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MOTIVATION




1. Why Streamflow Forecasting?

Hurricane Florence (2018):

O Tropical wave ~» tropical storm ~» Category 4 Hurricane
O Landfall on Sep. 14 (Carolinas) with winds up to 150 mph
O Catastrophic damages to coastal communities [$25 billion]

O Flooding magnitude greatly exceeded the levels observed due to
Hurricane Matthew (2016) and Floyd (1999) combined!

Rainfall estimates from Hurricane Florence (Source: NWS) Hurricane Florence eye during landfall (Source: NWS)
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1. Why Streamflow Forecasting?

O Predicting major floods during extreme rainfall events is crucial

1. Save lives (~ 50 people died due to Florence Flooding)
2. Limit damages (via advance warnings)
3. Protect infrastructure, socio-economic impacts, ...

Flooded city of New
Bern, NC




HYDRODART: STREAMFLOW PRE-
DICTION FRAMEWORK




2.1 The Model: WRF-Hydro

WREF-Hydro [Gochis et al., 2020]: Weather Research and Forecasting hydrological
modeling system. Research compartment of the National Water Model (NWM)

A community-based system, providing:

O Prediction of major water cycle components such as precipitation, soil
moisture, snowpack, groundwater, streamflow, inundation \A
\A
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O Reliable streamflow prediction across scales ~—
O A robust framework for land-atmosphere coupling studies WRF-Hyd ro’
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b Streamflow (in cfs) simulation over CONUS for the
]' 2019-2020 water year (Source: NOAA, NWC, NWS)
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CONUS_sf.mp4
Media File (video/mp4)


2.2 The Data

USGS operates one of the largest stream-gauging
enterprises in the world (more than 11,000 gauges)

«
List ofal stations instate, ~® State map, or ) Nearest stations

Explanation - Percentile classes
.

2575

Source: https://waterwatch.usgs.gov/
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2.2 The Data

Latitude

USGS operates one of the largest stream-gauging
enterprises in the world (more than 11,000 gauges)
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Streamflow map of the Florence domain simulated using
WRF-Hydro during the flooding event

a
List ofal stations instate, ~® State map, or ) Nearest stations

Explanation - Percentile classes

Source: https://waterwatch.usgs.gov/

0 Regional subdomain of
the NWM CONUS

O NWM channel network

O ~ 67K reaches
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2.2 The Data

USGS operates one of the largest stream-gauging
enterprises in the world (more than 11,000 gauges)
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2.3 DA Tool: DART

O A community facility for ensemble DA [Anderson et al., 2008;

BAMS], developed and maintained by the Data Assimilation
Research Section (DAReS) in CISL at NCAR Ok0
o Framework: :

o Flexible, portable, well-tested, extensible, free!

I
- . [=]r
Source code distributed on GitHub: NCAR /DART
Models: Toy to HUGE, including CESM
Observations: Real, synthetic, novel
o Research:

(o)

o

. CAM FESOM GITM WRF
CICE WRF-Hydro pop BGRID sQG
CLM WACCM-X CAM-Chem NOAH [ MDZ

GCCOM  WRF-Chem MPAS_ATM NCOMMAS
AM2 COAMPS MPAS_OCN ROMS

o Theory based, widely applicable techniques
o Nonlinear filters, nonGaussian approaches
o Adaptive inflation, Localization, ...

MITgem_ocean  1recepm NAAPS
CABLE PFLOTRAN

COAMPS_NEST
PE2LYR

o PBL_Id

o Teaching: Extensive tutorial materials and exercises

O ~ 50 UCAR member universities & more than 100 other sites
O Collaborations with external partners

https://dart.ucar.edu/
https://docs.dart.ucar.edu/



https://github.com/NCAR/DART
https://dart.ucar.edu/
https://docs.dart.ucar.edu/

2.4 Interfacing WRF-Hydro and DART

B x1 : Streamflow
B x2 : Bucket

y:[I, o ]x+£; N, =80
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2.4 Interfacing WRF-Hydro and DART
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2.4 Interfacing WRF-Hydro and DART

x1 : Streamflow
x2 : Bucket

Full model run from
2010-10-01 t0 2018-07-01
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2.4 Interfacing WRF-Hydro and DART

x1 : Streamflow
x2 : Bucket

Full model run from
2010-10-01 to 2018-07-01
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2.4 Interfacing WRF-Hydro and DART

x1 : Streamflow
x = ; y:[I, O]x+£; N, =80
x2 : Bucket
https://github.com/NCAR/wrf_hydro_nwm_public
https://github.com/NCAR/wrf_hydro_dart

Full model run from https://github.com/NCAR/DART
2010-10-01 to 2018-07-01
Streamflow Data Assimilation System
L. Atmospheric
Deterministic NWM forcing R R R R PR R :
model chain from I Parametric Seamoi
. v noise models Streamflow (cms)
forcing through \
. Land ‘ﬂ;”‘d’?e :| [ Flux from overland Y
mode . bsurf i
aggrega 10N (o) : subsurface routing USGS
. DART <4—{ streamflow
< T > observations
One-way runoff Overland & : Parametric Groundwater /
y s,u(\;si:lw‘\‘f;:‘ae bucket model Bucket head (m)
fluxes used as input
forcing to the v LN
channel+bucket spatial |~
sub-model \ coregaten y, DA period: 2018-09-07 — 2018-10-08



DA ENHANCEMENTS & RESULTS




3.1 Forcing and Ensemble Uncertainty

O Apply Gaussian perturbations to the boundary fluxes to the streamflow
and bucket models every hourly forecast step
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3.1 Forcing and Ensemble Uncertainty

O Apply Gaussian perturbations to the boundary fluxes to the streamflow
and bucket models every hourly forecast step

O To create realistic model variability, we follow a "multi-configuration"
approach and perturb the channel parameters:

1. top width, T 4. Manning’s N, n
2. bottom width, B 5. width of compound channel, T,
3. side slope, m 6. Manning’s N of compound channel, 7.,

Sampling uniformly under some physical constraints!

