological or December 2007 ocean

boundary conditions, as in Kay2011. Fig. 6(d-f) show that over regions of sea ice loss the

temperature and cloud amounts increase up to 10 K and 25% respectively, consistent with

the expected boundary layer response to winter sea ice loss. Fig. 6(c) shows that the sea

level pressure changes caused by the ice anomaly are < 1hPa everywhere except over the

regions of largest ice anomaly, and even there they are < 2hPa. These SLP anomalies appear

to be thermodynamically driven and a local response to the ice anomaly. This is consistent

with previous studies showing that a baroclinic atmospheric circulation response to sea ice

loss takes days to appear (Deser et al. 2007).
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d. Noise detection with DART

Climate model dynamics are usually evaluated in terms of statistical measures such as

mean sea-level pressure and zonal wind speed averaged in time over several years and in

space along latitudes/longitudes. While such diagnostics are indeed relevant for assessing

the fidelity of climate models, this averaging may make it harder to detect potential numerical

noise problems (unless, of course, the noise is excessive or stationary in space/time).

DART was used as an efficient tool to detect noise problems in CAM: two examples are

discussed below. Assimilation runs over only a few days using DART can reveal noise. A

key point is that the assimilation constrains the model to the same synoptic situations when

the model is modified in an attempt to correct problems. Both noise problems below were

visible at the same date and time for repeated tests of model versions. Both noise issues can

also be seen in long climate runs but occur only sporadically in time and space. Because of

chaotic error growth in free climate runs, the time and place where noise may appear is not

reproducible between different model versions that contain the same error. Instead, careful

examination of many days worth of model output are required to determine if model noise

has been reduced.

1) Noise associated with ‘polar filter’ transition

The CAM-FV model uses explicit time-stepping based on a flux-form finite-volume

scheme (Lin 2004; for a review see Machenhauer et al. 2009). Due to the convergence

of the meridians near the poles of the regular latitude-longitude grid, it is necessary to ap-

ply filtering to stabilize the fast moving gravity waves in order to avoid the need for using

excessively short time-steps. In the midlatitudes CAM3 uses a one-dimensional digital filter

along latitudes (approximately between 36◦ N/S and 69◦ N/S for the 1.9 × 2.5◦ horizon-

tal resolution version of CAM-FV) and a Fast Fourier Transform (FFT) filter in the polar

regions poleward of 69◦ N/S. This 1D filtering along latitudes is referred to as the ‘polar
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filter’ although filtering is also applied away from the polar regions in the mid-latitudes. A

simple linear analysis of the damping properties of the two filtering methods will show that

not all wavelengths are damped equally in the transition region where the digital filtering is

replaced with FFT filtering. Experiments with DART have shown that this non-continuous

transition may lead to grid-scale noise (see Fig. 8a in Anderson et al. 2009). Therefore in

CAM4 (and later versions of CAM) the digital filter was replaced with the FFT filter so

that FFT-filtering would be applied from approximately 36◦ N/S all the way to the poles.

The noise detected in DART/CAM3 associated with the digital to FFT transition zone is

no longer present in DART/CAM4 and later versions (see Fig. 8b in Anderson et al. 2009).

2) Noise aligned with latitudes/longitudes

Noise was also detected outside of the filtering transition zone in CAM3-FV (described

above) using the DART/CAM setup, and later also identified in ‘free-running’ CAM (no

data-assimilation) as well as in idealized steady-state experiments (see Fig. 5 in Lauritzen

et al. 2010). The noise is particularly visible in the meridional wind field in the upper part

of the model vertical domain (approximately 200 hPa and above) and is aligned with grid

lines (latitudes/longitudes). Examples are given in Fig. 4a and Fig. 6a in Lauritzen et al.

