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Sampling error and localization in an EnKF
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Unobserved State Variable (x)

Observed Quantity (h(x))
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During the assimilation process, EnKF uses statistical properties of an ensemble
model forecast to estimate the flow-dependent background error covariance to
determine how an observation modifies the forecast background fields.
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With limited ensemble size, there are spurious error correlations between an
observation and a state variable, ) , especially when the distance between
these two is large.
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Remedy: Covariance localization (x) Ax, = abAy,

Localization, a technique to ‘localize’ the impact of an observation to state
variables that are close to the observation, is used to reduce spurious error
correlations between the observation and distant state variables.
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Sampling error and localization in an EnKF
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Sampling error and localization in an EnKF
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Motivation for an automated localization algorithm

 The GC function has a single parameter that defines the width of the function.
But tuning even this single parameter can be computationally expensive.

* The GC function is approximately Gaussian.

But different localization functions are needed for:

— different observation types (Houtekamer and Mitchell 2005, Anderson and Lei
2013)

— different state variable kinds (Anderson 2007, 2012)
— different times (Anderson 2007, Chen and Oliver 2010)
— different regions (Lei and Anderson 2014).
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Motivation for an automated localization algorithm

* The GC function has a single parameter that defines the width of the function.
* The GC function is approximately Gaussian.

* Thus an automated localization algorithm, empirical localization function (ELF),
is proposed.
— ELF provides an estimate for the localization for any possible observation type with
a state variable kind (at different times and for different regions).
— ELF makes few a priori assumptions for the shape of the localization function.
— ELF has computational cost advantage over tuning the GC halfwidth.
— ELF can outperform the best GC function.
o

ELF of temperature observations with
_ -~ surface pressure variables

-

_. GC function

Localization

0’ — T

0 5000 10000 150000 20000
Distance from Obs. (km)



Empirical localization algorithm

Compute separation between each pair of an observation
and a state variable;

Divide the set of all pairs into subsets using the separation;
Compute the localization for each subset.



Empirical localization algorithm:

1. Compute separation between each pair of an observation
and a state variable

« Black dots: grid points.
* Red stars: observations.
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Empirical localization algorithm:

2. Divide the set of all pairs into subsets using the separation

« Black dots: grid points.
* Red stars: observations.

Circles: distance ranges from
each observation.




Empirical localization algorithm:

3. Compute the localization for each subset

N
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The abscissa is the mean state increment,

and the ordinate is the prior mean error.

Blue circles: the distance range
chosen for one subset.

Blue dots: state variables in the
chosen distance range for every
observation.

These two quantities are plotted for each
pair of an observation and a state variable.



Empirical localization algorithm:

3. Compute the localization for each subset

The slope of the least squares fit is the
localization a that minimizes the RMS
difference between the increments and
prior errors:

o Yoe1(xp — %% ) b A
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The slope of the least squares fit is also
the localization a that minimizes the
RMS difference between the posterior
ensemble means and true values of the
state variable in the subset:
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The abscissa is the mean state increment,
and the ordinate is the prior mean error.

These two quantities are plotted for each
pair of an observation and a state variable.



Tests of the empirical localization algorithm

* The dynamical core of the GFDL B-grid global atmospheric
model: Localization for different observation types and state
variable kinds

e The Community Atmospheric Model version 5 (CAMb5):

Vertical localization and localization for different geographic
regions

 The Weather Research and Forecasting Model (WRF):
Localization for regions with and without precipitation



Tests of the empirical localization algorithm

* The dynamical core of the GFDL B-grid global atmospheric
model: Localization for different observation types and state
variable kinds



ELF in B-grid Global Model

Conduct Observing System Simulation Experiments (OSSEs).

B-grid global model:

— State variables of surface pressure, temperature, and zonal and
meridional wind components

— Horizontal model grid points 30 latitudes x 60 longitudes, 5 vertical
levels, and model time step 1h

Data assimilation system:

— Ensemble Kalman filter with perturbed observation (Burgers et al.
1998, Houtekamer and Mitchell 1998) in the Data Assimilation

Research Testbed (DART; Anderson et al. 2009)

— Time-varying but spatially uniform state space adaptive inflation
(Anderson 2009)

— GC localization as the default
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ELF in B-grid Global Model
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On average the GC halfwidth of
0.6 radians gives the smallest
RMSE, thus 0.6 radians is seen as
the optimal GC halfwidth.
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ELF in B-grid Global Model
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The ELFs are constructed from the output of an OSSE with GC halfwidth 0.8 (not optimal).
The ELF is narrower than GC0.8 and has better agreement with GC0.6 than GCO0.8 at tails.

