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Example of DART workflow

Ds199.1 | DOI: 10.5065/38ED-RZ08

CAM4 DART Reanalysis
(80 member ensemble)
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Geophysical Models Interfaced to DART

MITgcm_ocean
NAAPS

NCOMMAS
PBL_1d

POP

BGRID
CAM

CLM
COAMPS

COAMPS_nest

MPAS_OCN

MPAS_ATM

NOAH-MP

PE2LYR

SQG

WRF

TIEGCMGITM

GCOMWRF-Hydro (NOAA)

ROMS CABLE

WACCM

CAM-Chem
WRF-Chem

WACCM-X

CICE

CM1AM2

FESOM

LMDZ

ROSE
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Earth System Observations (others available) 

CHAMP

WODROMS

MADIS

GSI2DART

GRACE

GOES

COSMOS

CONAGUA
cice

AmeriFlux
NCEP+ACARS

AURA
MODIS

SSUSI

VTEC

ATCF

TPW

Radar
QuikSCAT ok_mesonet

GPS

MPD

SIF

NCDCPODAAC

DWLGMI

GTSPP

CMEMS

MOPITT

Instruments supported by RTTOV 

AIRS

SNOTEL
SMOS, SMAP
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Field Campaign and Satellite Data: Pollution Emission Estimation

DA improves fit to NASA DC-8 
aircraft CO measurements for 

all synoptic conditions:       
DA closer to obs than no DA.

Aircraft measurements from KORUS-AQ field            
study in Korea 2016
Satellite retrievals of CO from Terra/MOPITT
Chemistry modeling with CAM-Chem DART 
Ensemble Kalman Filter with:

o Optimized CO initial conditions
o Optimized CO emissions

Inversion of MOPITT data updated emissions 
estimates, improved model performance 
o Against the KORUS-AQ aircraft observations 

of CO (shown) and O3, OH, HO2
o Suggests underestimates of CO/VOCs in 

China

Lead; Benjamin Gaubert

• Assimilate atmospheric CO into CAM-Chem
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MPD Water Vapor Profile DA for Convective Weather Forecasts

MPD

Photo credit: C. Bunn (MSU)

MicroPulse Differential 
absorption lidar (MPD)  
developed by Montana State 
University and EOL measures 
continuous relative backscatter 
and water vapor profiles.

WRF/DART DA of MPD improves short-term forecasts of convection initiation and evolution
compared to assimilating conventional observations (in the OSSE) and no DA (in the OSE).

Observing System Experiment (OSE)Observing System Simulation Experiment (OSSE)

Sfc & sondes

Sfc, sondes & MPD

Sfc only

Hour (UTC)

Precipitation time series 

No MPD DA

MPD DA Obs.

Lead: Tammy Weckwerth

• Assimilate MPD Water Vapor into  WRF
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Flood Prediction: WRF-Hydro/DART for Hurricane Florence 2018

Novel Data Assimilation Science
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Tar River

Pee Dee River

Neuse River

Cape Fear River

High-resolution stream network with 
USGS streamflow gauges.

DA greatly improves analysis and 
forecasts of streamflow.
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Current Land Data Assimilation (CLM-DART)

Assimilating Leaf Area Observations within Arctic Boreal Domain (ABoVE Project)
Led by:  Xueli Huo, Andy Fox and others

Monthly Arctic Leaf Area
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Current Land Data Assimilation (CLM-DART)
Assimilating Surface Soil Moisture Observations (Passive/Active Microwave Bands)
Led by: Daniel Hagan
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Basics of EnKF Data Assimilation
• Observations combined with a model forecast to produce an improved forecast (‘analysis’).
• Improving model state (e.g. temperature, biomass, soil carbon) not parameter optimization

This is an ‘observed’ state variable, but what about ‘unobserved’ state variables?

‘increments’

*

Posterior ~  Prior · Observation Likelihood

Bayes Theorem

‘Update’ or ‘analysis’
Model generated Biosphere measurements 

5 prior model estimates of temperature 1 new observation 
of temperature
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Basics of EnKF Data Assimilation
• Imagine you were modeling temperature across Salt Lake City but only had temperature 

observations at Alta Ski Resort

Ensemble of model 
generated temperatures

Modeled Temp (Alta)

M
od
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ed

 Te
m

p 
(S
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 a

irp
or

t)

Apply correction to model w/ 
observed temp

Apply correction to 
unobserved temp

Generate posterior

• The correlation between states is based upon error covariance matrix generated from a 
model.  Also observation uncertainty must be carefully quantified.