(2011) for free-running CAM and DART/CAM, respectively. Closely related to the grid-

scale noise is the divergence damping used in CAM-FV. In the original version of CAM-FV

second-order divergence damping is used. A logical first attempt at reducing noise levels

would be to increase the second-order divergence damping strength; it results in a slight

reduction in the amplitude of the spurious grid-scale waves aligned with grid-lines (Fig. 4b

in Lauritzen et al. 2011) at the expense of increased damping of divergence associated with

longer, well-resolved wavelengths (Fig. 3 in Lauritzen et al. 2011). A more scale-selective

damping operator was therefore implemented, that is, a fourth-order divergence damping

scheme. This higher-order damping operator provides, in general, a more scale-selective

damping of divergent modes near the grid scale although its implementation on the regular
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latitude-longitude grid may provide less damping in the polar regions (Whitehead et al.

2011). The fourth-order divergence damping more effectively reduced grid-scale noise in

the divergence field while not damping the divergence of ‘well-resolved’ scales (Fig. 4c and

Fig. 3 in Lauritzen et al. 2011, respectively) both in ‘free-running’ CAM and DART/CAM.

For more details on the stability properties of the divergence damping as implemented on

the regular latitude-longitude grid see Whitehead et al. (2011) and, more generally, for the

damping/dispersion properties of the CAM-FV scheme see Lauritzen (2007) and Skamarock

(2008).

e. Parameter Estimation

DART/CAM can, in principle, be used to estimate the best values of model parameters,

which is an active area of research with important, outstanding questions about the proper

application to geophysical models and parameterizations (Anderson 2001; Evensen 2009;

DelSole and Yang 2010; Aksoy et al. 2006). The most straightforward technique is the “aug-

mentation” method, in which the model parameter of interest is incorporated into the state

vector (Jazwinski 1970). Then the assimilation process adjusts the distribution of parameter

values to make it more consistent with the observations. This requires modification of the

model code to convert the parameter into a variable which can be exported to, and imported

from, DART. An early, unpublished, study indicated that application of this technique to

estimate the value of parameters in the CAM gravity wave drag scheme does result in anal-

yses with reduced RMS error in observation space. However, the resulting parameters were

inconsistent with implicit assumptions made by the developers of the parameterization. For

example, the parameter representing the efficiency of momentum tranfer into the atmosphere

took on negative values in some locations, which contradicted the developer’s intention that

it represent a quantity that ranges from 0 to 1. This may represent a flaw in the parameter-

ization scheme, or it may merely illustrate the tendency of assimilation schemes to use any

available free parameter to improve the fit of the model state to the observations.
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5. Applications of DART

a. Ensemble Atmospheric Reanalysis

DART/CAM has been used to generate an 80-member ensemble reanalysis for the years

2000 through 2010 plus every 5th year from 1974 through 1994 using CAM4 FV with 1.9 ×

2.5◦ resolution. The observations assimilated include all those used in the NCEP/NCAR

reanalysis (temperature and wind components from radiosondes, aircraft, and satellite drift

winds) plus radio occultation observations from the COSMIC satellites (Anthes et al. 2008)

starting in late 2006. There are typically 106 observations per day for the 2000-2010 period,

ramping down to only one tenth of that for the earliest year, 1974. Analysis of the ensemble

mean reveals that the fit to observations for the 2000 through 2010 period is at least as good

as that obtained in the NCEP/NCAR reanalysis. A variety of products from this reanalysis

have been archived and are publicly available.

Ensemble forcing for other CESM climate system component models are available from

the CAM reanalyses. These ensemble forcings are essential to produce high quality ensemble

assimilations for the ocean or land surface. The next subsection describes an ocean ensemble

reanalysis using DART and the Parallel Ocean Program (POP2, Danabasoglu et al. (2012))

with forcing from the CAM reanalysis.

b. Coupled Ocean Analysis

The next IPCC report (Taylor et al. 2009) will include a section about decadal lead-time

predictions of the climate system. It is well-known that most of the skill in atmospheric

predictions is exhausted in forecasts for longer than a few weeks lead. For longer lead-time

forecasts, the details of the initial conditions of the atmosphere are no longer important.

