

CLM5-DART Tutorial: Setting up and running a global assimilation

Brett Raczka, NCAR, Data Assimilation Research Section (DAReS)

© UCAR 2021

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

NCAR National Center for UCAR Atmospheric Research

Information about DART

Website: https://dart.ucar.edu

Documentation: https://docs.dart.ucar.edu

General questions to DART software team: <u>dart@ucar.edu</u> Questions related to Land DA and CLM-DART: <u>bmraczka@ucar.edu</u>

This research was supported by the NASA CMS Program (awards NNX16AP33G and 80NSSC20K0010). CESM is sponsored by the National Science Foundation and the U.S. Department of Energy. We would like to thank the Center for High Performance Computing at the University of Utah. We would also like to acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation, through allocation awards UUSL0005 and UUSL0007.

Information about DART

Website: https://dart.ucar.edu

About Research - Documentation

Get DART

Tutorials

Featured project: NC State, UC San Diego, MIT & KAUST Collaboration

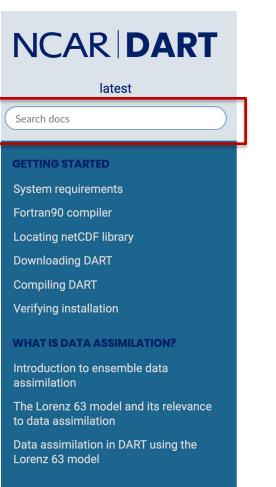
UNDERSTANDING GULF OF MEXICO EDDY DYNAMICS

DATA ASSIMILATION FOR THE ENTIRE EARTH SYSTEM

Use ensemble DA techniques with geophysical models spanning the earth system.

USE DATA FROM ANY SOURCE, TEST MANY ALGORITHMS

Assimilate any suitable observations. Swap out filter and inflation algorithms with ease.



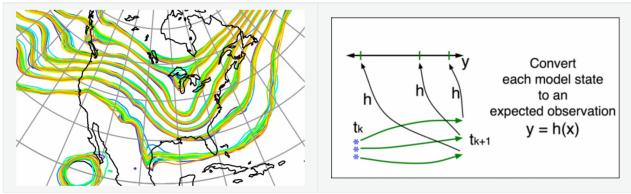
LEARN ON LAPTOPS, RUN ON SUPERCOMPUTERS

Compile without MPI for conceptual models or with MPI for GCMs on supercomputers.

Information about DART: Documentation

Documentation: https://docs.dart.ucar.edu

WHAT IS DART?



希 » Welcome to the Data Assimilation Research Testbed

C Edit on GitHub

Welcome to the Data Assimilation Research Testbed

The Data Assimilation Research Testbed (DART) is an open-source, freely available community facility for ensemble data assimilation (DA). ¹ DART is developed and maintained by the Data Assimilation Research Section (DAReS) at the National Center for Atmospheric Research (NCAR).

Ensemble Data Assimilation

Ensemble DA is a technique for combining observations with numerical models to estimate the state of a physical system.

It anables modulars, observational scientists, and aconhysisists to:

Information about DART: CLM5-DART

Updated CLM-DART documentation located on tag: 'clm-swe_pre-release'

NCAR | DART

latest

Search docs

GETTING STARTED

System requirements

Fortran90 compiler

Locating netCDF library

Downloading DART

Compiling DART

Verifying installation

WHAT IS DATA ASSIMILATION?

Introduction to ensemble data assimilation

The Lorenz 63 model and its relevance to data assimilation

v: latest -

Data assimilation in DART using the Lorenz 63 model

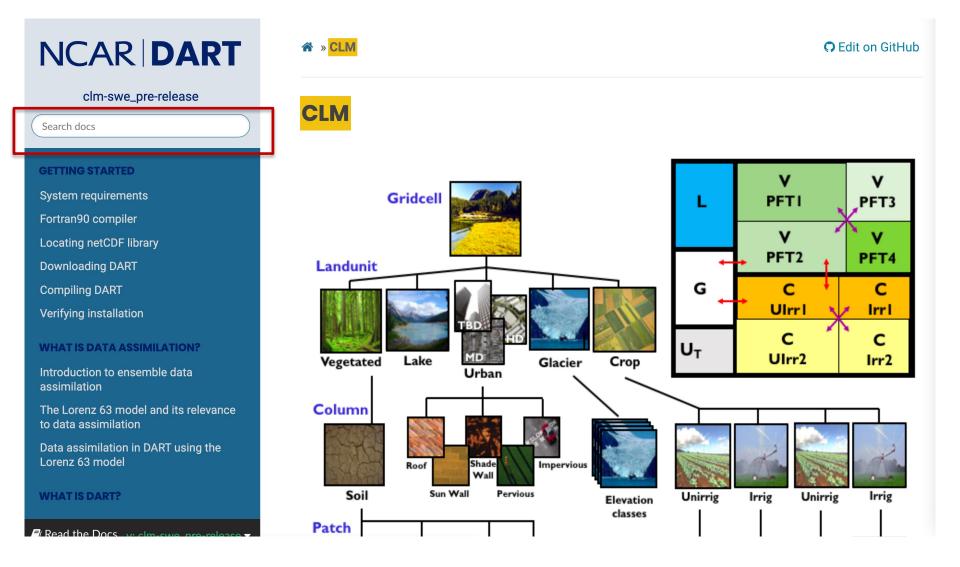
WHAT IS DART?

Read the Docs

NCAR DART

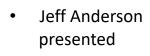
latest				
Search docs				
Read the Docs v: latest -				
/ersions latest stable v9.12.13 v9.11.12 v9.11.11 v9.11.10 v9.11.9				
v9.11.8 v9.11.7 v9.11.6 v9.11.5				
v9.10.5 v9.10.4 v9.10.3 v9.10.2				
clm-swe_pre-release				

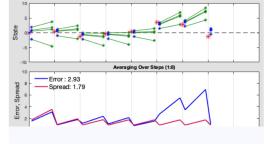
PDF HTML Epub On Read the Docs Project Home Builds Downloads On GitHub View Edit Search Search docs


Hosted by Read the Docs • Privacy Policy https://docs.dart.ucar.edu/en/latest/_images/DARTspaghettiSquare.gi

NCAR DART
clm-swe_pre-release
Search docs
GETTING STARTED
System requirements
Fortran90 compiler
Locating netCDF library
Downloading DART
Compiling DART
Verifying installation
WHAT IS DATA ASSIMILATION?
Introduction to ensemble data assimilation
The Lorenz 63 model and its relevance to data assimilation
Data assimilation in DART using the Lorenz 63 model

WHAT IS DART?


Information about DART: CLM5-DART


Updated CLM-DART documentation located on tag: 'clm-swe_pre-release'

Information about DART: Tutorials

Prepared tutorials related to DART: https://dart.ucar.edu/tutorials/

MATLAB

DART LAB

An introduction to Data Assimilation using MATLAB DART_LAB is a MATLAB®-based tutorial to demonstrate the principles of ensemble data assimilation. The DART_LAB tutorial begins at a more introductory level than the materials in the tutorial directory, and includes hands-on exercises. ...

