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Ensemble sensitivity analysis (ESA) \NCAR

4 )
How does the change in a set of initial state
variables x, change a forecast metric J?

\- y

 |dentify dynamically relevant covariance structures in space
and time
* Propose observing strategies for mesoscale, short-range
forecasts in complex terrain
« Sensitivity scales (time and space) to infer predictability
scales
* Predictability of specific phenomena
* Open issues:
— Sampling error
— Linearity assumptions in complex terrain
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Ensemble Sensitivity Background \NCAR

\;"

* Ancell and Hakim (2007) showed
theoretical equivalence between
adjoint and ensemble sensitivity for
linear perturbations and Gaussian
statistics

* Relies on linearization about an
ensemble-mean trajectory

» Rigorous application has so far
been limited to large-scale (smooth)
and integrated processes where

strong linear relationships are more
likely

) Sensitivity of 24-h sea-level pressure
An optimal ensemble data (SLP) over western Washington to SLP

assimilation system provides | initial conditions, and ensemble-mean
an appropriate Sample SLP (from Torn and Hakim 2008).
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Experiment framework A

96-member ensemble dataw o
assimilation with the Data
Assimilation Research
Testbed (DART)
Weather Research and
Forecast (WRF) model

T

el

Synthetic observations __________ B
identical to rawinsonde ‘
network and surface Ry N R

altimeter
3-h cycling during Jan.
2009
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Downslope winds at CO Springs \NCAR

~C~x—wind compenent (m s—1)

- Cross section looking north at U wind (shaded) and potential temperature; 3-h
Ensemble mean forecast valid 30 Dec 2008 03Z
- J—analogous to the Bulk Richardson number to measures ratio of stability to shear

across flow separation boundary
- Histogram of J (right) showing Gaussian distribution for metric



Predictors for wind storm AN

0 at model layer 14 Q, at model layer 14

« Sensitivity of (dJ/dx) for 3-hr 6 (left) and Q, (right) at model level 14
« Strong dual sensitivities shown in both variables over plains and mountains

* Hypothesis — region A related to forcing and shear term in J, region B related to
air mass characteristics over plains and stability term in J

« Good candidates for perturbations of IC for a new ensemble run
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Moisture sensitivity to temperature \NCAR

aznlf SIYIEI 1) %Je Concept Terrain

=Y ] . N e AF =

Valid 1800 UCT 24 Jan

J = 2x2x2 box-mean water vapor mixing ratio over
Salt Lake City airport
x=Potential temperature (here on model first layer)
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Perturbation experiments

Analysis perturbation, 6(K) Forecast perturbation {,+6h (kg kg')

a

Perturbation of one analysis standard deviation in 6 at the
most sensitive location, regressed to remaining state
elements.
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Perturbation experiments

Analysis perturbation, 6(K) Forecast perturbation t,+6h (kg kg™') 15

Perturbation of one analysis standard deviation in 6 at the
most sensitive location, assimilated with ensemble filter.
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Effect of hypothetical 6 observation L\

oJ = 9, K(y’ - hx")
0x
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K =P'h" (hPh" + R)'1
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Can test use of sensitivities to
predict the change in forecast
metric resulting from a
hypothetical observation.
Analysis increment can come
from:
« assimilating synthetic obs
e approximation with

univariate linear regression
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Effect of approximation N
Diagonal approximation Full covariance NCAR

6h sensitivity: J =QVAPOR, x =T, units=kg kg’ K

| o

Approximation under-emphasizes sensitivities local to the response. Agreement
on some sensitive points (numbered) to southwest of response.
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Summary (1) AN

NCAR

« ESA appears promising for mesoscales and
iIn complex terrain; hypothetical observations
give qualitatively expected forecast change,
but overestimated response.

* At mesoscales with weak sensitivity
gradients, full covariance (and associated
Inversion) may be necessary.

