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Prediction Model Observing 
System

DART

Analysis

DART provides data assimilation ‘glue’ to build ensemble 
forecast systems for  the atmosphere, ocean, land, …
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Ø A state-of-the-art Data Assimilation System for Geoscience

Ø Flexible, portable, well-tested, extensible, free!

Ø Works with many models.

Ø Works with any observations: Real, synthetic, novel.

Ø A Data Assimilation Research System

Ø Theory based, widely applicable general techniques.

Ø Localization, Sampling Error Correction, Adaptive Inflation, …

Ø Professionally software engineering 

Ø Carefully constructed and verified

Ø Excellent performance

Ø Comprehensive documentation

Ø People: The DAReS Team
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DART is used at: 

48 UCAR member universities,
More than 100 other sites,

(More than 1500 registered users).
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Ø Works with nearly all NCAR community models 
(dozens of other models, too).

Ø New models can be added in weeks.
Ø Adding new observations is even easier.
Ø Modular: models, observations and assimilation tools 

easily combined.
Ø Enables DA use by prediction scientists.

Doesn’t require assimilation expertise.

Ø Fast & efficient software: laptops to supers.

AMS, 8 January 2018



AMS, 8 January 2018



Severe weather forecast for two days compared to NWS warnings

• WRF, 10 member ensemble, GFS for boundary conditions
• Continuous operation since April, 2015 
• 48 hour forecasts at 3km resolution
• First continuously cycling ensemble system for CONUS
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DART interfaces exist for many components of NCAR’s 
Community Earth System Model:

• Lower atmosphere: CAM-FV, CAM-SE, MPAS
• Upper atmosphere, ionosphere: WACCM, WACCMX
• Atmospheric Chemistry: CAM/Chem
• Ocean: POP
• Land surface / biosphere: CLM
• Sea Ice: CICE
• Weakly coupled DA combinations of the above
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DART

WACCMX

Coupler

2D forcing

3D restart

3D stateAtm
Obs

Deep Atmospheric Component Coupled DA 

Results from N. 
Pedatella, H. Liu, 
J. Liu
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Deep Atmospheric Component Coupled DA 

WACCMX:
• 2 degrees, 126 levels, top at 4.1x10-10 hPa
• High-top extension of CAM
• Includes ionospheric processes
• Persistence forecasts of solar and geomagnetic forcing
Observations:
• All in situ plus GPS refractivity in trop/lower strat.
• Temperature from AURA Microwave Limb Sounder (MLS)
• Temperature from TIMED/SABER
• Temperatures only up to 100km
DART:
• 40 members
• Adaptive inflation, GC localization
• 6-hour window
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Deep Atmospheric Component Coupled DA 
a.

b.

c.

Impact of SSW on 
ionosphere

Forecast (top panel), 
reanalysis (middle), 
and independent obs
of Total Electron 
Content.

Agreement of forecast 
with observations 
indicates significant 
prediction skill.
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Coupl
er

CAM

Ocn Obs

POP/DART

POP

CLM

CICE

Multiple components assimilating 
with different DART(s) in fully-
coupled CESM.

CAM/DARTAtm Obs

Multiple Component POP/CAM Coupled DA 

Results from A. 
Karspeck
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Multiple Component POP/CAM Coupled DA 

Weakly coupled reanalysis from 1970-1981

Model:
• POP, 1 degree, standard CESM configuration
• CAM-FV, 1 degree, standard CESM configuration
Observations:
• In-situ atmosphere observations from NCEP reanalysis
• Ocean temperature and salinity, World Ocean Database
DART:
• 30 members
• Limited adaptive inflation in ocean
• Fully adaptive inflation in atmosphere
• GC localization
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Multiple Component POP/CAM Coupled DA 

   0
o
    60

o
E  120

o
E  180

o
W  120

o
W   60

o
W    0

o
  

  60
o
S 

  30
o
S 

   0
o
  

  30
o
N 

  60
o
N 

Network of ocean and atmosphere observations assimilated
Jan 1975

Observations are sparse for this period.
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Multiple Component POP/CAM Coupled DA 

Comparisons to 
HADISST and 
HADSLP.

Correlation high 
where observations 
existed.

DART did not 
assimilate SST 
products or 
observations.

Produces competitive 
reanalysis.