Fortran

The DART tutorial

The DART Tutorial is intended to aid in the understanding of ensemble data assimilation theory and consists of step-bystep concepts and companion exercises with DART. ...

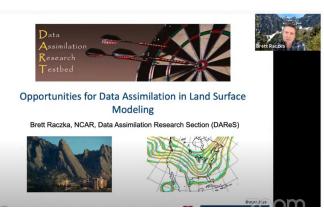
Fortran

WRF-DART tutorial

Overview The WRF-DART tutorial steps through a WRF-DART experiment. The experiment covers the continental United States and uses a 50 member ensemble initialized from NCEP's Global Forecast System (GFS) initial conditions at 2017/04/27 00:00 UTC....

CLM-DART Tutorial Coming Soon !

Materials of this presentation will go into it.


More information about my work:

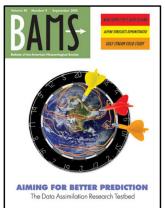
Questions related to Land DA and CLM-DART: bmraczka@ucar.edu

https://www.cgd.ucar.edu/events/seminars/

CESM Workshop 2021: Land Model Working Group



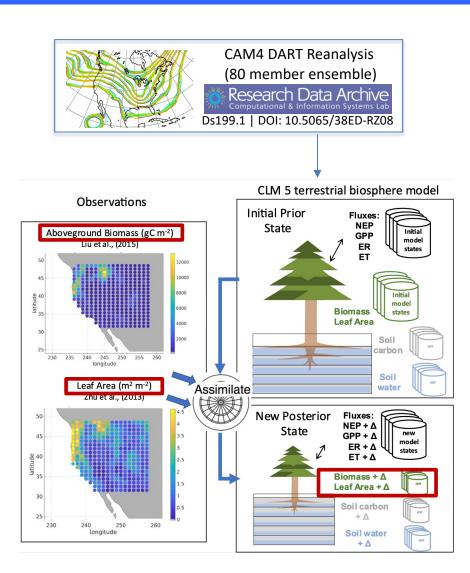
CESM Workshop 2021: Biogeochemistry Working Group



Improving CLM5.0 Biomass and Carbon Exchange across the Western US using Data Assimilation (DART) Brett Raczka, NCAR, Data Assimilation Research Section (DAReS)

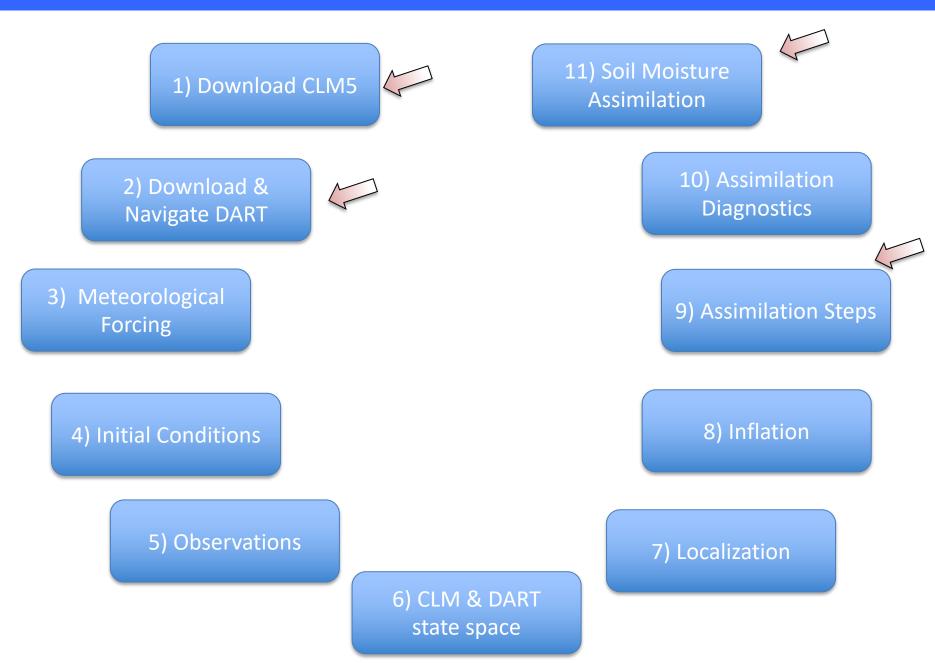
Example of DART workflow

Anderson et al.,2009


JAMES Journal of Advances in Modeling Earth Systems*

Research Article 🖞 Open Access 💿 🛞 🗐 😂

Improving CLM5.0 Biomass and Carbon Exchange Across the Western United States Using a Data Assimilation System


Brett Raczka 🕱 Timothy J. Hoar, Henrique F. Duarte, Andrew M. Fox, Jeffrey L. Anderson, David R. Bowling, John C. Lin,

First published: 19 June 2021 | https://doi.org/10.1029/2020MS002421

CLM5-DART Tutorial Overview

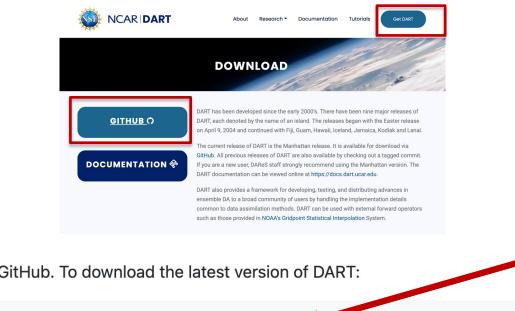
1) Download CLM5

CLM is a rapidly-moving target and DART is developed and maintained by a small group of people. Consequently, we have focused on supporting *released* versions of CLM. This documentation and scripting were tested using the CESM tag **release-cesm2.2.0** and CLM tag **release-cesm2.2.01** following the download instructions from https://github.com/ESCOMP/CESM .

**It is recommended to clone a separate installation of cesm2.2 and specifically use it for CLM-DART simulations

>> cd <your Cheyenne work directory>
>> git clone https://github.com/escomp/cesm.git cesm_dart

Clone new installation of CLM to 'cesm_dart' directory


>> cd cesm_dart
>> git tag

Explore available tags for CLM

>> git checkout release-cesm2.2.01
>> git status
>> ./manage_externals/checkout_external

Checkout dartcompatible tag, confirm tag

**Optional: If you want to use git to keep track of your personal CLM changes you
may want to checkout out a branch to add/commit/track changes:
>> git checkout -b cesm_dart_branch

Create

directory

directory

ŋ

within your

DART

'work'

```
Downloading DART
```

DART is available through GitHub. To download the latest version of DART:

```
git clone https://github.com/NCAR/DART.git
```

To register for DART and view the terms of use, click on register for DART.

