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MOTIVATION




1. Why Streamflow Forecasting?

Hurricane Florence (2018):

O Tropical wave ~» tropical storm ~» Category 4 Hurricane
O Landfall on Sep. 14 (Carolinas) with winds up to 150 mph
O Catastrophic damages to coastal communities [$25 billion]
O

Flooding magnitude greatly exceeded the levels observed due to
Hurricane Matthew (2016) and Floyd (1999) combined

I
Rainfall estimates from Hurricane Florence (Source: NWS) Hurricane Florence eye during landfall (Source: NWS)
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Created with ezgif.com GIF maker
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1. Why Streamflow Forecasting?

Hurricane Florence flooding and damages; near Swansboro, NC (Source: CBS 17)
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damages_CBS17.mp4
Media File (video/mp4)


1. Why Streamflow Forecasting?

O Predicting major floods during extreme rainfall events is crucial
1. Save lives (~ 50 people died due to Florence Flooding)
2. Limit damages (via advance warnings)
3. Protect infrastructure

Flooded city of New
Bern, NC
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Hurricane-related Facts

O 2020 was the most active season: 12 storms hit the continental US
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Hurricane-related Facts

O 2020 was the most active season: 12 storms hit the continental US

O Some of the most lethal consequences of hurricane season are not
the storms but their aftermath: since 2017 at least 39 people have
died following storms because of carbon monoxide poisoning
from improperly used generators

O 2021 Atlantic hurricane season officially begun last Tuesday

O NHC have 21 storm names ready for this season:
Ana, Bill, Claudette, Danny, Elsa, Fred, Grace, Henri, Ida, Julian, Kate,
Larry, Mindy, Nicholas, Odette, Peter, Rose, Sam, Teresa, Victor and
Wanda
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THE MODEL: WRF-HYDRO




2.1 WRF-Hydro Objectives

WRF-Hydro: NCAR Weather Research and Forecasting model (WRF)
hydrological modeling system. Research compartment of the National
Water Model (NWM).

A community-based system, providing;:

O Prediction of major water cycle components such as precipitation,
soil moisture, snowpack, groundwater, streamflow, inundation

O Reliable streamflow prediction across scales (0-order headwater
catchments to continental river basins and minutes to seasons)

O A robust framework for land-atmosphere coupling studies

\A https://ral.ucar.edu/projects/wrf_hydro
———)

~— Online Lessons, Jupyternotbook lessons and
V\/RF—Hyd KO applications, online exercises, training on DockerHub, ...
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https://ral.ucar.edu/projects/wrf_hydro

2.2 Full WRF-Hydro Ecosystem
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2.3 Full WRF-Hydro Physics Permutations

WRF-Hydro Options Current NWM Configuration
# 3 up-to-date column land
Column Land i vl models: Noah, NoahMP (w/ NoahMP
Surface Model o built-in multi-physics options),
Sac-HTET
3 surface routing schemes:

glve”;‘nd dul diffusive wave, kinematic Diffusive wave

ow Module wave, direct basin aggregation
Lateral 2 subsurface routing
Subsurface Flow scheme: Boussinesq Boussinesq shallow
Module shallow saturated flow, saturated flow

2d aquifer model

Conceptual 2 groundwater schemes: direct
Baseflow aggregation storage-release: pass-through ~ Exponential model
Parameterizations ~' or exponential model
Channel = & 5 channel flow schemes: diffusive wave, Custom-network
Routing/ rew - kinematic wave, RAPID, custom-network  (NHDPlus) Muskingum-
Hydraulics . I Muskingum or Muskingum-Cunge Cunge model
Lake/Reservoir 1 lake routing scheme: level- Level-pool
Management pool management management
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2.4 Water Forecasts Everywhere, Any Time

Streamflow (in cfs) simulation over CONUS for the 2019-2020 water
year (Source: NOAA, NWC, NWS).
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CONUS_sf.mp4
Media File (video/mp4)


2.5 Streamflow Data
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DART: THE DATA ASSIMILATION
RESEARCH TESTBED




3.1 What is DART?

O A community facility for ensemble DA; developed and

maintained by the Data Assimilation Research Section El E
(DAReS) in CISL at NCAR

o Framework:

|
Flexible, portable, well-tested, extensible, free!
Source code distributed on GitHub: NCAR /DART
Models: Toy to HUGE, including CESM
Observations: Real, synthetic, novel
o Research:

]

(o)

o

. CAM FESOM GITM WRF
CICE WRF-Hydro pop BGRID sQG
CLM WACCM-X CAM-Chem NOAH [ MDZ

GCCOM  WRF-Chem MPAS_ATM NCOMMAS
AM2 COAMPS MPAS_OCN ROMS

o Theory based, widely applicable techniques
o Nonlinear filters, nonGaussian approaches
o Adaptive inflation, Localization, ...

