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MOTIVATION



1. Why Streamflow Forecasting?

Hurricane Florence (2018):

# Tropical wave tropical storm Category 4 Hurricane

# Landfall on Sep. 14 (Carolinas) with winds up to 150 mph
# Catastrophic damages to coastal communities [$25 billion]
# Flooding magnitude greatly exceeded the levels observed due to

Hurricane Matthew (2016) and Floyd (1999) combined
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Hurricane Florence eye during landfall (Source: NWS)Rainfall estimates from Hurricane Florence (Source: NWS)


Created with ezgif.com GIF maker

eye.mp4
Media File (video/mp4)



1. Why Streamflow Forecasting?
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Hurricane Florence flooding and damages; near Swansboro, NC (Source: CBS 17)


damages_CBS17.mp4
Media File (video/mp4)



1. Why Streamflow Forecasting?

# Predicting major floods during extreme rainfall events is crucial
1. Save lives (∼ 50 people died due to Florence Flooding)
2. Limit damages (via advance warnings)
3. Protect infrastructure
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Flooded city of New
Bern, NC



Hurricane-related Facts

# 2020 was the most active season: 12 storms hit the continental US

# Some of the most lethal consequences of hurricane season are not
the storms but their aftermath: since 2017 at least 39 people have
died following storms because of carbon monoxide poisoning
from improperly used generators

# 2021 Atlantic hurricane season officially begun last Tuesday

# NHC have 21 storm names ready for this season:
Ana, Bill, Claudette, Danny, Elsa, Fred, Grace, Henri, Ida, Julian, Kate,
Larry, Mindy, Nicholas, Odette, Peter, Rose, Sam, Teresa, Victor and
Wanda
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THE MODEL: WRF-HYDRO



2.1 WRF-Hydro Objectives

WRF-Hydro: NCARWeather Research and Forecasting model (WRF)
hydrological modeling system. Research compartment of theNational
Water Model (NWM).

A community-based system, providing:
# Prediction of major water cycle components such as precipitation,

soil moisture, snowpack, groundwater, streamflow, inundation
# Reliable streamflow prediction across scales (0-order headwater

catchments to continental river basins and minutes to seasons)
# A robust framework for land-atmosphere coupling studies
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https://ral.ucar.edu/projects/wrf_hydro

Online Lessons, Jupyternotbook lessons and
applications, online exercises, training on DockerHub, ...

https://ral.ucar.edu/projects/wrf_hydro


2.2 Full WRF-Hydro Ecosystem
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2.3 Full WRF-Hydro Physics Permutations
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2.4 Water Forecasts Everywhere, Any Time
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Streamflow (in cfs) simulation over CONUS for the 2019-2020 water
year (Source: NOAA, NWC, NWS).


CONUS_sf.mp4
Media File (video/mp4)



2.5 Streamflow Data
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DART: THE DATA ASSIMILATION
RESEARCH TESTBED



3.1 What is DART?

# A community facility for ensemble DA; developed and
maintained by the Data Assimilation Research Section
(DAReS) in CISL at NCAR
◦ Framework:

◦ Flexible, portable, well-tested, extensible, free!
◦ Source code distributed on GitHub: NCAR/DART
◦ Models: Toy to HUGE, including CESM
◦ Observations: Real, synthetic, novel

◦ Research:
◦ Theory based, widely applicable techniques
◦ Nonlinear filters, nonGaussian approaches
◦ Adaptive inflation, Localization, ...

◦ Teaching: Extensive tutorial materials and exercises

# ∼ 50 UCAR member universities & more than 100 other sites
# Collaborations with external partners
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3.2 Some DART Characteristics

1. Assimilate the observations serially
◦ remove the need to invert
◦ simplify implementation, parallelism
◦ equivalent to batch assimilation (localization usually breaks this)

2. Two-step least squares update scheme [Anderson 2003; MWR]

◦ Find the observation increments; ΔH(8) 8 = 1, 2, . . . , #4

◦ Regress those increments in state space
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Δx(8)
9

= �GH�
−2
H ΔH

(8) ,

x0(8)
9 ,:

= x 5 (8)
9 ,:
+ Δx(8)

9

9 = 1, 2, . . . , #G (space)

: = 1, 2, . . . , #C (time)



3.3 DART Flow & Functionality
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3.3 DART Flow & Functionality

14 / 34

Observation sequence file

Source data

OBSERVATION
CONVERTER

Initial ensembleSingle model instance

25°C

15°C

5°C

25°C

15°C

5°C

Real world Model state Real world Model state

IncrementsPre-assimilationAnalysis

=_



MODEL & DA CONFIGURATION



4.1 Model Domain and Observations

Interface DART [Anderson, 2008; BAMS] with WRF-Hydro (NOAA’s NWM;
Gochis, 2020) using HydroDART (refer to: NCAR/wrf_hydro_dart on GitHub)
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4.2 Spinup & DA Setup

Channel + Bucket Configuration:
⊲ Streamflow Model: Muskingum-Cunge hydrograph routing
⊲ Groundwater Bucket Model: Mitigate baseflow deficincies
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4.3 Forcing and Ensemble Uncertainty

# Apply Gaussian perturbations to the boundary fluxes to the streamflow
and bucket models every hourly forecast step

# To create realistic model variability, we follow a "multi-configuration"
approach and perturb the channel parameters:

1. top width, )
2. bottom width, �
3. side slope, <

4. Manning’s N, =
5. width of compound channel, )22
6. Manning’s N of compound channel, =22

Sampling uniformly under some physical constraints!
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4.4.1 Along-The-Stream (ATS) Localization

x0(8)
9 ,:

= x 5 (8)
9 ,:
+ ΔG(8)

9
0 <  < 1 (Localization Factor)

# Small ensemble sizes produce imperfect sample covariances
[Houtekamer and Mitchell, 2001; MWR], yielding spurious correlations

# ATS localization [El Gharamti et al., 2020; HESS] aims to mitigate not only
spurious correlations, due to limited ensemble size, but also physically
incorrect correlations between unconnected state variables in the
river network
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Some Characteristics:

1. Flow of information only travels downstream (tree-like shapes)

2. Total number of close reaches depend on the size of the basin

3. Observations in different catchments do not have common close reaches



4.4.2 Does regular localization even work?
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ATS Reg 20 Reg 10 Reg 5 Reg 2 Reg 1

Ta
rR

iv
er

at
Ta

rb
or
o

(N
W

IS
02

08
35

00
) Prior RMSE 5.58 18.54 8.86 33.46 41.61 34.32

Posterior RMSE 4.93 17.82 6.75 25.11 33.66 26.41

Prior Bias -1.13 -11.65 -1.71 -20.24 -18.09 -11.07

Posterior Bias -0.85 -11.41 -0.74 -20.37 -17.16 -10.01
Prior Spread 1.20 3.29 2.80 10.90 10.84 9.54
Posterior Spread 1.55 3.00 2.27 6.28 6.43 5.17

# Performance using ATS localization is significantly better (∼ 40%)
# Using ATS, one can increase the effective localization radius
# Regular localization with large radii fails (correlating physically

unrelated variables)



4.4.3 Tuning ATS Localization; [i] Radius
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# Test with different localization radii: 50, 75, 100, 150, 200 km
# Larger radii degrade the accuracy (giving rise to spurious correlations)
# Smaller radii limit the amount of useful information
# Best performance with 100 km



4.4.4 Tuning ATS Localization; [ii] Correlation Function
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4.5.1 Dealing with Variance Underestimation

# Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

# Other issues (that we usually ignore): High nonlinearity,
nonGaussian features, correlation errors in the data
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# Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

# Other issues (that we usually ignore): High nonlinearity,
nonGaussian features, correlation errors in the data

# Inflation increases the variance around the ensemble mean:

x̃ 5 |0(8)
9
←
√
�

(
x 5 |0(8)
9
− x 5 |0

9

)
+ x 5 |0

9

5 |0 notation is used to refer either forecast or analysis.
√
� is the

inflation factor. This scales the ensemble covariance by a �:

P̃ 5 |0 = � · P 5 |0

≡ �
#4∑
8=1

(
x 5 |0(8) − x 5 |0

) (
x 5 |0(8) − x 5 |0

))
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4.5.2 How to choose
√
�?

★ Spatially and Temporally Varying Adaptive Covariance Inflation [El
Gharamti 2018; El Gharamti et al. 2019; MWR]:
1. Assume � to be a random variable
2. Use the data to estimate � at every point in the domain

Apply Bayes’ rule:
?(�|3) ≈ ?(�) · ?(3 |�)

# Prior ?(�); an Inverse Gamma pdf
# Likelihood ?(3 |�); a Gaussian function

◦ 3 = |H> − x 5
9
| is the innovation

◦ Innovation statistics [Derosiers et al. 2005]:
E(3) = 0; E(32) = �2

> + ��2
5

# Posterior ?(�|3)
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4.5.3 A quick illustration using DART_LAB’s L96 GUIs
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Media File (video/mp4)



4.5.4 What to inflate; Prior or Posterior?

It is more common to inflate the prior covariance (after integrating the
ensemble members forward in time). But what is more effective?
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4.5.5 Inflation on the River Network
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4.6 Anamorphosis

Streamflow is a positive quantity. We need to make sure the DA framework
produces physically meaningful updates!
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HYDROLOGICAL ASSESSMENT



5.1 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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prediction (Open Loop) is significantly
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A sizable increase in prior
inflation to counter the bias
in the modeled streamflow!
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

Pee Dee River near Bennettsville, SC (NWIS 021305561)
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The probability of the observation to fall outside the
open loop ensemble is > 50%

The observed discharge statistically indistinguishable
from the prior ensemble



5.2 More on the effects of inflation
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# Adding posterior inflation on top of prior inflation helps improve accuracy
# Falling limb of hydrograph (PP-inf) better fits the data. Recession happens

almost 2 days earlier (rejects less data)
# May argue that posterior inflation could be resolving other regression

issues such as sampling noise and nonGaussianity



5.3 Benefits of Gaussian Anamorphosis
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5.4 Withholding Gauges
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# By withholding gauges, we can infer the impact of the assimilation
methods on un-gauged points within the domain

# DA is able to spread accurate information to unobserved locations
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# Full CONUS streamflow
reanalysis for the past 30 years:
→ Explore hybrid EnKF-OI
approaches
[El Gharamti 2021; MWR]

# A collaborative project with USGS; 2 main goals:
1. Assimilate gauge temperature data (investigate effects on streamflow)
2. Placement of gauges (OSSE studies)

# Coupling the LSM with WRF-Hydro:
1. Assimilate soil moisture & streamflow; weak vs strong coupling
2. Assimilate snow data (thickness, SWE, ...)
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