Citing DART

To cite DART, please use the following text:

The Data Assimilation Research Testbed (Version X.Y.Z) [Software]. (2021). Boulder, Colorado: UCAR/NCAR/CISL/DAReS. http://doi.org/10.5065/D6WQ0202

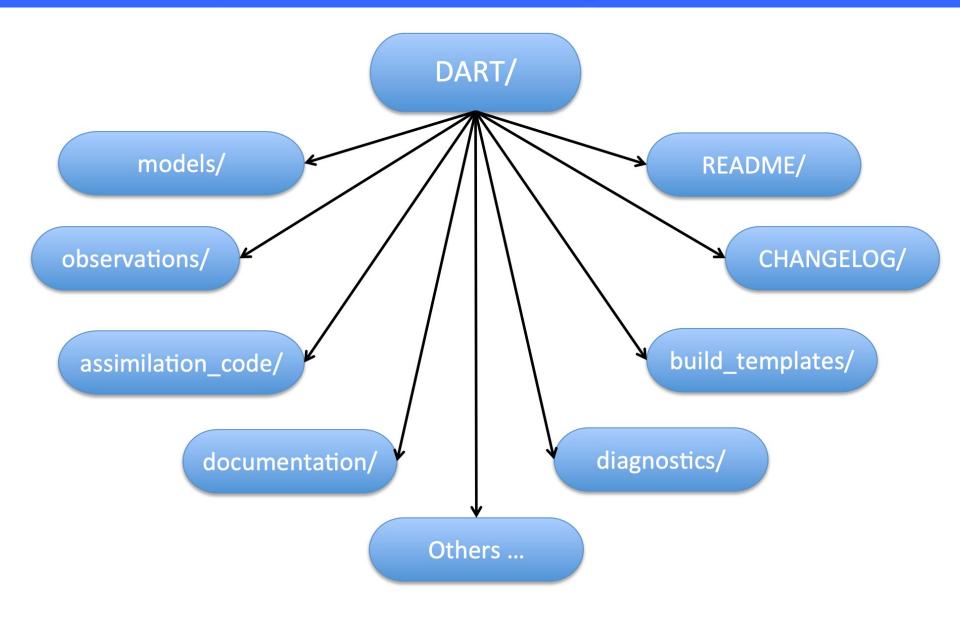
and update the DART version and year as appropriate.

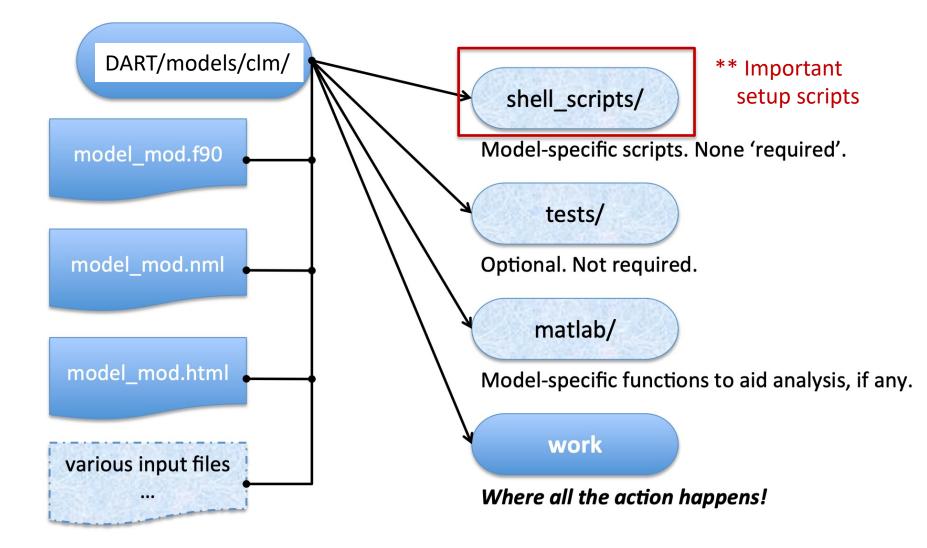
>> cd <your Cheyenne work directory>/DART/
>> git tag (what tags are available)

>> git checkout clm-swe_pre-release
>> git status (what branch you are on)
>> git describe -tag (what tag you are on)

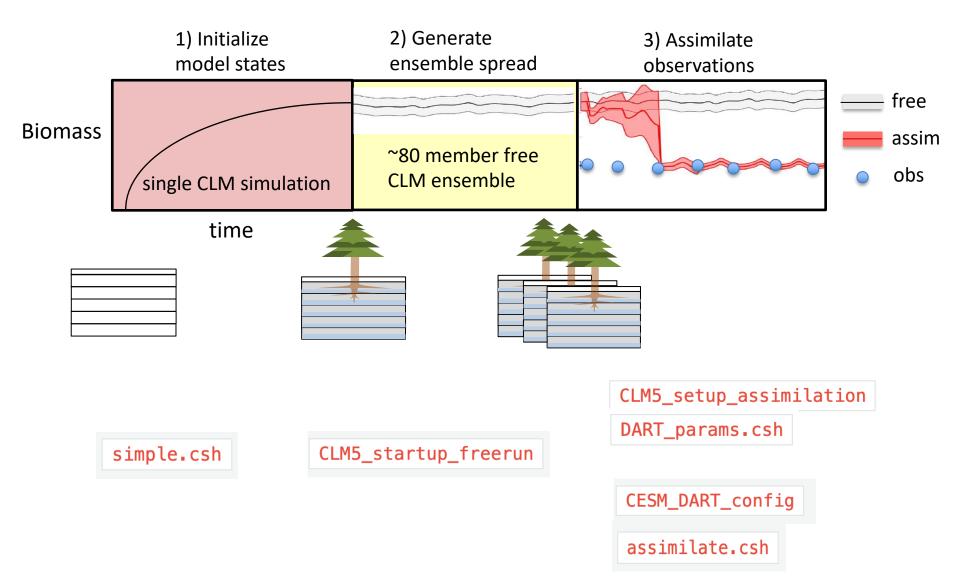
Optional but recommended to checkout a local DART branch such that you add/commit/track changes

>> git checkout -b dart_soilmoisture


'Fork' the git repository ~/NCAR/DART.git and to set up a remote 'origin' and 'upstream' branches. For more information see:


https://github.com/NCAR/DART/wiki

In general setting your remote branches such that the 'upstream' points to ~/NCAR/DART.git and 'origin' points to ~/<your_git_account/DART.git helps to obtain new DART features, and also if you push your local changes to the 'origin' the DART team can view them directly if you are having trouble.


