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Schematic of a Sequential Ensemble Filter

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.



Schematic of a Sequential Ensemble Filter

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.

Can think about single 
observation without (too 
much) loss of generality.



Schematic of a Sequential Ensemble Filter

3. Get observed value and observational error distribution
from observing system.



Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Ensemble Kalman filters assume 
Gaussianity for this problem. 

Can compute increments without 
Gaussian assumptions. (Old news).



Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Students, faculty: Lots of cool 
problems still to be explored for 
non-Gaussian likelihoods. Contact 
me if interested.



Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Theory: impact of observation 
increments on each state 
variable can be handled 
independently!



Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Can solve this bivariate problem 
in other ways. Topic of this talk.



Schematic of a Sequential Ensemble Filter

6. When all ensemble members for each state variable are 
updated, there is a new analysis. Integrate to time of next 
observation …
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Standard ensemble filters just use bivariate sample 
linear regression to compute state increments.

ISDA Munich, 8 March 2018

Focus on the Regression Step

Dxi,n=bDyn,
n=1,…N.

N is ensemble size.
b is regression    

coefficient.
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Will examine two additional ways to increment state 
given observation increments. Both still bivariate.

ISDA Munich, 8 March 2018

Focus on the Regression Step
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Nonlinear Regression Example

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).
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Standard Ensemble Adjustment Filter (EAKF)

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).
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Standard Rank Histogram Filter (RHF)

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

Standard regression Rank regression

Noisy
Relation.
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

Standard regression Rank regression

Monotonic 
relation.
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

3. Convert observation posteriors to rank.

a. Extrapolate by assuming Gaussian tails on prior.

b. Same as Rank Histogram filter.

4. Regress rank increments onto state ranks.
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

3. Convert observation posteriors to rank.

a. Extrapolate by assuming Gaussian tails on prior.

b. Same as Rank Histogram filter.

4. Regress rank increments onto state ranks.

5. Convert posterior state ranks to state values.

6. If posterior rank is outside ‘legal’ values, use weighted 

average of extrapolation and standard regression.
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Nonlinear Regression Example

Rank regression with 
EAKF for observation 
marginal.

Follows monotonic 
ensemble prior ‘exactly’. 
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Nonlinear Regression Example

Rank regression with 
RHF for observation 
marginal.

Follows monotonic 
ensemble prior ‘exactly’.
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Second approach, use different ‘regression’ for each 
ensemble member to compute increments for xi

ISDA Munich, 8 March 2018

Focus on the Regression Step

Dxi,n=bnDyn,
n=1,…N.

N is ensemble size.
bn is ‘local’ regression    

coefficient.
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Local Linear Regression

Relation between observation and state is nonlinear.

Try using ’local’ subset of ensemble to compute regression.

What kind of subset?

Cluster that contains ensemble member being updated.
Lots of ways to define clusters.
Here, use naïve closest neighbors in (x,y) space.
Vary number of nearest neighbors in subset.
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Local Linear Regression

Local ensemble subset is 
nearest ½ . Regression 
approximates local slope 
of the relation.
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Local Linear Regression

Local ensemble subset is 
nearest ½ . Regression 
approximates local slope 
of the relation.

Highlighted red increment 
uses least squares fit to 
ensemble members in region.
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Local Linear Regression

Highlighted red increment 
uses least squares fit to 
ensemble members in region.

Slope more accurate 
locally, but a disaster 
globally.
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Local Linear Regression

Highlighted red increment 
uses least squares fit to 
ensemble members in region.

Note similarity to 
Houtekamer’s method, 
except local ensemble 
members are used, rather 
than non-local.
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Local Linear Regression with Incremental Update

Local slope is just that, local.

Following it for a long way is a bad idea.
Will use a Bayesian consistent incremental update.

Observation with error variance s.
Assimilate k observations with this value.
Each of these has error variance s/k.
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Local Linear Regression with Incremental Update

This is an RHF update 
with 4 increments. 
Individual increments 
highlighted for two 
ensemble members.

For an EAKF, posterior 
would be identical to 
machine precision.

Nearly identical for RHF.
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Local Linear Regression with Incremental Update

2 increments with subsets 
½ ensemble.

Posterior for state 
qualitatively improving.
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Local Linear Regression with Incremental Update

4 increments with subsets 
½ ensemble.

Posterior for state 
qualitatively improving.
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Local Linear Regression with Incremental Update

8 increments with subsets 
½ ensemble.

Posterior for state 
qualitatively improving.
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Local Linear Regression with Incremental Update

8 increments with subset 
1/4 ensemble.