• How can we apply correlations to improve model performance for Land DA?
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Limitations in remotely-sensed land observations

Snow (SWE)

Snow:12 
vertical layers
Ice, water etc.

Soil: 25 
vertical layers
Carbon, water, 
ice properties

Bedrock

Soil moisture, carbon,temp

Leaf Area, Biomass, SIF Soil Moisture, LST, Snow

Soil moisture, carbon, temp

• Spatial Coverage 

• Temporal Coverage

• Sub-surface Coverage

Directly 
observed
unobserved
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Limitations in ground-based land observations

Snow (SWE)

Snow:12 
vertical layers
Ice, water etc.

Soil: 25 
vertical layers
Carbon, water, 
ice properties

Bedrock

Soil moisture, carbon,temp

Soil moisture, carbon, temp

• Spatial Coverage 

• Temporal Coverage

• Sub-surface Coverage
Carbon/
water flux

Soil moisture, carbon, temp

• Horizontal/Vertical Spatial Correlations Important 
for limited surface observation network

EC Flux 
Tower,
LTER
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Carbon Monitoring Across Western US

• Complex terrain 
challenges 
traditional carbon 
monitoring, flux 
towers, atmospheric 
inversions

Top-Down Modeling Bottom-Up Modeling

Atm. 
Transport 

Model

Atmospheric CO2

Land carbon exchange

Land Surface 
Model (CLM)

Land carbon exchange

Weather/Climate

• Vulnerable 
carbon stocks 
create drastic 
change to 
landscape and 
ecosystem 
functioning

US Drought 
Monitor,

June 10, 2021
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Components of a land surface model (CLM)

Energy balance Hydrology Carbon and nitrogen cycles

• The carbon cycle is coupled to, and limited by, the nitrogen and water cycles
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CLM5-DART Overview

Ds199.1 | DOI: 10.5065/38ED-RZ08

CAM4 DART Reanalysis
(80 member ensemble) Grid Cell 

(~1ox1o)
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Observations reduce biomass/leaf area, net carbon flux steady

 

Simulation 
Name 

AGB             
(kgC m-2) 

LAI         
(m m-2) 

GPP                 
(gC m-2 month-1) 

ER                               
(gC m-2 month-1) 

NEP                  
(gC m-2 month-1) 

Free 1.98 1.31 48.18 47.18 1.00 

 CLM5-DART 1.36 0.96 38.49 37.21 1.28 

• ~30 % 
reduction in 
AGB and LAI 
respectively

BiomassLeaf Area

‘Land Carbon Uptake’

CLM5 only

CLM5-
DART
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Diagnostics of LAI/AGB observation acceptance and RMSE

Leaf Area: loop 1

Biomass: loop 1

Leaf Area :  steady 
acceptance rate  
(90%) seasonal 
dependence, 
RMSE steady

Biomass :  
increasing 
acceptance rate 
(75%), decreasing 
RMSE

Observations 
possible

Observations 
assimilated

Prior RMSE

Observations 
possible

Observations 
assimilated

Prior RMSE
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Behavior for dominant PFTs within domain

Leaf Area 
(m2 m-2)

Temp. Evergreen Forest Boreal Evergreen Forest

Temp. ShrubC3 Grass

Biomass
(gC m-2)

Temp. Evergreen Forest Boreal Evergreen Forest
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CLM5-DART simulates weak carbon sink compared to FLUXCOM

• CLM5-DART (red) 
reduces biomass 
states create 
offsetting
reductions in GPP 
and ER compared 
to free run

• FLUXCOM (yellow):
Machine learning 
approach that uses 
flux tower data, 
satellite data and 
meteorology as 
explanatory 
variables for carbon 
cycling data product 
Jung et al., (2020).

• Difference due to disturbance history?
• Need more adjusted variables in CLM5-DART?