Quickstart approach to getting local copy of DART:

For more experienced git users and if you intend to share/develop DART code:

Key CLM5-DART setup scripts: ~/DART/models/clm/shell_scripts/cesm2_2

Key CLM setup scripts: ~/DART/models/clm/shell_scripts/cesm2_2

CLM5_setup_assimilation

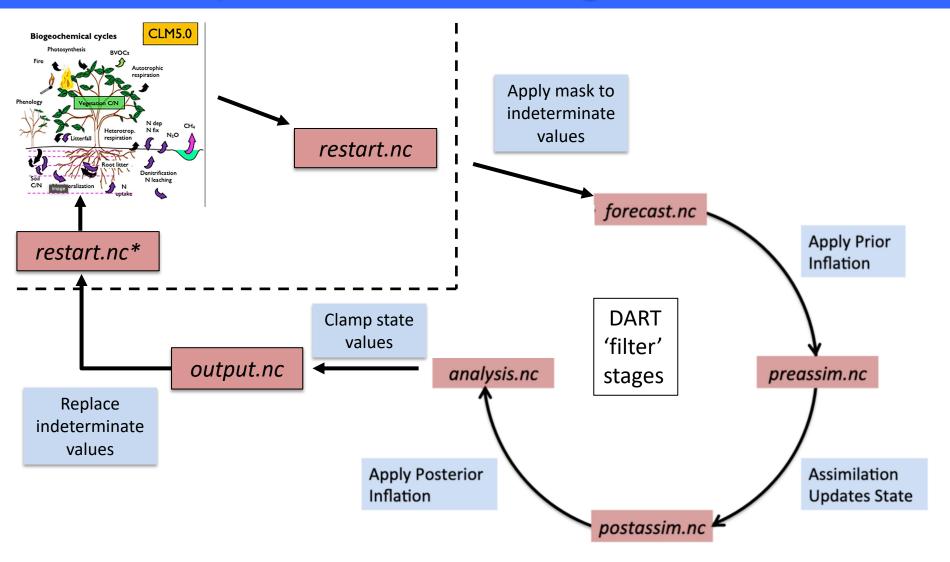
DART_params.csh

CESM_DART_config

assimilate.csh

~/DART/models/clm/work

input.nml

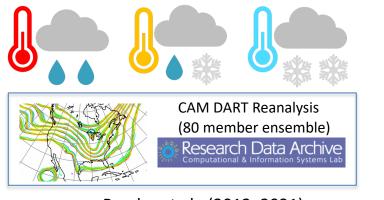

Core setup script for CLM5-DART assimilation. Compiles CLM for multi-instance run, creates CLM case folder similar to normal CLM run

Resource file used to customize CLM assimilation run. Edit before executing CLM5_setup_assimilation. Almost all edits happen this file.

Execute in the *caseroot* directory after CLM compiles. Turns 'on' assimilation by bringing in all assimilation scripts and DART executables to *caseroot* directory

Core assimilation script that executes DART executables. Enables communication between CLM files and DART.

Input namelist file used to customize DART assimilation options



CLM5-DART Tutorial Overview

3) Meteorological Forcing

 Up to 80 different CAM ensemble members generates spread in CLM simulation

 Raeder et al., (2012, 2021)

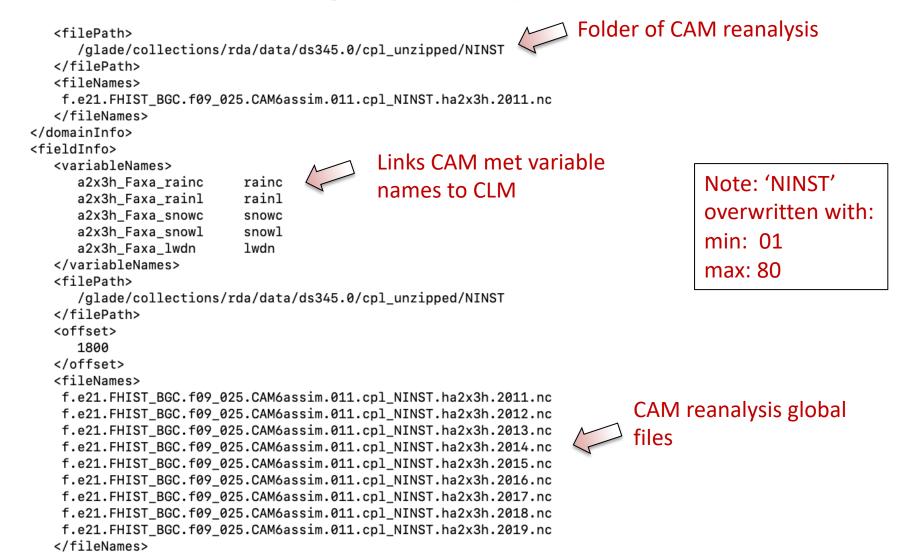
 CAM4 Reanalysis (~2°)

 Ds199.1 | DOI: 10.5065/38ED-RZ08

 Ds345.0 | DOI: 10.5065/JG1E-8525

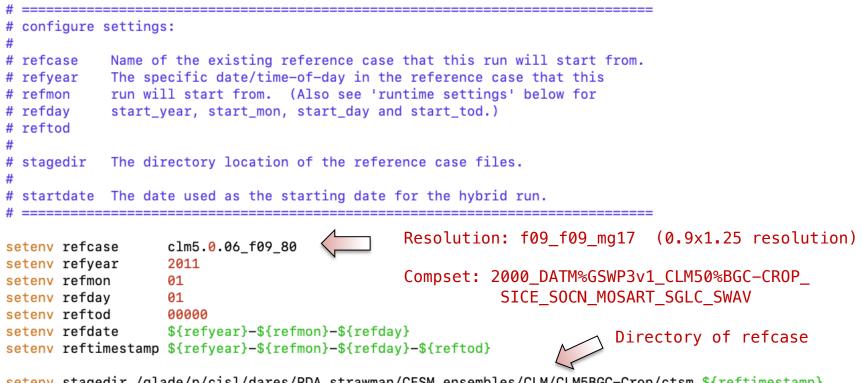
CLM5_setup_assimilation

Generates user_nl_datm And datm.streams.txt* files for each ensemble member


Template Stream Files: ~/DART/model/clm/shell_scripts/cesm2_2

datm.streams.txt.CPLHISTForcing.nonSolarFlux_complete
datm.streams.txt.CPLHISTForcing.State3hr_complete
datm.streams.txt.CPLHISTForcing.State1hr_complete
datm.streams.txt.CPLHISTForcing.Solar_complete

3) Meteorological Forcing


Template Stream Files: ~/DART/model/clm/shell_scripts/cesm2_2

datm.streams.txt.CPLHISTForcing.nonSolarFlux_complete

4) Initial Conditions

DART_params.csh

setenv stagedir /glade/p/cisl/dares/RDA_strawman/CESM_ensembles/CLM/CLM5BGC-Crop/ctsm_\${reftimestamp}

In a hybrid configuration, you can set the startdate to whatever you want. # It does not have to match the reference (although changing the month/day seems bad). # runtime settings:

setenv start_year
setenv start_month
setenv start_day
setenv start_tod
setenv startdate

01

Startdate for the assimilation tutorial run Need not align with refcase end-time

00000 \${start_year}-\${start_month}-\${start_day}

DART uses observation sequence files to store information about observations that are available for assimilation.