Instead, initial conditions for more slowly-varying components of the climate system, in

particular the ocean, become the source of most forecast skill. An ocean ensemble data

assimilation using the POP ocean component of CESM is one method that has been used
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to produce initial conditions for decadal predictions.

Maintaining sufficient variability is one of the key problems in ensemble data assimilation;

this leads to the need for inflation as noted in Section 2.1. If all ensemble members of a

DART assimilation with POP are forced by a single estimate of atmospheric forcing, the

resulting analysis spread is found to be far too small. Forcing each POP member with a

different forcing estimate from the ensemble CAM reanalysis leads to much increased spread

and a significantly improved POP analysis.

Figure 7 compares the results of one example of a coupled CESM forecast using DART/POP

initial conditions with a forecast produced from a more traditional method. The black curve

represents the previous state of the art; a forecast initialized from “hindcast” initial condi-

tions, which are generated by forcing the combined CCSM4 ocean (POP) and sea-ice models

at the surface with atmospheric data from the CORE2 data set (Yeager et al. 2012; Griffies

et al. 2009) for a spin-up period consisting of 4 repetitions of the 60-year span 1948-2007.

The long time span is intended to allow the surface forcing to be communicated to the sub-

surface ocean. The blue curve represents the forecast started from DART/POP analyses.

These curves of RMSE are calculated relative to the DART/POP analyses because there are

no independent ocean analyses below the surface that incorporate subsurface observations.

While it is standard practice at operational numerical weather prediction centers to compare

forecasts against analyses generated using the same forecast model, care is still needed in

interpreting these results.

The DART/POP forecast RMSE is notably smaller than the hindcast forecast for at

least 2 years. As would be expected, the free DART/POP forecasts drift towards the cli-

matological POP model bias with time. There is also evidence that in later years of the

1998-2008 DART/POP reanalysis, the ensemble analyses drift away from the observations

and towards the model bias. This is due partly to the absence of ensemble spread inflation

in the DART/POP assimilations so that the model becomes overconfident and rejects an

increasing number of observations. Further analysis and verification of decadal-scale, cou-
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pled, hindcast forecasts is available in Yeager et al. (2012), where techniques such as “bias

correction” are applied to improve decadal forecasts.

c. Evaluating the utility of novel observations across models

The DART/CAM system has also proved useful in addressing questions about the utility

of unconventional observations. An ensemble DA system is a natural venue to explore this

question because it samples the covariance among variables directly from the ensemble. This

makes it easy, in principle, to exploit new types of observations, though the observations can

only reduce analysis errors if they act across scales resolved by the forecast model.

Observations of clouds, for example, are notoriously hard to exploit in data assimilation

systems (Errico et al. 2007) for several reasons. First, available observations (e.g. radar

reflectivity, optical thickness) are related indirectly and often non-linearly to the model state

(normally condensate mixing ratios or similar). Secondly, neither the observed quantities

nor the model state are likely to follow Gaussian distributions, as DA has assumed. Indeed,

many moisture-related quantities are bounded (with minimum zero) and depend strongly and

non-linearly on temperature. The rank-histogram algorithm (Section 3.b.3) can help with

this issue. Finally, the evolution of cloud properties is largely controlled by parameterized

processes with local control, and it has been unclear how much benefit such observations

might be expected to provide to analyses and short-term forecasts.

Pincus et al. (2011) focused on the last of these issues with “perfect-model” experiments

and identity observations. Perfect-model experiments (fully supported within DART) draw

observations from a single free-running model instance, thus removing systematic model bias,

while using identity observations (i.e. observing precisely those variables used to represent

clouds in the forecast model) eliminates observational uncertainties. DART was coupled

identically to both CAM3.5 and the GFDL climate model AM2 (Anderson and coauthors

2004), two models with fairly different cloud schemes. Short-term forecasts of all quantities

were mildly improved assimilating perfect observations of clouds, but the benefit was more
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wide spread and persistent in CAM than in AM2, in which the cloud parameterization

contains an extra degree of freedom (a prognostic equation for cloud fraction) that produces

a climatology of clouds more consistent with observations.

