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The Data Assimilation Research Testbed (DART)

DART provides data assimilation ‘glue’ to build ensemble
forecast systems for the atmosphere, ocean, land, ...
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Data Assimilation Research Testbed (DART)

> A state-of-the-art Data Assimilation System for Geoscience
> Flexible, portable, well-tested, extensible, free!
» Works with many models.
» Works with any observations: Real, synthetic, novel.
» A Data Assimilation Research System
» Theory based, widely applicable general techniques.
» Localization, Sampling Error Correction, Adaptive Inflation, ...
» Professionally software engineering
» Carefully constructed and verified
> Excellent performance
» Comprehensive documentation

» People: The DAReS Team
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DART Accelerates Forecast System Development

» Works with nearly all NCAR community models
(dozens of other models, too).

New models can be added in weeks.
Adding new observations is even easier.

Modular: models, observations and assimilation tools
easily combined.

» Enables DA use by prediction scientists.
Doesn’t require assimilation expertise.

» Fast & efficient software: laptops to supers.
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Example: NCAR Real-time ensemble prediction system
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Example: NCAR Real-time ensemble prediction system

Severe weather forecast for two days compared to NWS warnings
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WRF, 10 member ensemble, GFS for boundary conditions
Continuous operation since April, 2015
48 hour forecasts at 3km resolution

First continuously cycling ensemble system for CONUS
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DART Applications with CESM Earth System Models

DART interfaces exist for many components of NCAR's
Community Earth System Model:

* Lower atmosphere: CAM-FV, CAM-SE, MPAS

« Upper atmosphere, ionosphere: WACCM, WACCMX

« Atmospheric Chemistry: CAM/Chem

* QOcean: POP

» Land surface / biosphere: CLM

« Sea lce: CICE

« Weakly coupled DA combinations of the above

AMS, 8 January 2018



Deep Atmospheric Component Coupled DA

f 3D restart

Results from N. v 2D forcing

Pedatella, H. Liu,
J. Liu
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Deep Atmospheric Component Coupled DA

WACCMX:

« 2 degrees, 126 levels, top at 4.1x10-'9 hPa

« High-top extension of CAM

* |ncludes ionospheric processes

» Persistence forecasts of solar and geomagnetic forcing

Observations:

« Allin situ plus GPS refractivity in trop/lower strat.
« Temperature from AURA Microwave Limb Sounder (MLS)

 Temperature from TIMED/SABER
« Temperatures only up to 100km

DART:

* 40 members
» Adaptive inflation, GC localization

* 6-hour window
AMS, 8 January 2018



Deep Atmospheric Component Coupled DA

a. WACCMX+DART 2009JAN15 Forecast TEC, 75W, 1800 LT
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Multiple Component POP/CAM Coupled DA
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Multiple components assimilating
Results from Al With different DART(s) in fully-
Karspeck coupled CESM.
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Multiple Component POP/CAM Coupled DA

Weakly coupled reanalysis from 1970-1981

Model:

 POP, 1 degree, standard CESM configuration

« CAM-FV, 1 degree, standard CESM configuration
Observations:

 In-situ atmosphere observations from NCEP reanalysis
* QOcean temperature and salinity, World Ocean Database
DART:

« 30 members

« Limited adaptive inflation in ocean

* Fully adaptive inflation in atmosphere
* GC localization

AMS, 8 January 2018



Multiple Component POP/CAM Coupled DA

Network of ocean and atmosphere observations assimilated
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Observations are sparse for this period.
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Multiple Component POP/CAM Coupled DA

7 Correlation Iof monthly sea level pressyre anomaly -

Comparisons to o
HADISST and
HADSLP.

Correlation high
where observations
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Tropospheric Chemical Weather DA

f 3D restart

CAM/

Results from B. v 2D forcing

Gaubert, J. Barre .
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Tropospheric Chemical Weather DA

Chemical Weather Reanalysis for Summer 2008

Model:

« CAM-FV 2 degree 30 levels
* Mozart-4 tropospheric chemistry

Observations:

 In-situ atmosphere observations from NCEP reanalysis
« MOPITT and IASI CO retrieved profiles

DART:

« 30 members
« Adaptive inflation
 GC localization, more localized for CO obs

AMS, 8 January 2018



Tropospheric Chemical Weather DA

CO forecast fits to observations improved with DA.
Comparison to independent TES CO obs greatly improved.
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CLM Land Component Coupled DA

2D forcing

AMS, 8 January 2018



Some of the researchers using CLM/DART

<> Yong-Fei Zhang (UT Austin)