Default names are:

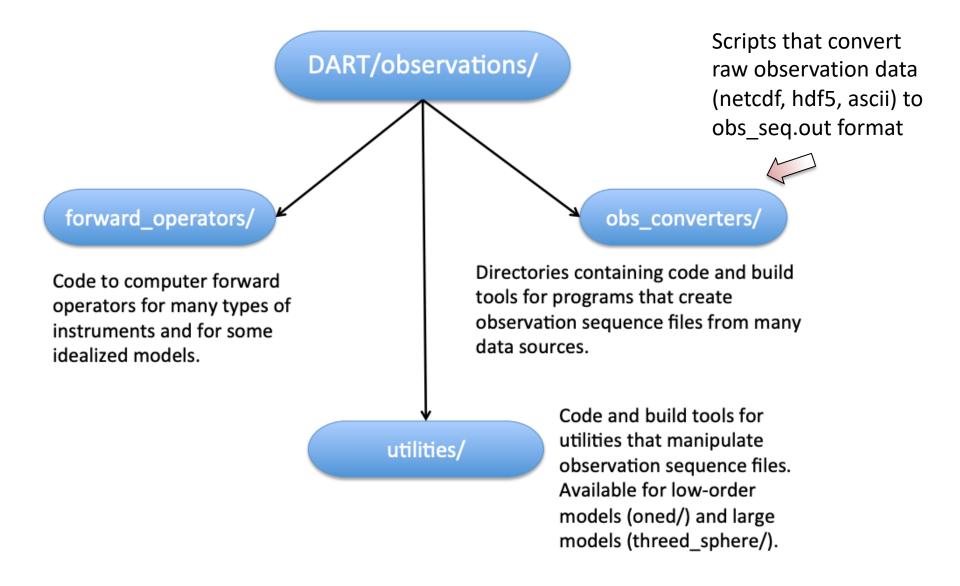
- 1. obs_seq.in Input to **perfect_model_obs** for OSSEs
- 2. obs_seq.out Input to *filter*, (output from perfect_model_obs).
- *3. obs_seq.final* Output from *filter*.

These files contain metadata describing observations, and may include a number of related values (for instance, the actual observation, the prior ensemble estimates, etc.).

1. Blank Template (no obs values, but holds location and time of obs)

2. Filled template (contains obs values) CLM5_setup_pmo script used for this tutorial

3. Contains all diagnostic information of assimilation


DART Obs Quality Control Flags (obs_seq.final)

0. Assimilated

- 1. Evaluated only
- 2. Assimilated but posterior forward observation operator(s) failed
- 3. Evaluated only but posterior forward observation operator(s) failed
- 4. Not used, prior forward observation operator(s) failed
- 5. Not used because not selected in obs_kind_nml
- 6. Not used, failed prior quality control check,
- 7. Not used, violated outlier threshold

ld

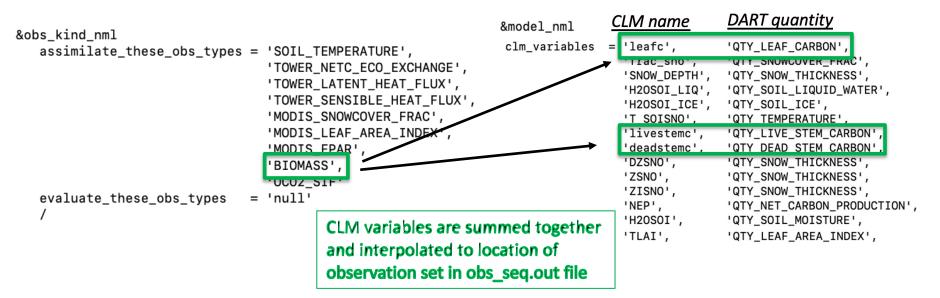
Upcoming slide shows an overview of how a 'biomass' forward operator works

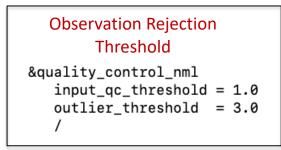
Observation converters provided by DART %

Given a way to compute the expected observation value from the model state, in theory any and all observations can be assimilated by DART through the <code>obs_seq.out</code> file. In practice this means a user-defined observation converter is required. DART provides many observation converters to make this process easier for the user. Under the directory <code>DART/observations/obs_converters</code> there are multiple subdirectories, each of which has at least one observation converter. The list of these directories is as follows:

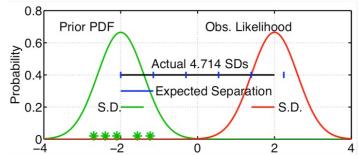
Observation	Directory	Format
Atmospheric Infrared Sounder satellite retrievals	AIRS	HDF-EOS
Advanced Microwave Sounding Unit brightness temperatures	AIRS	netCDF
Aviso: satellite derived sea surface height	Aviso	netCDF
Level 4 Flux Tower data from AmeriFlux	Ameriflux	Comma-separated text
Level 2 soil moisture from COSMOS	COSMOS	Fixed-width text

And many, many more available, see web documentation


obs_seq.final Output from filter.


Contains all diagnostic information of assimilation

obs_sequence obs kind definitions	
15	OBS 1
1 RADIOSONDE_U_WIND_COMPONENT	1009.76377118761002
2 RADIOSONDE_V_WIND_COMPONENT	1008.61783794436531
3 RADIOSONDE_SURFACE_PRESSURE	1009.92390496581413 5 copies
4 RADIOSONDE_TEMPERATURE	
5 RADIOSONDE_SPECIFIC_HUMIDITY 6 AIRCRAFT_U_WIND_COMPONENT	0.799858860231082436
7 AIRCRAFT_V_WIND_COMPONENT	0.202591644167762347
8 AIRCRAFT_TEMPERATURE	2.000000000000000 2 kind of QC
9 ACARS_U_WIND_COMPONENT	0.000000000000000000E+00 2 Kind of QC
10 ACARS_V_WIND_COMPONENT	-1 2 -1
11 ACARS_TEMPERATURE	obdef
12 MARINE_SFC_U_WIND_COMPONENT 13 MARINE_SFC_V_WIND_COMPONENT	loc3d lon lat Vertical level, elevation (m)
14 MARINE_SFC_TEMPERATURE	4.433480 0.858041 917.000000 -1
15 MARINE SFC SPECIFIC HUMIDITY	
num_copies: 5 num_qc: 2	kind rad_surf_press
num obs: 37695 max num obs: 37695	3 seconds days
NCEP BUFR observation	64800 148425 seconds, days
prior ensemble mean posterior ensemble mean 5 copies	1.000000000000000 Observation error variance
prior ensemble spread	
posterior ensemble spread	
NCEP QC index 2 kin	ds of QC
DART quality control	


The forward operator converts model state to the expected observation. Needs to link obs with correct CLM variable

Setting an outlier threshold protects against assimilating observations that are unrealistic or can make CLM crash

input.nml

Expected(prior mean - observation) = $\sqrt{\sigma_{prior}^2 + \sigma_{obs}^2}$. Reject if (prior_mean - observation) > T times expected value.

