An ensemble approach for the estimation of «...

observational error variance
With application to the nominal 1° POP2 ocean model
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Least-squares algorithms for data assimilation require estimates of both background error covariances and observational error variances. The specification of these errors
IS an important part of designing an assimilation system because the relative sizes of these uncertainties determines how much an innovation will impact the state estimate.
Observational error estimates typically lump together measurement/instrumental errors with representativeness error. In a coarse-resolution ocean model, over much of the ocean,
the errors of representation are the dominant contribution to observational errors. Since representativeness errors are meant to account for the unresolved scales and physical
processes in the model, the variance of these errors will vary by geographic region and will also vary from model to model.

Here we present a practical approach for estimating model-dependent, spatially varying observational error variances. The method uses ensemble model
simulations to compute an expected value and uncertainty associated with the estimator — providing approximate confidence intervals for the true
observational error. We illustrate the method for the POP2 global ocean general circulation model.

An ensemble of ocean simulations

We can symbolically formulate the ocean modeling problem
as:

zf = Mz + FEy

where ‘M is a discrete operator that describes the dynamics
(resolved and/or parameterized) of the ocean model system, z,
is the vector of model state variables at time ¢, and ‘F is a
prescribed, time-dependent forcing from the atmosphere.

Ensemble realizations & of the ocean state will differ from
one another due to differences in their initial states and
differences in the atmospheric forcing. Let us assume the
forcing is a normally distributed (and possibly auto-correlated)
process and that an ensemble set of K atmospheres is available
for forcing a set of K ocean states?.

The relationship between ensemble
members, the “truth,” and the
observations

A desirable property of any forecast ensemble is that it is
“reliable,” i.e. that the ensemble members are random draws
from the same distribution as the truth. We can slightly alter
this definition to account for representativeness error by
instead saying that the ensemble members are random draws
from the same distribution as the model-resolvable component
of the truth, which we will hereafter refer to as z*. This
distinction will allow us to estimate the pooled observational
error variance that stems both from representativeness error
and measurement/instrumental error (hereafter ¢ _?).

A statistical (conceptual) model any member k& of a
reliable ocean ensemble, for z*, and for observations (y) of the
system can be expressed.

z8k =u+e*; e’ ~ N(0,X?)
Z*¥=Uu+e*; e* ~ N(0,XZ?)
yi =Hjz* +¢; & ~ N0, o0}

The linear operator Cl-[maps to the time/space location j
of an observation3. Consistent with the definition of reliability,
the vector random variables z8 and z* are samples from the
same distribution. The covariance matrix X% permits both time
and space autocorrelation, however all realizations of e~ are
uncorrelated with one another, uncorrelated with e,
uncorrelated with &°, and uncorrelated with u. The
observational errors are also uncorrelated in time and space.

An estimator of the observational
error variance

The data for our estimator of 6, consist of n observations
available through time in a fixed geographic box that we believe
has constant observational error variance. We can also compute
the ensemble model solution at the time/space location of each
observation (indexed by j) through x/ Zﬂ-gzk.

We can now form the following estimator for the
observational error within the regional box:
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where < x > is the ensemble mean and s is the sample ensemble
variance.

Properties of the estimator

Properties of the estimator are derived through the algebra
of random variables, but details are not shown here. Happily,
estimator is unbiased, i.e.

Ex(®?) = g/

For approximating Var(®?), we note that in the limit of K€ >>
1, ’J-[jpt and ﬂ-[jZ’J-(jT= ojz can be approximated by the model
ensemble sample statistics (i.e. ‘J—[Mj = <x>; and g;’= s°). Further
assuming (for simplicity only!), that ojz can be approximated by
its average value over all j, we come to an approximation for the
variance of ®*

n

Veff

where v_x is an effective degrees of freedom for the model
ensemble within the regional box. For data that are irregularly
spaced in time,

Var(®?) = 127(05L | o* + 2020%?)

n
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and p?is the squared autocorrelation for the model background
error averaged over every unique pair of observational locations.

Footnotes:

L Instrument error variance for temperature observations is less than ~.01°C? according
to WODO09 documentation.

’Certainly, the free atmosphere is not linear, but one can imagine an ensemble reanalysis
of atmospheric forcing fields that are nearly-Gaussian around their analyzed mean.

3The assumption of normally distributed errors throughout is predicated on ‘M and H
being linear operators (okay, but not perfect, for 1° ocean model)

“Vieba (2010), Metrol. Meas. Syst.

> e.g. Rutherford (1972), J. Atmos Sci. ; Richmond et al. (2005),Geophys Res. Lett.

Application to the POP2 nominal 1° ocean model
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a) Estimate of the POP2 observational error variance based on a 30 member, one year ensemble simulation forced with an
ensemble of atmospheric states from a reanalysis. Estimates were computed in 2.5° regional boxes. b) Average model background
error variance from same simulation. c) For a region in the tropical Pacific (indicated by circle in a,b), blue line is the average
model background variance and gray is the distribution associated with our estimator ®2. The distribution is centered at the
estimated value, and the dashed lines indicate the range between which we are 95% confident that the true value of
observational error variance resides. d) same as c, for the Gulf Stream region.

Discussion

The estimator for observational error variance that we present here capitalizes on the assumption that
observational error has no temporal autocorrelation and is also temporally uncorrelated with model
background error. We also make use of an ensemble of model simulations to explicitly account for model
background error. There are other methods in the literature which attempt to estimate o_2 by exploiting the
fact that background errors are uncorrelated in space, while observation errors are not>. These should be
viewed as complementary approaches (and indeed give similar results). Choosing to filter in space or time are
equally valid, although the choice may effect the accuracy of the method.

In terms of the accuracy of this estimator, it can be understood from the (approximate) Var(®?) that as the
total number of observations in the data sample increases, and p, 6? decreases, confidence that our estimate
is near the true 6,° goes up. While the size of o_?is an irreducible factor in Var(®?), n, p, and o2, can, in fact,
be altered. Trivially, more data points can be used if they are available. Less trivially, p and o2 can be reduced
through data assimilation. In fact, this is the very goal of data assimilation. If it is done optimally, the model
system errors will retain the necessary properties (ie. uncorrelated with the “truth,” uncorrelated with the
observational errors, and uncorrelated with each other) such that ®? is still a valid estimator.



