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MOTIVATION



1. Why Streamflow Forecasting?

Hurricane Florence (2018):

# Tropical wave tropical storm Category 4 Hurricane

# Landfall on Sep. 14 (Carolinas) with winds up to 150 mph
# Catastrophic damages to coastal communities [$25 billion]
# Flooding magnitude greatly exceeded the levels observed due to

Hurricane Matthew (2016) and Floyd (1999) combined!
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Hurricane Florence eye during landfall (Source: NWS)Rainfall estimates from Hurricane Florence (Source: NWS)



1. Why Streamflow Forecasting?

# Predicting major floods during extreme rainfall events is crucial
1. Save lives (∼ 50 people died due to Florence Flooding)
2. Limit damages (via advance warnings)
3. Protect infrastructure, socio-economic impacts, ...
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Flooded city of New
Bern, NC



HYDRODART: STREAMFLOW PRE-
DICTION FRAMEWORK



2.1 The Model: WRF-Hydro

WRF-Hydro [Gochis et al., 2020]: Weather Research and Forecasting hydrological
modeling system. Research compartment of the National Water Model (NWM)

A community-based system, providing:

# Prediction of major water cycle components such as precipitation, soil
moisture, snowpack, groundwater, streamflow, inundation

# Reliable streamflow prediction across scales
# A robust framework for land-atmosphere coupling studies
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Streamflow (in cfs) simulation over CONUS for the
2019-2020 water year (Source: NOAA, NWC, NWS)


CONUS_sf.mp4
Media File (video/mp4)



2.2 The Data
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USGS operates one of the largest stream-gauging
enterprises in the world (more than 11,000 gauges)

Source: https://waterwatch.usgs.gov/

� Regional subdomain of
the NWM CONUS

� NWM channel network
� ∼ 67K reaches

� Hourly streamflow
assimilation

� 107 USGS gauges
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2.3 DA Tool: DART

# A community facility for ensemble DA [Anderson et al., 2008;
BAMS], developed and maintained by the Data Assimilation
Research Section (DAReS) in CISL at NCAR
◦ Framework:

◦ Flexible, portable, well-tested, extensible, free!
◦ Source code distributed on GitHub: NCAR/DART
◦ Models: Toy to HUGE, including CESM
◦ Observations: Real, synthetic, novel

◦ Research:
◦ Theory based, widely applicable techniques
◦ Nonlinear filters, nonGaussian approaches
◦ Adaptive inflation, Localization, ...

◦ Teaching: Extensive tutorial materials and exercises

# ∼ 50 UCAR member universities & more than 100 other sites
# Collaborations with external partners
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2.4 Interfacing WRF-Hydro and DART
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DA ENHANCEMENTS & RESULTS



3.1 Forcing and Ensemble Uncertainty

# Apply Gaussian perturbations to the boundary fluxes to the streamflow
and bucket models every hourly forecast step

# To create realistic model variability, we follow a "multi-configuration"
approach and perturb the channel parameters:

1. top width, )
2. bottom width, �
3. side slope, <

4. Manning’s N, =
5. width of compound channel, )22
6. Manning’s N of compound channel, =22

Sampling uniformly under some physical constraints!
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3.2.1 Along-The-Stream (ATS) Localization

# Small ensemble sizes produce imperfect sample covariances
[Houtekamer and Mitchell, 2001; MWR], yielding spurious correlations

# ATS localization [El Gharamti et al., 2020; HESS] aims to mitigate not only
spurious correlations, due to limited ensemble size, but also physically
incorrect correlations between unconnected state variables in the
river network
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3.2.2 Does regular localization even work?
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ATS Reg 20 Reg 10 Reg 5 Reg 2 Reg 1

Ta
rR

iv
er
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o

(N
W

IS
02

08
35

00
) Prior RMSE 5.58 18.54 8.86 33.46 41.61 34.32

Posterior RMSE 4.93 17.82 6.75 25.11 33.66 26.41

Prior Bias -1.13 -11.65 -1.71 -20.24 -18.09 -11.07

Posterior Bias -0.85 -11.41 -0.74 -20.37 -17.16 -10.01
Prior Spread 1.20 3.29 2.80 10.90 10.84 9.54
Posterior Spread 1.55 3.00 2.27 6.28 6.43 5.17

# Performance using ATS localization is significantly better (∼ 40%)
# Using ATS, one can increase the effective localization radius
# Regular localization with large radii fails (correlating physically

unrelated variables)



3.2.3 Tuning ATS Localization; [i] Radius
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# Larger radii degrade the accuracy (giving rise to spurious correlations)
# Smaller radii limit the amount of useful information
# Best performance with 100 km



3.2.4 Tuning ATS Localization; [ii] Correlation Function
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3.3.1 Dealing with Variance Underestimation

# Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

# Spatially and Temporally Varying Adaptive Covariance Inflation
[Anderson 2009; Tellus], [El Gharamti 2018; El Gharamti et al. 2019; MWR]:
1. Assume inflation factor, � to be a random variable
2. Use the data to estimate � at every point in the domain

3. Bayes’ rule: ?(�|3) ≈ ?(�) · ?(3 |�)

# Other forms [Raanes et al. 2019; QJRMS], [Tandeo et al. 2020; MWR]
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3.3.2 Inflation on the River Network
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3.3.3 Combining Prior and Posterior Inflation
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# Posterior inflation does not yield satisfactory results
# Adding posterior inflation on top of prior inflation helps improve accuracy
# Falling limb of hydrograph (PP-inf) better fits the data. Recession happens

almost 2 days earlier (rejects less data)
# May argue that posterior inflation could be resolving other regression

issues such as sampling noise and nonGaussianity



3.4 Gaussian Anamorphosis

Streamflow is a positive quantity. Make sure the DA framework produces
physically meaningful updates using GA [Simon and Bertino 2009; OS]
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3.5 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

Pee Dee River near Bennettsville, SC (NWIS 021305561)
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The probability of the observation to fall outside the
open loop ensemble is > 50%

The observed discharge statistically indistinguishable
from the prior ensemble



CONCLUSION



4.1 Summary

# HydroDART: an advanced streamflow DA tool
1. Provides hourly skillful streamflow estimates
2. Enhanced ensemble uncertainty assessment
3. Introduces Along-The-Stream localization
4. Supports a variety of DA algorithms: e.g., Adaptive Inflation
5. Supports parameter (model + hyper) estimation

# This study made use of HydroDART for Hurricane Florence
flooding events (2018) in the Carolinas
1. Explored effectiveness of ATS localization (as compared to regular

localization methods)
2. Tested inflation scheme in highly nonlinear scenarios. Closer look

at prior and posterior inflation strategies
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# Full CONUS streamflow
reanalysis for the past 30 years:
→ Explore hybrid EnKF-OI
approaches:
Adaptive: [El Gharamti 2021; MWR]
Analogs: [Grooms 2021; QJRMS]

# A collaborative project with USGS; 2 main goals:
1. Assimilate gauge temperature data (investigate effects on streamflow)
2. Placement of gauges (OSSE studies)

# Coupling the LSM with WRF-Hydro:
1. Assimilate soil moisture & streamflow; weak vs strong coupling
2. Assimilate snow data (thickness, SWE, ...)
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