* multisensor snow data assimilation
<> Andy Fox (NEON)

* flux observations/state estimation
<> Hanna Post (Jilich)

e assimilation & parameter estimation
<> Raj Shekhar Singh (UC Berkeley)

e groundwater
<> Long Zhao (UT Austin)

 AMSR-E radiances, empirical vegetated surface RTM, soil moisture (SMAP)
<> Ally Toure (NASA-Goddard USRA)

* brightness temperatures
<> Yonghwan Kwon (UT Austin)

<> sensitivity of assimilation of brightness temperatures from multiple
radiative transfer models on estimates of snow water equivalent.
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Assimilation Results

Snow Water Storage (Posterior minus Prior)
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CICE Sea Ice Component Coupled DA

2D forcing

AMS, 8 January 2018

D state
E 6
é
3D rest

Results from C.
Bitz, Y. Zhang




CICE Sea Ice Component Coupled DA

Sea Ice OSSE

Model:
« CICE-5 forced by slab ocean
« Atmospheric forcing from CAM ensemble reanalysis

Observations:
« Sea ice concentration, age, thickness

DART:

e 30 members
* Adaptive inflation
 GC localization

AMS, 8 January 2018



CICE Sea Ice Component Coupled DA

OSSE used to explore information content of different obs.

Sea ice concentration alone not as good as when combined
with age or thickness observations.
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CICE Sea Ice Component Coupled DA

Sea ice concentration from SSM/I retrievals as next step.
Reanalysis is moved much closer to observed concentration.

Sea ice concentration for September 2001

Observed No Assimilation
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What might DA do for climate model applications?

|Cs for predictions,

Produce reanalyses to help increase understanding,

Confront models with observations, find inconsistencies
(but almost never gives direct path to improving model),

Parameter estimation for model ‘tuning’.

Ensemble methods can provide information about uncertainty
(and other aspects of distributions) for all of these.

AMS, 8 January 2018



DA Challenges for All Applications

Many assumptions of Bayesian theory are violated:
 Unbiased model and observations,
 Uncorrelated observation errors,

« Exact estimates of observation error distribution,
« Exact estimates of representation error.

Prior (forecast)

Likelihood /
Posterior (analysis) \

\ P(thlYtk) = P(YR|X)P(th|Ytk_1)

Normalization

AMS, 8 January 2018



DA Challenges for All Applications

For Kalman Filter class algorithms following are violated:
« (Gaussian priors and observation errors,
* Linear relation between model state and observations.

For Ensemble Kalman filter algorithms add:

« Sufficiently large ensembles,
* Model provides accurate estimates of second moments.

AMS, 8 January 2018



DA Challenges for All Applications

Because of all these violations of assumptions, there is no
way to assess the quality of DA results a priori.

It is essential to calibrate and validate DA results.
This is even true for very mature NWP systems.

For novel climate system applications it is even more vital.

Requires lots of observations spanning many decorrelation
times for model dynamics.

AMS, 8 January 2018



DA Challenges for All Applications

Calibration and validation must include ensemble statistics.
This requires even more observations.

Ensemble statistics aside from 1st, 2"d moment are suspect.

« Kalman filter does not generate estimates of these.
* Not clear why ensemble Kalman filters should.

AMS, 8 January 2018



DA Challenges for All Applications

Non-equilibrium "off attractor” model evolution.
E.g., spurious numerical gravity waves in NWP.
DA can cause state variables not found in free runs.
These can challenge the model numerics.

Example from WACCMX:
Model damping and diffusion had to be increased to
reduce gravity wave amplitude with DA.

AMS, 8 January 2018



DA approximates solutions to this problem

P (YR |X)P (th |Ytk_1)

P(X; |Y:, ) =
( ti tk) Normalization

This may be inconsistent with what modelers expect.
Example: Parameter estimation for gravity wave drag in CAM.
* Estimate surface roughness at each horizontal gridpoint.

* Result was a very bumpy tropical Pacific, with improved forecasts.

Unless known exactly, ‘conserved’ quantities shouldn’t be conserved.

AMS, 8 January 2018



DA Challenges for Earth System Component Models

P(Yklx)P(thlYtk_l)
Normalization

P(th |Ytk) =

DA requires a (stochastic) forecast model:

mk:k+1(xtk) = fk:k+1(xtk) + gk:k+1(xtk)'

When applied to a correct analysis distribution ensemble at
a previous time, model should produce a correct forecast
ensemble distribution for subsequent observations.