Posterior for state 
degraded.

Increment is moving 
outside of local linear 
validity.
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Local Linear Regression with Incremental Update

16 increments with subset 
1/4 ensemble.

Posterior for state 
improved.
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Local Linear Regression with Incremental Update

If relation between observation and state is locally a 
continuous, smooth (first two derivatives continuous) 
function:
Then, in the limit of a large ensemble, fixed local subset 
size, and large number of increments: 

The local linear regression with incremental update 
converges to the correct posterior distribution.
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Local Linear Regression with Incremental Update

If relation between observation and state is locally a 
continuous, smooth (first two derivatives continuous) 
function:
Then, in the limit of a large ensemble, fixed local subset 
size, and large number of increments: 

The local linear regression with incremental update 
converges to the correct posterior distribution.

This could be very expensive,
No guarantees about what goes on in the presence of noise.
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Multi-valued, not smooth example.

Similar in form to a wind 
speed observation with 
state velocity component.



pg 37ISDA Munich, 8 March 2018

Multi-valued, not smooth example.

Standard regression does 
not capture bimodality of 
state posterior.
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Multi-valued, not smooth example.

Rank regression nearly 
identical in this case.
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Multi-valued, not smooth example.

Local regression with ½ of 
the ensemble does much 
better. 

Captures bimodal 
posterior.

Note problems where 
relation is not smooth.
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Multi-valued, not smooth example.

Local regression with1/4 
of the ensemble does 
even better. 

No need for incremental 
updates here.
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Regression with Noisy Priors

Most geophysical 
applications have noisy 
bivariate priors. 

Usually hard to detect 
nonlinearity (even this 
example is still pretty 
extreme).
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Regression with Noisy Priors

Standard regression 
EAKF places many 
posterior members 
outside of the prior 
bivariate distribution.
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Regression with Noisy Priors

Rank regression does a 
significantly better job.
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Regression with Noisy Priors

Local incremental 
regression. This result is 
for local ensemble with 
nearest ½ of ensemble 
and 8 increments.

Need bigger local 
ensembles to reduce 
sampling errors. 



pg 45ISDA Munich, 8 March 2018

Regression with Noisy Priors

Local incremental 
regression. This result is 
for local ensemble with 
nearest 1/4 of ensemble 
and 8 increments.

The small ensemble 
subsets lead to large 
sampling error. Probably 
worse than standard RHF.
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Computational cost for the state variable update:

Base regression: O(m2n)
Rank regression: O(m2nlogn)
Local regression: O(m2n2logn)

m: sum of state size plus number of observations,
n: ensemble size.

Latter two can be made less on average with some work.

Good for GPUs (more computation per byte).

Computational Cost
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Standard model configuration, perfect model, three cases.

1. Identity observations, error variance 1, every 12 hours,
2. Identity observations, error variance 16, every hour,
3. 40 random observing locations, observation is log(state), error 

variance 1024, every 12 hours.

Fixed multiplicative inflation, fixed Gaspari-Cohn localization.
Search through 100 pairs of inflation/localization for each case.
Results for best case.

Results: Lorenz96
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Checked subsets of 1/2, 1/4,1/8 of state variables.
Number of increments 1, 2, 4, 8.

Always did at least as well as other methods.

But, very expensive…

Results: Local Incremental Updates
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Results: Standard and Rank Regression
Error variance 16, every hour
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Results: Standard and Rank Regression
Error variance 16, every hour Log, error variance 1024, every 12 hours
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Results: Standard and Rank Regression
Error variance 16, every hour Log, error variance 1024, every 12 hours

Error variance 1, every 12 hours
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Conclusions

Sequential ensemble filters can:
Apply non-Gaussian methods in observation space,
Nonlinear methods for bivariate regression.
Lots of things to explore in this context.



pg 53ISDA Munich, 8 March 2018

Conclusions

Local regression with incremental update can be effective 
for locally smooth, continuous relations. 

Can be expensive for ’noisy’ bivariate priors:
Requires large subsets (hence large ensembles),
Subsets can be found efficiently,
Incremental update is a multiplicative cost.

Can provide lower bounds for accuracy in some cases.
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Conclusions

Rank regression effective for monotonic bivariate relations.

May be effective for:
Nonlinear forward operators,
Transformed state variables (log, anamorphosis, …).

Surprisingly effective for some more standard cases.

Moderate increase in cost.

Should be studied further.
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www.image.ucar.edu/DAReS/DART

All results here with DARTLAB tools 
freely available in DART.