MITgem_ocean  rrecepm NAAPS
CABLE PFLOTRAN

COAMPS_NEST
PE2LYR

o PBL_Id

o Teaching: Extensive tutorial materials and exercises

O ~ 50 UCAR member universities & more than 100 other sites
O Collaborations with external partners

https://dart.ucar.edu/
https://docs.dart.ucar.edu/



https://github.com/NCAR/DART
https://dart.ucar.edu/
https://docs.dart.ucar.edu/

3.2 Some DART Characteristics

1. Assimilate the observations serially

o remove the need to invert

o simplify implementation, parallelism

o equivalent to batch assimilation (localization usually breaks this)
2. Two-step least squares update scheme [Anderson 2003; MWR]

o Find the observation increments; Ay) i=1,2,...,N,

o Regress those increments in state space

Axg.i) - nya—Z Ay®, 3 ensemble members advancing in time
NI f(l) (1)
Xig = + an _ _
analysis prior
j=1,2,...,Nx (space) E‘_C e
k=1,2,...,N; (time) i~
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3.3 DART Flow & Functionality

Source data

= =)
\ Observation sequence file
OBSERVATION \ - - ® o -
CONVERTER - <

Initial ensemble
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3.3 DART Flow & Functionality

Source data

\ Observation sequence file Single model instance Initial ensemble
OBSERVATION \ -« S S Cw ™ T
CONVERTER - < - < - < -

Realworld  25°C Model state Real world 25°C Model state

& || &\

H 5

Initial ensemble

Analysis Pre-assimilation Increments

S~




MODEL & DA CONFIGURATION




4.1 Model Domain and Observations

Interface DART [Anderson, 2008; BAMS] with WRF-Hydro (NOAA's NWM;
Gochis, 2020) using HydroDART (refer to: NCAR /wrf_hydro_dart on GitHub)
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O Regional subdomain of
the NWM CONUS

o NWM channel network
based on NHDPlus v.2

o ~ 67K reaches

16 /34



4.1 Model Domain and Observations

Interface DART [Anderson, 2008; BAMS] with WRF-Hydro (NOAA's NWM;
Gochis, 2020) using HydroDART (refer to: NCAR /wrf_hydro_dart on GitHub)
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4.2 Spinup & DA Setup

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing

> Groundwater Bucket Model: Mitigate baseflow deficincies
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4.2 Spinup & DA Setup

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing

> Groundwater Bucket Model: Mitigate baseflow deficincies

Streamflow Data Assimilation System

Atmospheric
forcing R R R PP .
. Channel &
I . Parametric | " o
y : noise models \:"eamflow (cms)
Land surface :|  Fluxfrom overland A
~ model :| + subsurface routing USGS
(Noah-MP) : DART «—{ streamflow
7¢ : observations
Overland & /
Parametric Groundwater
subsurface noise bucket model Bucket head (m)
routing
I Flux from bottom
Y of soil columns
Spatial

aggregation




4.2 Spinup & DA Setup

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing
> Groundwater Bucket Model: Mitigate baseflow deficincies

Full model run from beyond 2010-07-01: NWM operational analysis
2010-10-01 to 2018-07-01

( \
Deterministic NWM Atmospheric

forcing R LR R R R R R :

model chain from :
Ode cha © f : Parametric =" C[Z:gr':lec:f
forcing through v : noise models ‘\S"jamﬂow(cms)

aggregation Land surface | Flux from overland Y

model | + subsurface routing USGS
(Noah-MP) :

DART <4— streamflow

< T > observations
S

Streamflow Data Assimilation System

p

Overland & /
Parametric Groundwater
subsurfe Bucket head (m;
‘“’\;\:C“‘g‘:‘(‘e noise bucket model m
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4.2 Spinup & DA Setup

Channel + Bucket Configuration:

> Streamflow Model: Muskingum-Cunge hydrograph routing
> Groundwater Bucket Model: Mitigate baseflow deficincies

Full model run from beyond 2010-07-01: NWM operational analysis
2010-10-01 to 2018-07-01