 Linearity appears to hold for a variety of
perturbations, possibly as large as 10 times
the standard deviation of the analysis
variable.

This research partially funded by Office of Naval Research Award # N00014-11-1-0709, Mountain
Terrain Atmospheric Modeling and Observations (MATERHORN) Program.
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Ensemble Sensitivity (1) A

NCAR

An ensemble sample (size K) of analysis perturbations and forecast
metrics are assembled into matrix X* and column vector J,, forming
the regression equation.

The solution, giving estimated regression coefficients, is the ensemble
sensitivity defined as the gradient of the forecast metric relative to the
analysis.

Because K << N (state dimension), the system is extremely under-
determined, but the minimum-norm solution is obtainable via a QR
decomposition.

NCAR TOY, August 6 2015 13



Ensemble Sensitivity (2) A

NCAR

K,=P'h;, (hi+1PiahiT+1 +R,, )_1

T
dJ

oJ=|—=| K, (y.,-h
(axa) I(yl+1

T
= ( 9, ) ox”
ox”

_y {X [(X)T X?]_l} K, (y5 —h,.x})

T

Assimilation: a perturbation ox? resulting from assimilating
an additional observation, multiplied by the sensitivities,
gives the the expected forecast change resulting from
assimilating that observation (i.e. the predicted response).
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Ensemble Sensitivity (3)

N

NCAR

K,=P'h;, (hi+1PiahiT+1 +R,, )_1

oJ = (a_]e)T K, (yi(:-l - hi+1X?)

ox*”

T
= ( 9, ) ox”
ox”

Sampling error in ensemble data assimilation typically
mitigated by reducing covariances with a function of
distance; follows intuition that distant covariances must
be small or zero.
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Ensemble Sensitivity (4) LN

NCAR

K,=P'h;, (hi+1PiahiT+1 +R,, )_1

oJ = (a_]e)T K, (yi(:-l - hi+1X?)

ox*”

Sampling error in sensitivities arise in spatio-temporal
covariances. A few methods have been proposed in the
ensemble assimilation literature. Here from a Bayesian
hierarchical estimate (Anderson 2007).
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Ensemble Sensitivity (5) AN

NCAR

Approximation: in the meteorology literature the
iInversion needed to solve the regression problem is
always avoided by approximating the covariance
with its diagonal. The result is a scalar (univariate)
regression for each element in the state vector.
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Ensemble sensitivity details AN
NCAR

J,=[X] Bre Sensitivity is multi-variate linear
L regression; coefficients can be
e _ Xa ([Xa] Xa) Je — QR_TJe

p=- estimated via a right pseudo-
J, are perturbations about J, (scalars) inverse.

oJ
X
X“ are perturbations about x (vectors)

More common in the literature is
to avoid an inversion by
assuming covariances are zero,
P =X’[X*]', D = diag(P*) leading to a scalar problem for
each state element.

aJ,

a

-[P] X3, ~[D] X

e

0x
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Open questions L\
NCAR

 Ensemble sensitivities in the presence of
small, fast scales
— May increase nonlinearity

— Increases model error/inadequacy
— Appear as noise in correlations/covariances

 Validity of diagonal approximation

* Need to account for sampling error arising
from finite ensemble
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Ensemble Sensitivity with Localization \NCAR

af=a°{JZ[X? (x:"x: )_Tpol’fhil(hmpol’ahi +R)(y0, -

117
=ao{Jf[X? (xa"xz | ] 5xa}

« Covariance localization, or tapering, can be applied
 at the assimilation step with p
» to the regressions with «

* pis typically a function of space alone

« «ais function of space and time, here from a Bayesian
hierarchical estimate (Anderson 2007)
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Experiment Details (1) L\
NCAR

* Nature/truth from Lorenz (2005) one-scale Model |l
or two-scale Model Il
— Perfect-model experiments
— Model error simulated by retaining fast scale in nature run/
truth and eliminating it in the assimilating model
* Ensemble-filter data assimilation every 6 h
— 80 cycles