GPP NEP

ER Cumulative 
NEP
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CLM5-DART simulates weak carbon sink compared to FLUXCOM

Free CLM5 CLM5-DART FLUXCOM

GPP

ER

NEP

1998-2011 
Average 
Fluxes

Strong uptakeWeak, neutral uptake
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Water limitation shapes carbon uptake pattern

Soil 
moisture 
limitation

GPP

Snow 
water 

equivalent

• Soil moisture 
limitation and GPP 
highly correlated 
(spring: R=0.64; 
summer: R=0.67)

• Simulated snow 
has low bias

Spring (1998-2011) Summer (1998-2011)
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Current challenges in Land DA : Snow

Ground
Snow (SWE)
Observations

Snow Layeri + ∆
“ ”                   i= 2
“ ”                   i= 3
“ ”                   i= n

Total SWE

Snow
Layer i = n 

Total 
SWE

Ground

Snow Layeri + ∆
“ ”                   i= 2
“ ”                   i= 3
“ ”                   i= n

∆ Total SWE ≠ Σ(∆Layers) 

Repartition
Algorithm

∆ Total SWE = Σ(∆ Layers) 

×

√

Total SWE

• Generating Snow ??
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Current challenges in Land DA : Soil Moisture

• Soil moisture  (SIF, LAI) data are prone to 
systemic bias in magnitude and 
variability, but have useful information 
to assimilate

• CDF matching re-scales data products to 
match the bias and variability of a 
model

Reichle & Koster 2004 (GRL) 

Koster et al., 2009 
(J. of Climate) 

(Model) – (Data Product), Before

(Model) – (Data Product), After

CDF Matching
volumetric soil moisture (mm3/mm3)

model Data
product
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Advancing models & observations together

Expanding satellite network

Expanding 
land surface
properties

Increasing model 
complexity

(Leaf water potential) Ψleaf SIFcanopy

SIFleaf

CLM 4.5
(Soil Moisture Stress

Formulation)

Current:  CLM 5.0
Added Hydraulic 

Stress & SIF

Solar Induced Fluor.

Veg. Optical Depth

Surface Temp

Leaf Area

Years
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For more information:

https://dart.ucar.edu
https://docs.dart.ucar.edu

dart@ucar.edu

This research was supported by the NASA CMS Program (awards NNX16AP33G and 
80NSSC20K0010).  CESM is sponsored by the National Science Foundation and the U.S. 
Department of Energy. We would like to thank the Center for High Performance Computing at the 
University of Utah.  We would also like to acknowledge high-performance computing support from 
Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems 
Laboratory, sponsored by the National Science Foundation, through allocation awards UUSL0005 
and UUSL0007. 

https://dart.ucar.edu/
https://docs.dart.ucar.edu/


Future Directions

Parameter Estimation

Additional data streams help 
constrain carbon cycling

Using high res land cover maps
for improved forward operators (PFT specific).

Finer Spatial Resolution?

CLM parameters

CAM4 Reanalysis (~2o) CAM6 Reanalysis (~1o)
Ds199.1 | DOI: 10.5065/38ED-RZ08

Land
surface:

Atmosphere:

Ds345.0 | DOI: 10.5065/JG1E-8525
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CLM5-DART Methods/Terminology

• Spatial Localization: 
Horizontal range: ~100 km

• State Space Localization:
Select most important variables
for carbon cycling

Leaf carbon 
Live stem carbon 
Dead stem carbon 
Leaf area index
Fine root carbon 
Live coarse root carbon 
Dead coarse root carbon 

Leaf nitrogen 
Fine root nitrogen 
Live coarse root nitrogen 
Dead coarse root nitrogen 
Live stem nitrogen 
Dead stem nitrogen

‘Standard’ Adjusted State Variables (Biomass C, N) 

• Remotely Sensed ‘Observations’:  (1.25ox0.95o)   
Averaged to match model spatial resolution (reduces representation error)

• Observation Rejection Threshold  (3 sigma):  Reduces impact of systematic errors

• Adaptive ‘Inflation’ :  Improve sampling of model error
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Extra Slides/Ideas

“Meeting in 
the middle 
manuscript”

Alexei 
Shiklamanov

Look for Tim 
Hoar poster for 
other land data 
assimilation 
work.

Parameter 
estimation
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Slide 1 & 2 :  (Advances in modeling and data 
assimilation) :  Including explicit representation 
of slope/aspect on surface energy balance.    
Meeting in the middle manuscript.

Slide 3:   Systemic biases between model and 
observations (leaf area rejection)

Inflation
Pre-processing of observations,  CDF
Meteorological Forcing à Err on side 

of over-productivity (snow)

Andy Fox
Slide.

Slide 
components of 
an assimilation, 
where spread?

Sensitivity to 
met forcing, an 
model types, H. 
Duarte.

Add now slide 
from Zhang to 
introduce 
concept.