R ( \ Streamflow Data Assimilation System
Deterministic NWM Atmospheric
orcing R AT R O R .
model chain from : Channel & :
. f : Parametric | reservoir .
forcing through v : noise models Nﬁﬂow (cms) :
aggregation Land surface .| [ Flux from overland Y
~ model +| |+ subsurface routing USGS
(Noah-MP) : DART €—{ streamflow
< T > observations
Overland & : /
One-way runoff subsurface Pa::)rgeetrlc = S:s;;dr\:lvs;z )/B:ckel head (m)
. routing
fluxes used as input )
forcing to the RN A S
channel+bucket spatial [~

aggregation

sub-model \ y DA period: 2018-09-07 — 2018-10-08




4.3 Forcing and Ensemble Uncertainty

O Apply Gaussian perturbations to the boundary fluxes to the streamflow
and bucket models every hourly forecast step
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4.3 Forcing and Ensemble Uncertainty

O Apply Gaussian perturbations to the boundary fluxes to the streamflow
and bucket models every hourly forecast step

O To create realistic model variability, we follow a "multi-configuration"
approach and perturb the channel parameters:

1. top width, T 4. Manning’s N, n
2. bottom width, B 5. width of compound channel, T,
3. side slope, m 6. Manning’s N of compound channel, 7.,

Sampling uniformly under some physical constraints!

TCC
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4.4.1 Along-The-Stream (ATS) Localization

x?(lz) = x{ (ki) + an;i) O<ax<l (Localization Factor)
O Small ensemble sizes produce imperfect sample covariances
[Houtekamer and Mitchell, 2001; MWR], yielding spurious correlations

O ATS localization [El Gharamti et al., 2020; HESS] aims to mitigate not only
spurious correlations, due to limited ensemble size, but also physically
incorrect correlations between unconnected state variables in the
river network
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4.4.1 Along-The-Stream (ATS) Localization

x?(l? = x{ (ki) + an;i) 0O<ax<l1 (Localization Factor)
Some Characteristics:
1. Flow of information only travels downstream (tree-like shapes)

2. Total number of close reaches depend on the size of the basin

3. Observations in different catchments do not have common close reaches

ATS Localization (G-C: 100 km) » ATS Localization (G-C: 200 km)

Localization

35.8
358

Latitude

Latitude

34,
34.7

Gauge ID: 02102500

Gauge ID: 02082950

Gauge ID: 02129000

Gauge ID: 02071000

Gauge ID: 02091500
I

PVeAe

336

-80 79 78 77 8 80 79 78
Longitude Longitude



4.4.2 Does regular localization even work?

ATS Reg20 Regi1o0 Regs Reg2 Reg1

;g 3 Prior RMSE 1854 886 3346 34.32

[E OLgx” Posterior RMSE 17.82 6.75 25.11 33.66 | 26.41

® d : : - _ _ - . _

. e Prior Bias 11.65 1.71 18.09  -11.07

#Z Zz  DPosterior Bias -0.85  -11.41 -17.16  -10.01

5 Z Prior Spread 1.20 3.29 2.80 10.90 10.84 9.54
Posterior Spread 1.55 3.00 2.27 6.28 6.43 5.17

O Performance using ATS localization is significantly better (~ 40%)
O Using ATS, one can increase the effective localization radius
O Regular localization with large radii fails (correlating physically

unrelated variables)
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4.4.3 Tuning ATS Localization; [i] Radius

A. Dan River at Paces B. Tar River at Rocky Mount
1000 300 F
x  Obs x Obs
& ~-~-no DA, 115.1 | | L ~-=-no DA, 40.1 |]
800 7k —— 50 km, 59.6 250 ——50km, 14.8
y —— 75 km, 82.0 ——75km, 16.0

. 600 - LR t ~——— 100 km, 47.8 | . ~———100 km, 9.9
2 o ; !% —— 150 km, 56.3 2 150l —— 150 km, 22.3 ||
S 3 b M —— 200 km, 885 | | S 4 —— 200 km, 22.4

0 v = 3
Sep 07 Sep 14 Sep 22 Sep 30 Oct 07

D. Deep River at Moncure

2000
x Obs & x Obs
~-=-no DA, 68.3 5 ~-=-no DA, 147.5
150 ——50km, 18.0 | 1500 - % ——50km, 46.7 |-
——75km, 20.6 2% ——75km, 37.1
——100 km, 5.6 H ——100 km, 29.4
2 100l "\, |——150km, 86 ] 2 1000 | x —— 150 km, 58.8 ||
S . |——200km, 92 S X —— 200 km, 40.1
IS £
,,,,,, H
50 500 - q
o s A . == 03 4 & . o |
Sep 07 Sep 14 Sep 22 Sep 30 Oct 07 Sep 07 Sep 14 Sep 22 Sep 30 Oct 07

O Test with different localization radii: 50, 75, 100, 150, 200 km
O Larger radii degrade the accuracy (giving rise to spurious correlations)
O Smaller radii limit the amount of useful information