AMS, 8 January 2018

DART

CAM/
Chem

Coupler

2D forcing

3D restart

3D state

Atm, 
Chem
Obs

Tropospheric Chemical Weather DA 

Results from B. 
Gaubert, J. Barre
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Tropospheric Chemical Weather DA 

Chemical Weather Reanalysis for Summer 2008

Model:

• CAM-FV 2 degree 30 levels
• Mozart-4 tropospheric chemistry

Observations:
• In-situ atmosphere observations from NCEP reanalysis
• MOPITT and IASI CO retrieved profiles

DART:
• 30 members
• Adaptive inflation
• GC localization, more localized for CO obs
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Tropospheric Chemical Weather DA 
CO forecast fits to observations improved with DA.
Comparison to independent TES CO obs greatly improved.
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CLM Land Component Coupled DA 

DART

CLM Coupler

2D forcing
3D restart

3D state

Land 
Obs



² Yong-Fei Zhang (UT Austin)

• multisensor snow data assimilation

² Andy Fox (NEON)

• flux observations/state estimation

² Hanna Post (Jülich)

• assimilation & parameter estimation

² Raj Shekhar Singh (UC Berkeley)

• groundwater 

² Long Zhao (UT Austin)

• AMSR-E radiances, empirical vegetated surface RTM, soil moisture (SMAP)

² Ally Toure (NASA-Goddard USRA)

• brightness temperatures

² Yonghwan Kwon (UT Austin)

² sensitivity of assimilation of brightness temperatures from multiple

radiative transfer models on estimates of snow water equivalent.

Some of the researchers using CLM/DART



Improving Estimates of Snowpack Water Storage in the 
Northern Hemisphere Through a Newly Developed Land 

Data Assimilation System
Yong-Fei Zhang1, Zong-Liang Yang1,2, Yonghwan Kwon1, Tim J. Hoar3, 
Hua Su1, Jeffrey L. Anderson 3, Ally M. Toure 4,5, and Matthew Rodell 5

1Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States.
2Key Lab of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute 

of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. 
3The National Center for Atmospheric Research, Boulder, CO, United States.
4Universities Space Research Association (USRA), Columbia, MD, United States.
5NASA Goddard Space Flight Center, Greenbelt, MD, United States.
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Snow Water Storage (Posterior minus Prior)

MODIS 
assimilation

MODIS and GRACE 
assimilation

Assimilation Results
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CICE Sea Ice Component Coupled DA 

DART

CICE Coupler

2D forcing
3D restart

3D state

Ice 
Obs

Results from C. 
Bitz, Y. Zhang
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CICE Sea Ice Component Coupled DA 

Sea Ice OSSE

Model:
• CICE-5 forced by slab ocean
• Atmospheric forcing from CAM ensemble reanalysis
Observations:
• Sea ice concentration, age, thickness
DART:
• 30 members
• Adaptive inflation
• GC localization
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CICE Sea Ice Component Coupled DA 

OSSE used to explore information content of different obs.

Sea ice concentration alone not as good as when combined 
with age or thickness observations.

RMSE of Thickness
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CICE Sea Ice Component Coupled DA 

Observed No	Assimilation SIC	DA

Sea	ice	concentration	for	September	2001

Sea ice concentration from SSM/I retrievals as next step.
Reanalysis is moved much closer to observed concentration.
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What might DA do for climate model applications?

• ICs for predictions,
• Produce reanalyses to help increase understanding,
• Confront models with observations, find inconsistencies

(but almost never gives direct path to improving model),
• Parameter estimation for model ‘tuning’.

Ensemble methods can provide information about uncertainty 
(and other aspects of distributions) for all of these.
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DA Challenges for All Applications 

Many assumptions of Bayesian theory are violated:
• Unbiased model and observations,
• Uncorrelated observation errors,
• Exact estimates of observation error distribution,
• Exact estimates of representation error.

Prior (forecast)
Likelihood

Posterior (analysis)
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DA Challenges for All Applications 

For Kalman Filter class algorithms following are violated:

• Gaussian priors and observation errors,

• Linear relation between model state and observations.

For Ensemble Kalman filter algorithms add:

• Sufficiently large ensembles,

• Model provides accurate estimates of second moments.
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DA Challenges for All Applications 

Because of all these violations of assumptions, there is no 
way to assess the quality of DA results a priori.

It is essential to calibrate and validate DA results.

This is even true for very mature NWP systems.

For novel climate system applications it is even more vital.

Requires lots of observations spanning many decorrelation 
times for model dynamics.
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DA Challenges for All Applications 

Calibration and validation must include ensemble statistics.
This requires even more observations.

Ensemble statistics aside from 1st, 2nd moment are suspect. 
• Kalman filter does not generate estimates of these. 
• Not clear why ensemble Kalman filters should.
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DA Challenges for All Applications 

Non-equilibrium ”off attractor” model evolution.
E.g., spurious numerical gravity waves in NWP.
DA can cause state variables not found in free runs.
These can challenge the model numerics.

Example from WACCMX:
Model damping and diffusion had to be increased to 
reduce gravity wave amplitude with DA.