The ELF has values larger than 1.0 at small separations (< 0.3 radians), which indicates

insufficient ensemble spread.
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ELF in B-grid Global Model
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Tests of the empirical localization algorithm

e The Community Atmospheric Model version 5 (CAMb5):
Vertical localization and localization for different geographic
regions



A simulation of total precipitation water by CAM5

https://www.homme.ucar.edu




ELF in CAM

Conduct OSSEs in DART/CAM system (Raeder et al. 2012).
CAMS5 model:

— Atmospheric component of the Community Earth System Model
version 1 (CESM1; Gent et al. 2011)

— Finite volume grid with approximately 2° resolution (94x144) and 30
vertical levels

— Default configuration of the Atmospheric Model Intercomparison
Project (AMIP; Gates 1992) protocol

Data assimilation system:

— Ensemble adjustment Kalman filter (EAKF; Anderson 2001) in DART

— Spatially- and temporally-varying state space adaptive inflation
(Anderson 2009)

— GC localization as the default
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ELF in CAM

Temperature Zonal Wind
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RMSEs for temperature and zonal wind are averaged globally (GL), in the southern
hemisphere (SH), tropics (TP) and northern hemisphere (NH).

GCO0.4 has smallest globally averaged RMSE, so 0.4 is chosen as the best halfwidth.

Some RMSEs computed for SH, TP and NH separately are smallest for other
halfwidths; tuning the GC halfwidth is complex.
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ELF in CAM
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ELF in CAM
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ELFOne has smaller temperature RMSE than GCO0.2, but larger RMSE than
GCO0.4, the best GC.

ELFOne has smaller surface pressure RMSE than GCO0.2, and slightly larger
RMSE than GCO0.4.
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ELF in CAM
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ELFOne has smaller temperature RMSE than GCO0.2 in NH and SH.
ELFOne has larger temperature RMSE than GCO.2 in TP.

Improvements of ELFOne over GCO.2 are mainly in SH and NH.
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ELF in CAM
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Horizontal and vertical ELFSPs are computed for the SH, TP and NH separately.

The horizontal ELFSP_SH and ELFSP_NH have similar shape to the global ELFSP. The
horizontal ELFSP_TP has a more compact tail than the ELFSP, ELFSP_SH and ELFSP_NH.

The vertical ELFSP_SH and ELFSP_NH are similar with smaller magnitude than the global
ELFSP. The vertical ELFSP_TP is broader than the globa | ELFSP.

Horizontal and vertical ELFSPs varying by region are used in a subsequent OSSE (ELFReg),,



ELF in CAM
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ELFReg has slightly smaller temperature RMSE than ELFOne in NH and SH.
ELFReg has smaller temperature RMSE than ELFOne in TP.
ELFReg has smaller globally averaged RMSE than ELFOne.
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ELF in CAM

* The ELFSPs varying with geographic regions have advantages
over the global ELFSP.

 The ELF appears to converge to a solution and lead to smaller
error when the construction process of the ELF is iterated.

* Thus the convergence of the ELFSPs varying with region is
examined.
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ELF in CAM
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Five OSSEs (ELFReg_I#, #=1,...,5) are conducted iteratively. Each OSSE uses
the regional ELFSPs computed from the output of the previous OSSE.
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Localization

ELF in CAM
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The ELFSP_SHs becomes larger with iterations.
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The ELFSP_SHs appear to have mostly converged after 3 iterations.

The ELFSP_SHSs from iterations 3 to 6 are larger than 1.0 at small separations. This
indicates insufficient spread and the empirical localization acts as an inflation.

Empirical localization values larger than 1.0 are set to 1.0 when used in an OSSE.
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ELF in CAM
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ELFReg I3 produces slightly smaller temperature RMSE than GCO0.4.
ELFReg I3 has significantly smaller surface pressure RMSE than GC0.4

33



ELF in CAM
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The cubic spline fit of ELF with empirical inflation (ELFSPEI) has values larger
than 1.0 at small separations.

Horizontal and vertical ELFSPEIs are used in a subsequent OSSE (ELFRegEl).

34



ELF in CAM
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ELFRegEl 13 produces smaller temperature RMSE than GCO0.4.
ELFRegEl I3 has significantly smaller surface pressure RMSE than GCO0.4
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Tests of the empirical localization algorithm

 The Weather Research and Forecasting Model (WRF):
Localization for regions with and without precipitation



Is different localization needed for different weather?
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(http://nmq.ou.edu/applications/qvs_2d_maps.html)
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ELF in WRF

Conduct OSSEs in DART/WRF system.