O Best performance with 100 km
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4.4.4 Tuning ATS Localization; [ii] Correlation Function

o @ Gaspari-Cohn
@ Boxcar
@® Ramped-Boxcar
NS o
~ R O, .
- ) . % O Averaging over all gauges,
N 7 . . .
©| 200 100 0 100 200 \\ OOOO the correlation coefficient

was: Gaspari-Cohn (0.83),
Boxcar (0.77) and
Ramped-Boxcar (0.79)

Standard Deviation

O Gaspari-Cohn outperforms
other functions

1 0.75 0.5 0.25
Centered Root Mean Square Error
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4.5.1 Dealing with Variance Underestimation

O Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

O Other issues (that we usually ignore): High nonlinearity,
nonGaussian features, correlation errors in the data
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4.5.1 Dealing with Variance Underestimation

O Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

O Other issues (that we usually ignore): High nonlinearity,
nonGaussian features, correlation errors in the data

O Inflation increases the variance around the ensemble mean:

=10 V3 (x{mm _ ;{'”) 7

fla notation is used to refer either forecast or analysis. V\ is the
inflation factor. This scales the ensemble covariance by a A:

p/le = ).pfla

& T
A Z (xfla(i) _ ,—(fla) (xf|a(i) B )—(flu)
i=1
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4.5.1 Dealing with Variance Underestimation

—— Obs Likelihood: p(y|z)
® —— Prior pdf: p(z)
——Posterior pdf: p(z|y)
© |
o
S Original
Sample
N
© e
©
Q- ~
e Up,i®
yo +H +]1:++ - +++/+ Inflated
Sample
. . S R S / P
prior | obs | posterior
T T T T T T T 1
-2 -1 0 1 2 3 4 5 6
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4.5.2 How to choose V/,\?

* Spatially and Temporally Varying Adaptive Covariance Inflation [EI
Gharamti 2018; El Gharamti et al. 2019; MWR]:

1. Assume A to be a random variable

2. Use the data to estimate A at every point in the domain
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4.5.2 How to choose V/,\?

* Spatially and Temporally Varying Adaptive Covariance Inflation [EI
Gharamti 2018; El Gharamti et al. 2019; MWR]:

1. Assume A to be a random variable

2. Use the data to estimate A at every point in the domain

Apply Bayes’ rule:
p(Ald) = p(A) - p(d|7)

Bayesian Inflation Update

= Prior

08 ~— Likelihood

O Prior p(A); an Inverse Gamma pdf —
O Likelihood p(d|1); a Gaussian function
od=|y’— i}f | is the innovation
o Innovation statistics [Derosiers et al. 2005]:
E(d)=0; E(d)=0]+Ao} T a— z

Distribution
o
>

<
=

02

O Posterior p(A|d)
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4.5.3 A quick illustration using DART_LAB’s L96 GUlIs
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L96.mp4
Media File (video/mp4)


4.5.4 What to inflate; Prior or Posterior?

It is more common to inflate the prior covariance (after integrating the
ensemble members forward in time). But what is more effective?
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4.5.4 What to inflate; Prior or Posterior?

It is more common to inflate the prior covariance (after integrating the
ensemble members forward in time). But what is more effective?

Sampling Errors

No model errors; No sampling errors (N=5000) z No model errors; High sampling errors (N=5)
o)
Lorenz-63 g
e
System =
2 =
L o
() =
= ®
. . S| —AMb:0.19 —Al-a:0.18 — Al-ab: 0.20
o prior inflation .
.. . 500 1500 2500 3500 500 1500 2500 3500
o posterior inflation
o both High model errors; No sampling errors (N=5000) High model errors; High sampling errors (N=5
©
3 2
8
= 3
p
2t —AIb:0.50 —Al-a: 0.63 — Al-ab: 0.42 ° ——AI-b: 0.62 —Al-a: 1.09 ——Al-ab: 0.52
500 1500 2500 3500 500 1500 2500 3500
Time Steps Time Steps
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4.5.5 Inflation on the River Network

Latitude

33.6

35.25 36.075 36.9

34.425

Time-Avg. Streamflow Prior Inflation

Longitude

Latitude

33.6

35.25 36.075 36.9

34.425

Time-Avg. Bucket Prior Inflation

1.21

-80 -79 -78 -77
Longitude

O Inflation follows tree-like shapes thanks to ATS localization

O Larger inflation in densely observed regions
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4.6 Anamorphosis

Streamflow is a positive quantity. We need to make sure the DA framework
produces physically meaningful updates!