This may be inconsistent with what modelers expect.

Example: Parameter estimation for gravity wave drag in CAM.
• Estimate surface roughness at each horizontal gridpoint.
• Result was a very bumpy tropical Pacific, with improved forecasts.

Unless known exactly, ‘conserved’ quantities shouldn’t be conserved.

AMS, 8 January 2018
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DA requires a (stochastic) forecast model:

When applied to a correct analysis distribution ensemble at 
a previous time, model should produce a correct forecast 
ensemble distribution for subsequent observations.
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Earth system component models may not make good forecasts:

• Not as mature as NWP models, especially for forecasts,

• No set of nice PDEs like Navier Stokes,

• Extreme complexity of modeled system,

• Developed as ‘process’ model, not prediction model,

• Lack of model error growth, especially if strongly forced,

• Not developed with DA/prediction as primary objective.
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• Relation between state variables and observations unclear.
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Figure 1.1.  Current default configuration of the CLM subgrid hierarchy emphasizing the 

vegetated landunit. 

 

 

  

CLM abstracts the gridcell into 
a “nested gridcell hiearchy of 
of multiple landunits, 
snow/soil columns, and Plant 
Function Types”. This is 
particularly troublesome 
when trying to convert the 
model state to the expected 
observation value because:
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Figure 1.1.  Current default configuration of the CLM subgrid hierarchy emphasizing the 

vegetated landunit. 

 

 

  

Location 
information is 
contained at this 
level ONLY!

Observations 
occur here!

CLM abstracts the gridcell into 
a “nested gridcell hiearchy of 
of multiple landunits, 
snow/soil columns, and Plant 
Function Types”. This is 
particularly troublesome 
when trying to convert the 
model state to the expected 
observation value because:
Given a soil temperature 
observation at a specific 
lat/lon, which PFT did it 
come from? No way to 
know! Unless obs have 
more metadata! 
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• State variables that are nearly unobserved. 



• 9.7 km east of the Continental Divide
• C-1 is located in a Subalpine Forest
• (40º 02' 09'' N; 105º 32' 09'' W; 3021 m)
• One column of Community Land Model (CLM)

• Spun up for 1500 years with site-specific information.
• 64 ensemble members
• Forcing from the DART/CAM reanalysis,
• Assimilating tower fluxes of latent heat (LE), sensible heat (H), and net 

ecosystem production (NEP).
• Impacts CLM variables: LEAFC, LIVEROOTC, LIVESTEMC, DEADSTEMC, 

LITR1C, LITR2C, SOIL1C, SOIL2C, SOILLIQ … all of these are unobserved.

In collaboration with Andy Fox (U. Arizona)
An experiment at Niwot Ridge



These are all unobserved variables.

June 2004

Free Run
Assim
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Additional challenges:
• Model variable definitions with non-Gaussian distributions,
• Creating unobserved things.

Snow example, If prior has no snow, but observations do:
• Must partition snow amongst five layers, normally depends on 

history of snowfall. Highly non-Gaussian,
• Must assign age, dust content, ice content, … to each layer.
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Additional challenges:
• Observations with poor error characterization,
• Short periods of observations compared to system timescales.
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• Just do it. Can get useful results by ignoring the problems.
Try new models and observations. 

• Develop more appropriate models for prediction applications. 
(with modelers)

• Explore value of existing or proposed observations.
(with observation folks)

• Apply novel techniques for parameter estimation.
(with statisticians)

• Identify new important quantities that might be predicted.
(with impacts folks)



www.image.ucar.edu/DAReS/DART
dart@ucar.edu

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., 
Torn, R., Arellano, A., 2009: The Data Assimilation 
Research Testbed: A community facility.
BAMS, 90, 1283—1296, doi: 10.1175/2009BAMS2618.1 
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Prediction Model Observing System

Data Assimilation

Analysis Diagnostics

Identify
Systematic

Errors
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Science: Diagnosing and correcting errors in the CAM 
FV core.

Collaborator: Peter Lauritzen, CGD.
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Gridpoint noise detected in CAM/DART analysis

CAM FV core - 80 member mean - 00Z 25 September 2006
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Suspicions turned to the polar filter (DPF)

CAM FV core - 80 member mean - 00Z 25 September 2006
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Continuous polar filter (alt-pft) eliminated noise. 
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Differences mostly in transition region of default filter.
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• The use of DART diagnosed a problem that 
had been unrecognized (or at least 
undocumented).

• Could have an important effect on any physics 
in which meridional mixing is important.

• The problem can be seen in �free runs� - it is 
not a data assimilation artifact.

• Without assimilation, can’t get reproducing 
occurrences to diagnose.
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