WRF model V3.3.1:

— CONUS domain with horizontal grid spacing 15 km, 40 vertical layers
and model top at 50 hPa

— Model physics: RRTMG long wave and short wave radiation schemes,
Thompson 2-moment microphysics scheme, Noah land surface model,
MYJ PBL scheme, and Tiedtke cumulus scheme

Data assimilation system:
— EAKF in DART

— Spatially- and temporally-varying state space adaptive inflation
— GC localization of halfwidth 0.1 radians as the default
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ELF in WRF

Temperature

Localization (-) / Correlation (- -)
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The ELFs for non-precipitating regions (ELFNP) have similar shape to GCO0.1, but ELFNP
of u-wind is smaller than GCO.1 for small separations.
The ELFs for precipitating regions (ELFP) are narrower than GCO.1 and ELFNP.

The correlation coefficient of ELF for precipitating regions decreases faster than for

non-precipitating regions.
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ELF

in WRF
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The vertical ELFs for precipitating regions generally have larger localizations.

The vertical ELFP of temperature decreases more quickly with height than for u- and v-

winds

between 4 and 10 km.

The correlation coefficient of ELF for precipitating regions is larger.
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ELF in WRF

m Applied localization function

GCO0.1 GC localization function with half-width of 0.1 radians.

One horizontal and one vertical ELFF that are computed from

ELFOneA
One the output of GCO.1.
From the output of GCO.1, two horizontal and two vertical
ELFOnePN ELFFs that vary with precipitating and non-precipitating
regions.
From the output of GCO.1, one horizontal and one vertical
ELFObsPN ELFF of temperature and one horizontal and one vertical ELFF

of u- and v-wind for precipitating regions, and similarly four
ELFFs for non-precipitating regions.
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ELF in WRF
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ELFOneA yields slightly smaller
(but statistically significant)
RMSE than GCO.1.

ELFOnePN has slightly smaller
(but statistically significant)
RMSE than GCO0.1 and ELFOneA,
thus the advantages of varying
localization for precipitation and
non-precipitating regions are
demonstrated.

But the localization functions
varying by observation types
(ELFObsPN) do not show
additional benefits than
ELFOnePN.
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The performance of EnKF can be improved with the automatic

localization algorithm ELF. Improved EnKF can lead to improved
applications.
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Can more frequent assimilation of surface pressure observations
reduce the uncertainty of the entire troposphere?

Conduct OSSEs in DART/CAM.

Assimilate uniformly distributed synthetic observations of
surface pressure (7200 sites on the sphere).

Synthetic observations are available every 6, 3 or 1 hour.

(The 20" Century Reanalysis (20CR; Compo et al. 2011)
assimilated only surface pressure observations every 6 hours.)

Two seasons, summer and winter, are examined.
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Vertical Localization for Surface Pressure Observations
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ELFs are computed for surface
pressure observations with state
variables of temperature, zonal and
meridional winds, and specific
humidity in the same column.

ELFs extend nearly vertically till
model level 15 (~300 hPa), and then
gradually decrease to 0 till model top.

A GC localization that fits the ELFs is
used as vertical localization for
surface pressure observations, which
is similar to the GC function currently
used in the 20CR.
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Temporally and Spatially Average RMSE

Surface Pressure Temperature

—e— Winter —e— Winter
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~

For both directly and non-directly observed state variables, the average RMSE
decreases with increasing assimilation frequency.



6-hour

3-hour

1-hour

Time series of Temperature RMSE Profile
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The uncertainty throughout
the entire troposphere can be
constrained by observing only
surface pressure.

The information of surface
pressure observations is
spread upward more quickly
with more frequent
assimilation.

The error of the entire depth
of the troposphere, especially
the middle troposphere, can
be better constrained with
increased observation
frequency (1 hour).
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The frequent assimilation of surface pressure observations with the ELF could help

to improve future versions of the 20CR.
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Conclusions

The empirical localization algorithm uses the output from an OSSE
and constructs localization functions that minimize the RMS
difference between the truth and the posterior ensemble mean for
state variables.

This algorithm can automatically provide an estimate of the
localization function and does not require empirical tuning of the
localization scale.

It can compute an appropriate localization function for any
potential observation type and kind of state variable, for different
geographic regions and weathers.

It plays the role of empirical inflation when needed.

The empirical localization function generally outperforms the best
GC localization in the GFDL B-grid model, CAM and WRF.