» Network of every-other grid point; or
» Network of one-half of domain totally observed

« Forecast metric (J) is root-mean square error
(RMSE)
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Experiment Details (2) L\

NCAR

* Apply individual perturbations by assimilating
iIndividual observation at randomly-chosen
unobserved gridpoints

» Evaluate 6-h forecast response with nonlinear
model

« Compare to 6-h response as predicted by
linear method: o,
oJ = ( ) ox"

ox”
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Perfect Model |l A

NCAR

When only smooth/slow scales present, little difference
between univariate (scalar) and multivariate (matrix)
predictions of response to perturbation.

Sensitivity without localization Sensitivity with localization

e Scalar RMSE=2.5137e-03 e Scalar RMSE=2.2964e-03
+  Matrix RMSE=2.3823e-03 ) +  Matrix RMSE=1.9607e-03
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Here observations are randomly chosen from every other gridpoint (which are un-observed for
sensitivity calculations).
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Perfect Model 11l A

NCAR

When both slow and fast scales are present, diagonal
approximation is less accurate. Localization slightly
improves predictions of response.

Sensitivity without localization Sensitivity with localization

e Scalar RMSE=1.2026e-02 e Scalar RMSE=8.6623e-03
+ Matrix RMSE=8.6145e-03 + Matrix RMSE=7.7726e-03
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Here observations are randomly chosen from every other gridpoint (which are un-observed for
sensitivity calculations).
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Imperfect Model N

For imperfect model, diagonal approximation results in NCAR
greater over-prediction of response; multivariate
sensitivities account for presence of fast scales in real

system, which appears as noise.
Sensitivity without localization Sensitivity with localization

e Scalar RMSE=3.1695e-01 e Scalar RMSE=2.6329e-01
+  Matrix RMSE=1.6375e—-01e +  Matrix RMSE=6.3356e—-02 :.
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Here observations are assimilated on half of domain that is data void; more impact from
observations because greater uncertainty in analysis.
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Sensitivities in a data void A
NCAR

Top: univariate sensitivities
are small in the data void
because analysis
uncertainty is large

Bottom: multivariate
sensitivities larger over
data void than over
densely observed region,
consistent with
expectations
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Summary (ll) L\
L e : . L . NCAR
Multivariate sensitivities are possible to estimate by finding a minimum-

norm solution to the resulting underdetermined matrix problem.
Whether univariate or multivariate methods are employed, sampling error
is a problem.

Sensitivities used to predict the perturbation response in the nonlinear
system are more accurate when localized/tapered to account for

sampling error.

Multivariate sensitivities better predict the nonlinear response when:
 Fast scales are present
 Model error is present

« Part of the state is poorly observed and can benefit
from additional observations

Results suggest mesoscale sensitivities for real atmospheric
problems will be more useful if using multivariate estimates.

This research partially funded by Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain
Atmospheric Modeling and Observations (MATERHORN) Program.

NCAR TOY, August 6 2015 27



References L\
NCAR
Anderson, J. L., 2003: A local least squares framework for ensemble

filtering. Mon. Wea. Rev., 131, 634-642.

Anderson, J. L., 2007: Exploring the need for localization in ensemble
data assimilation using a hierarchical ensemble filter. Physica D, 230,
99-111.

Ancell, B. and G. Hakim, 2007: Comparing adjoint- and ensemble-
sensitivity analysis with applications to observation targeting. Mon. Wea.
Rev., 135, 4117-4134.

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions
in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723—757.

Hacker, J. P. and L. Lei, 2015: Multivariate ensemble sensitivity with
localization. Mon. Wea. Rev., 143, 2013-2027.

Lorenz, E. N. 2005: Designing chaotic models. J. Atmos. Sci., 62, 1574—
1587.

Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis.
Mon. Wea. Rev., 136, 663-677.

NCAR TOY, August 6 2015 28