6) CLM and DART state space

DART state space:

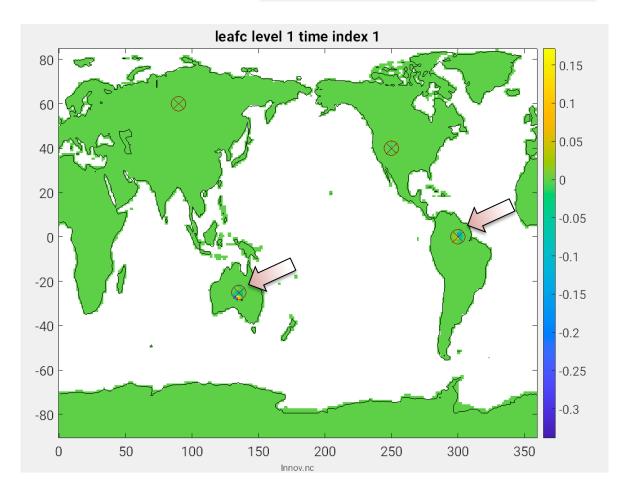
1) Variables to be adjusted by DART

2) Variables required for forward operator

&model_nml	<u>CLM name</u>	<u>DART quantity</u> <u>C</u>	lamping values	<u>domain</u>	<u>Overwrite?</u>
clm_variables	<pre>= 'leafc', 'frac_sno', 'SNOW_DEPTH', 'H2OSOI_LIQ', 'H2OSOI_ICE', 'T_SOISNO', 'livestemc', 'deadstemc', 'DZSNO', 'ZSNO', 'ZISNO'. 'NEP',</pre>	'QTY_LEAF_CARBON', 'QTY_SNOWCOVER_FRAC', 'QTY_SNOW_THICKNESS', 'QTY_SOIL_LIQUID_WATER', 'QTY_SOIL_ICE', 'QTY_TEMPERATURE', 'QTY_LIVE_STEM_CARBON', 'QTY_DEAD_STEM_CARBON', 'QTY_SNOW_THICKNESS', 'QTY_SNOW_THICKNESS', 'QTY_SNOW_THICKNESS', 'QTY_NET_CARBON_PRODUCTI	'0.0', 'NA', '0.0', 'NA', '0.0', 'NA', '0.0', 'NA', '0.0', 'NA', '0.0', 'NA', '0.0', 'NA', 'NA', 'NA',	'restart' 'restart' 'restart' 'restart' 'restart' 'restart' 'restart' 'restart' 'restart'	<pre>'NO_COPY_BACK', 'UPDATE', 'UPDATE', 'UPDATE', 'UPDATE', 'UPDATE', 'UPDATE', 'UPDATE', 'UPDATE', 'UPDATE',</pre>
	'H2OSOI', 'TLAI',	'QTY_SOIL_MOISTURE', 'QTY_LEAF_AREA_INDEX',	'0.0', 'NA',	'history'	<pre>, 'NO_COPY_BACK', , 'NO_COPY_BACK',</pre>
		QTT_EER _REALINDER /	5.0 / NA /	100101	, no_oon _bAok

CLM output files. 'restart' files generated automatically, but history files (diagnostic) must be manually output

```
"hist_fincl1 = 'NEP', 'H2OSOI' 'SMINN_vr', 'LITR1N_vr',
"hist_fincl2 = 'NEP', 'FSH', 'EFLX_LH_TOT_R', 'GPP'"
"hist_fincl3 = 'NEE', 'H2OSNO', 'TLAI', 'TWS', 'SOILC_vr'
```

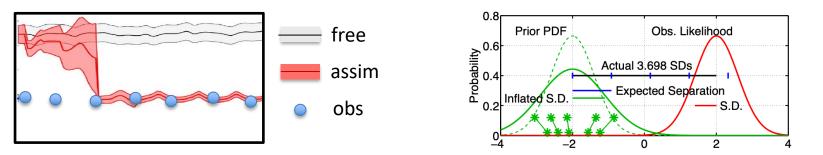

CLM5_setup_assimilation

input.nml

```
"hist_nhtfrq = -$stop_n,1,-$stop_n"
"hist_mfilt = 1,$h1nsteps,1"
"hist_avgflag_pertape = 'A','A','I'"
"hist_dov2xy = .true.,.true.,.false."
```

7) Localization

Spatial Localization
Setting
<pre># cutoff of 0.03 (radians) is about 200km &assim_tools_nml filter_kind = 1 cutoff = 0.05</pre>


Reducing the cutoff limits the realm of influence an observation has upon surrounding model state

•

 Figure of increments (color). Notice non-zero increments limited to location of observation (x)

8) Inflation

• Accounts for systematic errors in obs/model or sampling/regression errors

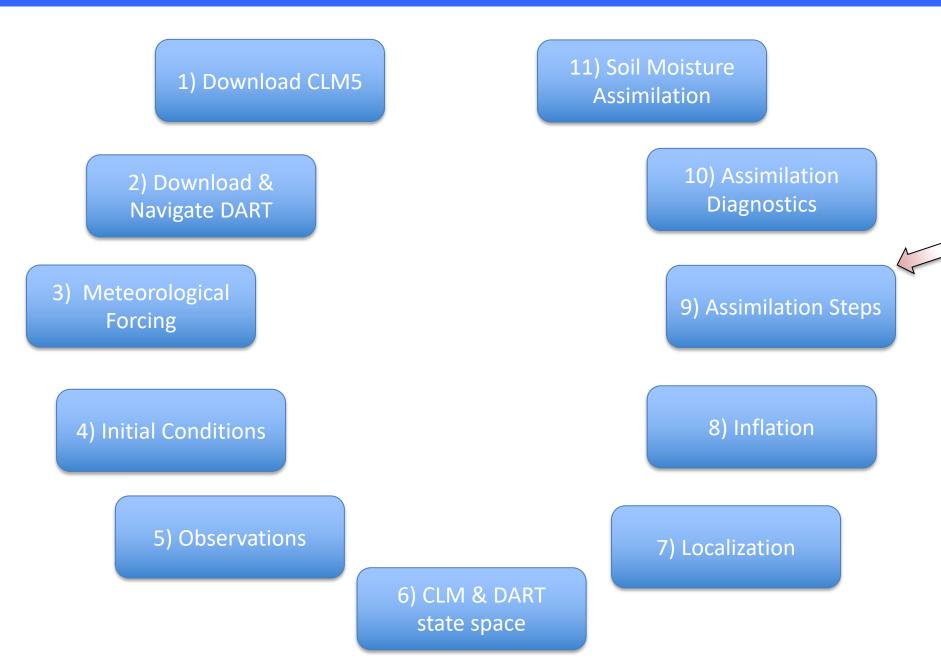
Increases 'apparent' consistency between prior and observation.