6. Summary

CAM, and CESM in general, can now benefit directly from the many tools available in the

Data Assimilation Research Testbed. These include direct comparison of model output to

real observations from a wide variety of platforms, detection of short-term model biases and

some code errors, the ability to start forecasts from analyses which are compatible with CAM

and have no foreign model bias, the use of temporally and spatially inhomogeneous analysis

error estimates when comparing model output to such analyses, ensemble-based sensitivity

analysis of model variables, rapid experimentation with a variety of observations and state

variables, straight-forward interchange of model versions, and others not considered in this

paper. Such tools complement the traditional evaluation of CAM performance using time

and spatial averages of model output. The interfacing of CAM with DART also extends data

assimilation beyond immediate numerical weather prediction needs, into areas of interest to

climate studies, including chemical DA and long-term coupled model forecasting. It appears

likely that DA has the ability to improve the speed and quality of climate model development,

and should become an integral part of that process.
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Fig. 1. Geopotential heights (500 hPa) for half (40) of the ensemble members typically

used in DART/CAM assimilations for 12Z Feb. 17, 2003. Areas of high model/forecast

uncertainty are apparent where the contours are not tightly clustered. This happens in both

data rich and data sparse areas.
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Fig. 2. The RMS error of the 6 hour forecasts (“priors” or “guess”), relative to the ra-

diosonde T observations, from DART/CAM assimilation of Dec 2006 at the locations of

the observations in three regions: south of 20◦S (left), 20◦S to 20◦N (middle), and north

of 20◦N (right). The black curve represents assimilation of only NCEP/NCAR reanalysis

observations, while the red and blue curves are for NCEP/NCAR plus COSMIC GPS radio

occultation observations by two different forward operators.
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Fig. 3. The RMS error of the ensemble of estimates of a temperature observation is calcu-

lated for each observation in a time slot in the region spanning 20◦S to 20◦N and 800-887

hPa. These are averaged to yield the value represented by a black plus sign at that time.

There are 2 black plusses at each time; 1 each for the prior (6-hour forecast) and posterior

(analysis) estimates. The “total spread” (Section 4.a) is shown by the red circles. The

RMSE and total spread share the scale (K) on the left axis. The blue symbols show the

number of observations available (◦) and used (+) at each time (scale is the right axis). The

time series span early December 2010 and come from the 2◦ CAM assimilation described in

Section 5.a.
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(nominal) 1◦ resolution from analyses provided by the European Centre for Medium-Range

Weather Forecasts; the red line shows results from a lengthy reanalysis from DART using the

same forecast model at 2◦ resolution. Blue crossed circles show the number of observations

used in the comparison (i.e. the number remaining after quality control), as numbered on

the top axis.
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Fig. 5. July 2007 minus July 2006 sea ice and cloud patterns: a) observed sea ice difference,

b) observed cloud response to sea ice loss, c) CAM4-forecasted cloud difference with no

modifications showing the unrealistic and ubiquitous cloud increases in regions that had

less sea ice in 2007 than in 2006, d) CAM4-forecasted cloud difference with improved cloud

parameterization, a much closer match to the observations in regions of sea ice loss. Adapted

from Figures 2 and 8 of Kay et al. (2011).
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Fig. 6. Influence of the December 2007 sea ice anomaly (actual month - climatology) on

the Arctic atmosphere in 24-hour CAM forecasts started from DART/CAM analyses. a)

December 2007 sea level pressure, b) December 2007 sea ice anomaly, and the resulting

anomalies of c) sea level pressure (mb), d) surface temperature (K), e) air temperature in

the lowest model layer (K), and f) low cloud (percent).
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