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Hurricane Florence

O Tropical wave ~» tropical storm ~» Category 4 Hurricane

O Landfall on Sep. 14 (Carolinas) with winds up to 150 mph




Hurricane Florence

O Tropical wave ~» tropical storm ~» Category 4 Hurricane
O Landfall on Sep. 14 (Carolinas) with winds up to 150 mph
O Catastrophic damages to coastal communities [$25 billion]

O Flooding magnitude greatly exceeded the levels observed due to

Hurricane Matthew in 2016




Hurricane Florence cont.

O The goal is to interface the Data Assimilation Research Testbed
(DART; Anderson, 2003) with WRE-Hydro (NOAA’s NWM; Gochis,
2020) to enhance flood prediction during Hurricane Florence
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Hurricane Florence cont.

Latitude

O The goal is to interface the Data Assimilation Research Testbed
(DART; Anderson, 2003) with WRE-Hydro (NOAA’s NWM; Gochis,
2020) to enhance flood prediction during Hurricane Florence
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THE COUPLED HYDROLOGIC-
ASSIMILATION FRAMEWORK




The Hydrologic Model

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing

> Groundwater Bucket Model: Mitigate baseflow deficincies

5/12



The Hydrologic Model

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing

> Groundwater Bucket Model: Mitigate baseflow deficincies

Streamflow Data Assimilation System

Atmospheric
forcing R R R PP .
. Channel &
T - Parametric ||
| . reservoir Streamflow (cms)
y : noise models \
surtac Flux from overland A
odel :| + subsurface routing USGS
. DART <4—{ streamflow
f : observations

Parametric
noise

subsurface
routing

Flux from bottom

Groundwater /
bucket model Bucket head (m)
of soil columns

Speé

aggregation




The Hydrologic Model

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing
> Groundwater Bucket Model: Mitigate baseflow deficincies

Full model run from beyond 2010-07-01: NWM operational analysis
2010-10-01 to 2018-07-01
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The Hydrologic Model

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing
> Groundwater Bucket Model: Mitigate baseflow deficincies

Full model run from beyond 2010-07-01: NWM operational analysis
2010-10-01 to 2018-07-01
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Forcing and Ensemble Uncertainty

O Apply Gaussian perturbations to the boundary fluxes to the
streamflow and bucket models every hourly forecast step
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Forcing and Ensemble Uncertainty

O Apply Gaussian perturbations to the boundary fluxes to the
streamflow and bucket models every hourly forecast step

O To create realistic model variability, we follow a "multi-physics"
approach (Berner et al., 2011) and perturb the channel parameters:

1. top width, T 4. Manning’s N, n
2. bottom width, B 5. width of compound channel, T,
3. side slope, m 6. Manning’s N of compound channel, 7.,

Sampling uniformly under some physical constraints!
TCC
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DART: The Data Assimilation Research Testbed

O Serial DA scheme: process observations one after the other

O State: [1] Streamflow & [2] groundwater bucket at every reach
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DART: The Data Assimilation Research Testbed

O Serial DA scheme: process observations one after the other

O State: [1] Streamflow & [2] groundwater bucket at every reach

How to mitigate typical filtering issues?

i. Sampling Errors: due to limited ensemble size

ati) _  f()
Xik = Xjk

(l)

+ an j, k,i:{space, time, ensemble}

— Along-The-Stream (ATS) Localization [0<a<1]

ii. Model Biases: e.g., physical parameters, boundary conditions, ...

xfla(z) ( fla@) xf'a) +§; “; fla : {forecast or analysis}

—s Spatially and Temporally Varying Adaptive Inflation [VA > 1]
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Along-The-Stream (ATS) Localization

ATS localization aims to mitigate not only spurious correlations, due
to limited ensemble size, but also physically incorrect correlations
between unconnected state variables in the river network
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Along-The-Stream (ATS) Localization

ATS localization aims to mitigate not only spurious correlations, due

to limited ensemble size, but also physically incorrect correlations

between unconnected state variables in the river network
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Along-The-Stream (ATS) Localization

ATS localization aims to mitigate not only spurious correlations, due
to limited ensemble size, but also physically incorrect correlations
between unconnected state variables in the river network

A. Dan River at Paces (NWIS 02075500) o ATS Localization (G-C: 200 km)
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ATS vs Regular Localization

ATS  Reg20 Regi1o Regs Reg2  Reg1

€ - Prior RMSE 1854 886 3346 34.32

RS

Es O§ Posterior RMSE 17.82 6.75 25.11 33.66| 26.41

® d . . - _ _ - _ _

; S Prior Bias 11.65 1.71 18.09  -11.07

& z  Posterior Bias -0.85  -11.41 -17.16  -10.01

E‘ Z Prior Spread 1.20 3.29 2.80 10.90 10.84 9.54
Posterior Spread 1.55 3.00 2.27 6.28 6.43 5.17

O Performance using ATS localization is significantly better (~ 40%)
O Using ATS, one can increase the effective localization radius
O Regular localization with large radii fails (correlating physically

unrelated variables)
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Adaptive Covariance Inflation

The algorithm is adaptive in time, based on Bayes’ theorem,
and results in spatially varying fields (El Gharamti, 2018):

p (A7) = p (@10) - p1)
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Adaptive Covariance Inflation

The algorithm is adaptive in time, based on Bayes’ theorem,
and results in spatially varying fields (El Gharamti, 2018):
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Adaptive Covariance Inflation

The algorithm is adaptive in time, based on Bayes’ theorem,

and results in spatially varying fields (El Gharamti, 2018):

Posterior pdf ‘ . ‘Inverse Gamma
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Time-Avg. Bucket Prior Inflation

Latitude

34.425 35.25 36.075 36.9

33.6

Time-Avg. Streamflow Prior Inflation

36.9

34.425

-79

-78
Longitude

33.6

<77

Prior pdf

. Large inflation in
SN d\insely observed

areas

-80

-79

-78 -77

Longitude 10 / 12



Bias Mitigation

Posterior: Sep 17,2018 7:00 PM

After landfall, the model’s streamflow g F%
prediction (Open Loop) is significantly 2 ?}/N

smaller than the posterior along Pee-Dee
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina

Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow

prediction (Open Loop) is significantly

smaller than the posterior along Pee-Dee

River in South Carolina

Hydrograph: Rocky‘ River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow A sizable increase in prior
prediction (Open Loop) is significantly inflation to counter the bias
smaller than the posterior along Pee-Dee in the modeled streamflow!

River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

o Pee Dee River near Bennettswlle, SC (NWIS 021 305561)
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

Pee Dee River near Bennettswlle, SC (NWIS 021 305561)
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The probability of the observation to fall outside the
open loop ensemble is > 50%
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O NOAA's National Water Model configuration of the WRF-Hydro
framework is coupled to the Data Assimilation Research Testbed
(DART) to improve ensemble streamflow forecasts under extreme
rainfall conditions during Hurricane Florence in Sep. 2018
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Summary

O NOAA's National Water Model configuration of the WRF-Hydro
framework is coupled to the Data Assimilation Research Testbed
(DART) to improve ensemble streamflow forecasts under extreme
rainfall conditions during Hurricane Florence in Sep. 2018

O To address sampling errors, Along-The-Stream (ATS)
Localization is proposed. The algorithm provides improved
information propagation in the stream network

O Adaptive Inflation is extremely useful and is able to serve as a
vigorous bias correction scheme which varies both spatially and

OO

temporally

https://dart.ucar.edu/ _

I Thank You! |
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