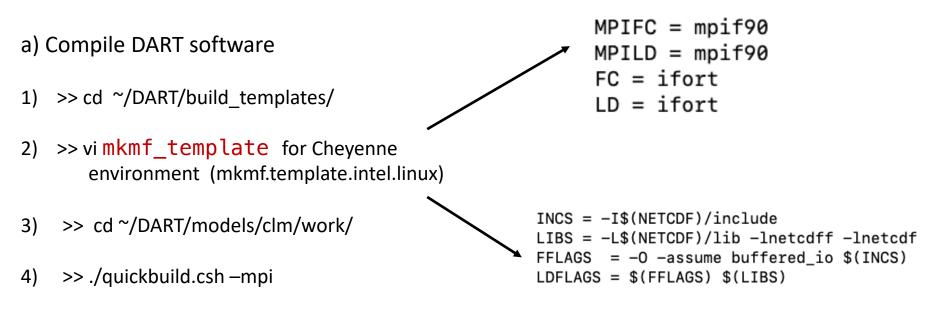
Settings for tutorial (prior inflation only):

&filter_nml

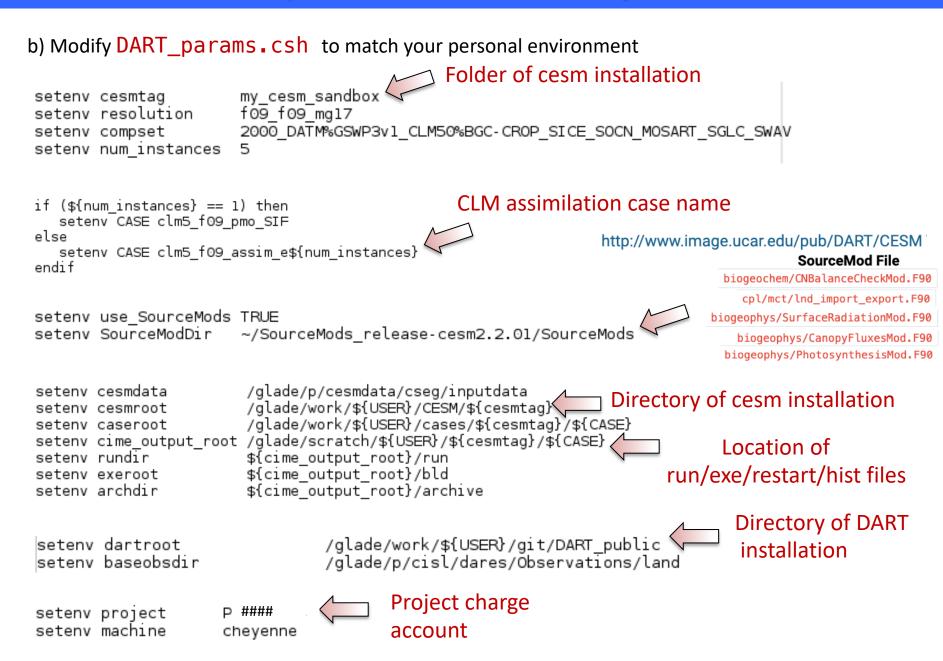
inf_flavor	=	5,
inf_initial_from_restart	=	.true.,
<pre>inf_sd_initial_from_restart</pre>	=	.true.,
inf_deterministic	=	.true.,
inf_initial	=	1.0,
inf_lower_bound	=	0.0,
inf_upper_bound	=	20.0,
inf_damping	=	0.9,
inf_sd_initial	=	0.6,
inf_sd_lower_bound	=	0.6,
inf_sd_max_change	=	1.05,
/		

Fill inflation


&fill_inflation_restart_nml write_prior_inf = .true. prior_inf_mean = 1.00 prior_inf_sd = 0.6


General Guidance:

- Start with no inflation inf_flavor = 0
- Enable prior inflation, no posterior inflation
- If suspect strong sampling/regression error turn on both prior and posterior inflation


- 5: Enhanced Spatially-varying state space inflation (inverse gamma)
- 2: Spatially-varying state space inflation (gaussian)

Creates executables for all DART programs

c) Compile CLM, create assimilation case

- 1) >> cd ~/DART/models/clm/shell_scripts/cesm2_2/
- 2) >> ./CLM5_setup_assimilation

General instructions (1-8) for a 'new' assimilation

For tutorial, skip 1-5, immediately go to step 6 to enable the assimilation. Continue to next slide. Time to check the case.

- cd /glade/scratch/bmraczka/cesm2.2.0/clm5_SWE_PR/run and check the compatibility between the namelists/pointer files and the files that were staged.
- 2) cd /glade/work/bmraczka/cases/cesm2.2.0/clm5_SWE_PR
- 3) check things
- 4) run a single job (and send mail), verify that it works without assimilation _____./case.submit -M all
- 5) IF NEEDED, compile all the DART executables by cd /glade/work/bmraczka/DART/models/clm/work ./quickbuild.csh -mpi
- 6) Modify the case to enable data assimilation and run DART by executing cd /glade/work/bmraczka/cases/cesm2.2.0/clm5_SWE_PR ./CESM_DART_config and follow the directions.
- 7) Make sure the DART-related parts are appropriate. Check the input.nml Check the assimilate.csh or perfect_model.csh - as appropriate ./case.submit -M all
- 8) If that works
 ./xmlchange CONTINUE_RUN=TRUE
 ./xmlchange RESUBMIT=<number_of_cycles_to_run>

d) Enable assimilation within CLM case

- 1) >> cd <caseroot>
- 2) >> ./CESM_DART_config

Check the DART configuration:

 When you want to run DART, check that the CESM assimilation script is correct and then turn on data assimilation (if you need to). If your job has enough time to run multiple cycles in the same job, you can avoid recompeting for the queue by requesting multiple assimilation cycles in a single job. Each cycle will still use the same 'STOP_OPTION' and 'STOP_N'. This example requests two assimilation cycles instead of the default 1 cycle. You can run as many cycles as you like given limits of the queue and the amount of filespace you can afford.

cd /glade/work/bmraczka/cases/cesm2.2.0/clm5_SWE_PR ./xmlquery --partial ASSIMILATION ./xmlchange DATA_ASSIMILATION_LND=TRUE ./xmlchange DATA_ASSIMILATION_CYCLES=2

- 2) Modify what you need to in the DART namelist file, i.e. /glade/work/bmraczka/c
- If you have recompiled any part of the DART system, 'stage_dart_files' will copy them into the correct places.
- 4) Submit the CESM job in the normal way.
- 5) You can use /glade/work/bmraczka/cases/cesm2.2.0/clm5_SWE_PR/stage_cesm_files to stage files to restart a run. Make sure you check the script to specify the correct date to use for the restart. Pay attention to updating the pointer files to use the desired inflation files.