0. Prior Streamflow PDF . PHY: Posterior Streamflow PDF
Prior Before Truncation
Streamfiow Mean= 2.59, Var=3.14 2 Mean= 0.31, Var= 0.1
60 4
5 _ Physical Bound Skewness= 1.11, Kurtosis= 0.83 5 6o 5
£ * f Gauge obs £ 2 Truncate 17% of ensemble
Bal . . B0 -
% Observation 3 ; Posterior
5 Mean=0.20, Var=0.12 a ES Mean= 0.34, Var= 0.08

N
S

20
Severe loss in

-1 o 1 8 9 10 -1 0 1 2 3 4
Physlca\ Space. S(vaamflow (cms)

L

ANA: Posterior streamflow (cms)

40 50 - 100
Skewness= -0.03 Transformed Posterior Project back to PHY
Kurtosis= 0.03 Prior 40 - 80 N
w0 c Posterior
o sol S & Mean= 1.32, Var=1.61
20 7 E
w E 20- - B 40 L
2 5 a
g8 "l [ gilils
E o _ 0 [H- L o . .
E -4 2 0 2 4 - -4 2 0 2 4 0 2 4 6 8
o Gaussian Space Update in Transformed Space
= ANA: Posterior streamflow (cms)
< 30 — 50 8o
E = -0. = ;";"’S’Omd o Posterior Prolect back to PHY_
g 60
_E 20 = § Posterior
£ 30y M o Mean=0.92, Var= 043
%w o z I
o
S I ol T e
0 = 0 L 0 L—W—‘ —
-2 Rl [ 1 2 3 3 2 0 1 2 3 4 5

near Gaussian Updale in Translormed Space Physical Space



HYDROLOGICAL ASSESSMENT



5.1 Bias Mitigation

Posterior: Sep 17,2018 7:00 PM
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5.1 Bias Mitigation
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5.1 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC

4000 Y v T
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£ 25 ©
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5.1 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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5.1 Bias Mitigation

After landfall, the model’s streamflow A sizable increase in prior
prediction (Open Loop) is significantly inflation to counter the bias
smaller than the posterior along Pee-Dee in the modeled streamflow!

River in South Carolina
Hydrograph: Rocky River near Norwood, SC

4000
<415
3500 -
3000 -
g | | === WRF-Hydro Prediction
32500 ® Gauge Data
= Prior Ensemble .5
2 2000 5§ —— Prior Ensemble Mean =
I Posterior Ensemble kS
8 1500 H— Posterior Ensemble Mean -
= === Prior Inf. Mean
w
1000 -
500 -
0
Sep 07 Sep 14 Sep 22

30/ 34



5.1 Bias Mitigation

The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble
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5.1 Bias Mitigation

The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

o Pee Dee River near Bennettswlle, SC (NWIS 021 305561)
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5.2 More on the effects of inflation

Stream flow (cms)

Tar River near Langley (NWIS 0208250410)
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> Outlier Threshold: [X/ — y° 2+ 0%; =
O Outlier Thresho '|j y°l>p 0y + 0y =3
O Adding posterior inflation on top of prior inflation helps improve accuracy
O Falling limb of hydrograph (PP-inf) better fits the data. Recession happens

almost 2 days earlier (rejects less data)

O

May argue that posterior inflation could be resolving other regression

issues such as sampling noise and nonGaussianity
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5.3 Benefits of Gaussian Anamorphosis

Stream flow (cms)

Stream flow (cms)

Standard DA update
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= Prior Mean, RMSE: 5.38
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O Observation rejection is
improved with GA

O Better fit to the
observations on Sep. 17th

O Higher order moments are

almost completely
eliminated using GA
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5.4 Withholding Gauges

Lumber River at Lumberton (NWIS 02134170) Cape Fear River at Kelly (NWIS 02105769)
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O By withholding gauges, we can infer the impact of the assimilation
methods on un-gauged points within the domain

DA is able to spread accurate information to unobserved locations

O
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Future Research Directions

O Full CONUS streamflow
reanalysis for the past 30 years:
— Explore hybrid EnKF-OI
approaches
[El Gharamti 2021; MWR]
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Future Research Directions

O Full CONUS streamflow
reanalysis for the past 30 years: {{#
— Explore hybrid EnKF-OI
approaches
[El Gharamti 2021; MWR]

O A collaborative project with USGS; 2 main goals:

1. Assimilate gauge temperature data (investigate effects on streamflow)
2. Placement of gauges (OSSE studies)

O Coupling the LSM with WRF-Hydro:

1. Assimilate soil moisture & streamflow; weak vs strong coupling
2. Assimilate snow data (thickness, SWE, ...)
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