AMS, 8 January 2018



Challenges for Earth System Models (CLM examples)

Earth system component models may not make good forecasts:
* Not as mature as NWP models, especially for forecasts,

* No set of nice PDEs like Navier Stokes,

« Extreme complexity of modeled system,

* Developed as ‘process’ model, not prediction model,

« Lack of model error growth, especially if strongly forced,

* Not developed with DA/prediction as primary objective.

AMS, 8 Januar y 2018
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Challenges for Earth System Models (CLM examples)

 Relation between state variables and observations unclear.

AMS, 8 January 2018
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Location
information is
contained at this
level ONLY!

Glacier Wetland

Observations
occur here!

Vegetated

Lake

Urban

CLM abstracts the gridcell into
a “nested gridcell hiearchy of
of multiple landunits,
snow/soil columns, and Plant
Function Types”. This is
particularly troublesome
when trying to convert the
model state to the expected
observation value because:

Given a soil temperature
observation at a specific
lat/lon, which PFT did it
come from? No way to
know! Unless obs have
more metadata!




Challenges for Earth System Models (CLM examples)

« State variables that are nearly unobserved.

AMS, 8 Januar y 2018
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e o

Saddle >

9.7 km east of the Continental Divide

C-1is located in a Subalpine Forest

(402 02' 09" N; 1052 32' 09" W, 3021 m)

One column of Community Land Model (CLM)
e Spun up for 1500 years with site-specific information.

64 ensemble members

Forcing from the DART/CAM reanalysis,

Assimilating tower fluxes of latent heat (LE), sensible heat (H), and net

ecosystem production (NEP).

Impacts CLM variables: LEAFC, LIVEROOTC, LIVESTEMC, DEADSTEMC,

LITR1C, LITR2C, SOIL1C, SOIL2C, SOILLIQ ... all of these are unobserved.
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Challenges for Earth System Models (CLM examples)

Additional challenges:

 Model variable definitions with non-Gaussian distributions,
* Creating unobserved things.

Snow example, If prior has no snow, but observations do:

* Must partition snow amongst five layers, normally depends on
history of snowfall. Highly non-Gaussian,

 Must assign age, dust content, ice content, ... to each layer.

AMS, 8 January 2018



Challenges for Earth System Models (CLM examples)

Additional challenges:
* Observations with poor error characterization,
« Short periods of observations compared to system timescales.

AMS, 8 January 2018



Promising Research Directions

Just do it. Can get useful results by ignoring the problems.
Try new models and observations.

Develop more appropriate models for prediction applications.
(with modelers)

Explore value of existing or proposed observations.
(with observation folks)

Apply novel techniques for parameter estimation.
(with statisticians)

|dentify new important quantities that might be predicted.
(with impacts folks)

AMS, 8 January 2018



Learn more about DART at POSTER 171 TODAY

Data
Assimilation
Research
Testbed

www.image.ucar.edu/DAReS/DART
dart@ucar.edu E . EI

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N.,
Torn, R., Arellano, A., 2009: The Data Assimilation
Research Testbed: A community facility.

BAMS, 90, 1283—1296, doi: 10.1175/2009BAMS2618.1 E
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Identifying Model Systematic Errors

Systematic
Errors

AMS, 8 Januar y 2018



DART Science and Collaborators (4)

Science: Diagnosing and correcting errors in the CAM
FV core.
Collaborator: Peter Lauritzen, CGD.

AMS, 8 Januar y 2018



DART Science and Collaborators (4)

Gridpoint noise detected in CAM/DART analysis

Ensemble Mean V at 266 hPa at 6 hours
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DART Science and Collaborators (4)

Suspicions turned to the polar filter (DPF)

Ensemble Mean V at 266 hPa at 6 hours
90

67
45

Latitude N
(]

-45 -.- - - -
-67
-90
0 50 100 150 200 250 300 350

Longitude E
CAM FV core - 80 member mean - 00Z 25 September 2006

AMS, 8 January 2018



DART Science and Collaborators (4)

Continuous polar filter (alt-pft) eliminated noise.
Meridional Wind Speed from Alternate Polar Filter (ALT)
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DART Science and Collaborators (4)

Differences mostly in transition region of default filter.
266 hPa Meridional Wind Speed difference (DPF-ALT)
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DART Science and Collaborators (4)

* The use of DART diagnosed a problem that
had been unrecognized (or at least
undocumented).

« Could have an important effect on any physics
In which meridional mixing is important.

« The problem can be seen in ‘free runs’ -itis
not a data assimilation artifact.

« Without assimilation, can’t get reproducing
occurrences to diagnose.

AMS, 8 Januar y 2018