e) Review and customize assimilation settings

>> vi input.nml : Below are excerpts of commonly used/modified namelist options:

Diagnostic stages and inflation type			:	recast','preassi = 5, = .true., = .true.,	im','analysis	','output'
Observation Rejection Threshold &quality_control_nml input_qc_threshold = 1.0 outlier_threshold = 3.0 /	Fill inflation_r &fill_inflation_r write_prior_in prior_inf_mean prior_inf_sd	estart_nml f = .true.		•	, ,	about 200km = 1 = 0.05
<pre>Observation types to assimilate &obs_kind_nml assimilate_these_obs_types = 'SOIL_TEMPERATURE', 'TOWER_NETC_ECO_EXCHANGE', 'TOWER_LATENT_HEAT_FLUX', 'TOWER_SENSIBLE_HEAT_FLUX', 'MODIS_SNOWCOVER_FRAC', 'MODIS_LEAF_AREA_INDEX', 'MODIS_FPAR', 'BIOMASS', 'OCO2_SIF' evaluate_these_obs_types = 'null' /</pre>		&model_nml clm_variables = 'lea 'SNO 'H2O 'H2O 'TSS 'liv 'dea	useo	', 'QTY_SNOW_THICKNESS', ', 'QTY_SOIL_LQUID_WATER', ', 'QTY_SOIL_LCE', 'QTY_TEMPERATURE', , 'QTY_LIVE_STEM_CARBON',		, 'NO_COPY_BACK', , 'UPDATE', , 'UPDATE', , 'UPDATE', , 'UPDATE', , 'UPDATE', , 'UPDATE',

f) Modify CLM run-time settings

>> cd <caseroot>

Commonly modified run-time settings:

(use ./xmlchange to set new value or ./xmlquery to view the current setting)

- DATA_ASSIMILATION_LND=TRUE
- STOP_OPTION=nhours
- STOP_N= 24 (daily assimilation)
- DATA_ASSIMILATION_CYCLES=1 (How many daily cycles? Review walltime, 30 min)
 RESUBMIT =0 (Resubmit the assimilation case for additional time increment)
- CONTINUE RUN=FALSE
 (FALSE if 1st time step, TRUE if a continuation)

g) Submit the assimilation run to Cheyenne

>>./case.submit

>> qstat -u <user-name> # Check job status, time, 'R', 'Q'

10) Assimilation Diagnostics

The job just completed – now what?

1) Check to make sure both the CLM and DART ran successfully:

>> cd ~/caseroot/					
>> cat CaseStatus	2021-11-22 12:15:46: case.submit starting				
	2021-11-22 12:15:55: case.submit success case.run:1574043.chadmin1.ib0.cheyenne.ucar.edu				
	 2021-11-22 12:15:58: case.run starting				
Example of	2021-11-22 12:16:04: model execution starting				
successful CLM	 2021-11-22 12:18:32: model execution success				
time step	 2021-11-22 12:18:32: case.run success				

>> cat run.<case_name>.o<id>

Example of successful DART step, if unsuccessful will provide location of 'log' file

run command is mpiexec_mpt -p "%g:" -np 360 omplace -tm open64 /glade/scratch/bmraczka/cesm2.2.0/clm5_SWE_PR/bld/cesm.exe >> cesm.log.\$LID
2>&1
 Running /glade/work/bmraczka/cases/cesm2.2.0/clm5_SWE_PR/assimilate.csh
check for resubmit
dout_s False
mach cheyenne
resubmit_num 0

10) Assimilation Diagnostics

The entire job completed successfully, but CLM state variables are not being adjusted -- why?

clm_obs_seq.<date>.final

obs_sequence obs_type_definitions 1 2 LPRM_SOIL_MOISTURE

Example 1: Obs accepted, model state adjusted

0.426458121052355 observation 0.453472528080195 prior ensemble mean 0.451989813949054 posterior ensemble mean 0.000000000E+000 data product QC 0.000000000E+000 DART QC

Example 2: Obs rejected, no model state change

0.273739010095596 observations 0.151536912474349 prior ensemble mean 0.151536912474349 posterior ensemble mean 0.00000000E+000 data product QC 7.0000000000000 DART QC

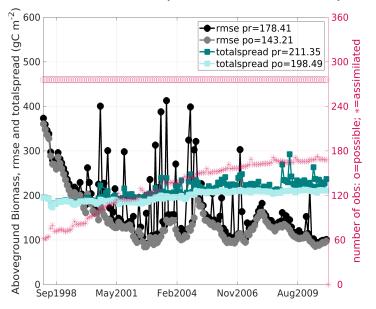
Example 3: Obs accepted, no model state change

0.158023327589035	observations
0.162655747328743	prior ensemble mean
0.162655747328743	posterior ensemble mean
0.0000000000E+000	data product QC
0.0000000000E+000	DART QC

https://docs.dart.ucar.edu/en/latest/guide/dartquality-control.html

The most common reasons assimilated obs have no impact on the model state include:

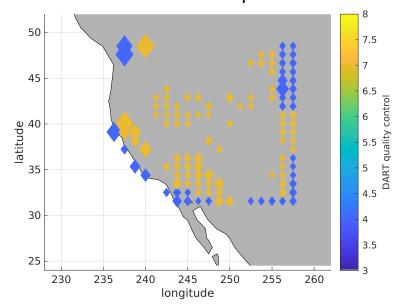
- Zero spread in ensemble members
- Cutoff value too small (Localization)
- Obs error values too large (less likely)
- No correlation (unlikely)


10) Assimilation Diagnostics

Example of more advanced diagnostics:

- >> cd ~/DART/diagnostics/matlab/
 - 1) input.nml &obs_diag_nml

2) ./obs_diag -->obs_diag_output.nc
 3) (matlab) plot_rmse_xxx_evolution.m


Observation acceptance, RMSE and spread

&obs_seq_to_netcdf_nml

- 1) input.nml &schedule_nml
- 2) ./obs_seq_to_netcdf -->obs_epoch.nc
- 3) (matlab) link_obs.m

Spatial Pattern of Biomass observation acceptance

11) Soil Moisture Assimilation

Use same tutorial settings, but with the following edits:

```
input.nml.
&obs_kind_nml
   assimilate_these_obs_types = 'LPRM_SOIL_MOISTURE',
   evaluate_these_obs_types = 'null'
   /
&model_nml
   clm_variables = 'H2OSOI_LIQ', 'QTY_SOIL_LIQUID_WATER', '0.0', 'NA', 'restart', 'UPDATE',
        '0.0', 'NA', 'history', 'UPDATE',
   /
```

```
CLM5_setup_assimilation

"hist_fincl1 = 'NEP', 'H2OSOI',

DART_params.csh

setenv baseobsdir /glade/scratch/bmraczka/Observations/land
```