TCC

B 10/ 22



3.2.1 Along-The-Stream (ATS) Localization

A0 _ ) (@)

Xk =Xk +0(Ax

0<ax<l1 (Localization Factor)

O Small ensemble sizes produce imperfect sample covariances
[Houtekamer and Mitchell, 2001; MWR], yielding spurious correlations
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3.2.1 Along-The-Stream (ATS) Localization

x?(li) = x{ (ki) + any) 0<ax<l1 (Localization Factor)
O Small ensemble sizes produce imperfect sample covariances

[Houtekamer and Mitchell, 2001; MWR], yielding spurious correlations

O ATS localization [El Gharamti et al., 2020; HESS] aims to mitigate not only
spurious correlations, due to limited ensemble size, but also physically
incorrect correlations between unconnected state variables in the

river network . ATS Localization (G-C: 100 km) . ATS Localization (G-C: 200 km)

36.

Localization
Factor

358
35.8

Latitude

Latitude

34.7
34.7

Gauge ID: 02102500
Gauge ID: 02082950
Gauge ID: 02129000
Gauge ID: 02071000
Gauge ID: 02091500

PVveAde
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-79 -78 -77 L -80 -79 -78 -77
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3.2.1 Along-The-Stream (ATS) Localization

0<ax<l1 (Localization Factor)

cteristics:

1. Flow of information only travels downstream (tree-like shapes)

2. Total number of close reaches depend on the size of the basin

3. Observations in different catchments do not have common close reaches

ATS Localization (G-C: 100 km)

ATS Localization (G-C: 200 km)

36.9
36.9

Localization
Factor

358
35.8

Latitude

Latitude

34.7
34.7

Gauge ID: 02102500
Gauge ID: 02082950
Gauge ID: 02129000
Gauge ID: 02071000
Gauge ID: 02091500
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3.2.2 Does regular localization even work?

ATS  Reg20 Regi1o Regs Reg2  Reg1

€ - Prior RMSE 1854 886 3346 34.32

RS

Es O§ Posterior RMSE 17.82 6.75 25.11 33.66| 26.41

® d . . - _ _ - _ _

; S Prior Bias 11.65 1.71 18.09  -11.07

& z  Posterior Bias -0.85  -11.41 -17.16  -10.01

E‘ Z Prior Spread 1.20 3.29 2.80 10.90 10.84 9.54
Posterior Spread 1.55 3.00 2.27 6.28 6.43 5.17

O Performance using ATS localization is significantly better (~ 40%)
O Using ATS, one can increase the effective localization radius
O Regular localization with large radii fails (correlating physically

unrelated variables)
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3.2.3 Tuning ATS Localization; [i] Radius

1000

A. Dan River at Paces

x  Obs
~-=-no DA, 115.1
—— 50 km, 59.6
—— 75 km, 82.0

—— 100 km, 47.8
)@ —— 150 km, 56.3
x

—— 200 km, 885 | |

x Obs

~-=-no DA, 68.3
3 . ——50km, 18.0
H \S ——75km, 20.6

\ —— 100 km, 5.6
. |[——150km, 8.6

“._|[——200km, 9.2

} 1 =
PR
A | A

Sep 14 Sep 22 Sep 30 Oct 07

B. Tar River at Rocky Mount

g
5150

ot
Sep 07

x Obs
~-=-no DA, 40.1
——50km, 14.8
——75km, 16.0
~———100 km, 9.9
—— 150 km, 22.3
—— 200 km, 22.4

Sep 14 Sep 22 Sep 30 Oct 07

2000
1500 -
173
£ 1000
S

500 -

03
Sep 07

D. Deep River at Moncure

x  Obs
2 —-=-no DA, 147.5
——50 km, 46.7
——75km, 37.1
—— 100 km, 29.4
—— 150 km, 58.8
—— 200 km, 40.1

O Test with different localization radii: 50, 75, 100, 150, 200 km

O Larger radii degrade the accuracy (giving rise to spurious correlations)

O Smaller radii limit the amount of useful information

O Best performance with 100 km
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3.2.4 Tuning ATS Localization; [ii] Correlation Function

o @ Gaspari-Cohn
@ Boxcar
@® Ramped-Boxcar
NS o
~ R O, .
- ) . % O Averaging over all gauges,
N 7 . . .
| 200 100 0 100 200 \\ OOOO the correlation coefficient

was: Gaspari-Cohn (0.83),
Boxcar (0.77) and
Ramped-Boxcar (0.79)

Standard Deviation

O Gaspari-Cohn outperforms
other functions

1 0.75 0.5 0.25
Centered Root Mean Square Error

14 /22



3.3.1 Dealing with Variance Underestimation

O Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases
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3.3.1 Dealing with Variance Underestimation

O Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

O Spatially and Temporally Varying Adaptive Covariance Inflation
[Anderson 2009; Tellus], [El Gharamti 2018; El Gharamti et al. 2019; MWR]:

1. Assume inflation factor, A to be a random variable
2. Use the data to estimate A at every point in the domain
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3.3.1 Dealing with Variance Underestimation

O Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

O Spatially and Temporally Varying Adaptive Covariance Inflation
[Anderson 2009; Tellus], [El Gharamti 2018; El Gharamti et al. 2019; MWR]:

1. Assume inflation factor, A to be a random variable
2. Use the data to estimate A at every point in the domain
3. BayeS, rule: P(/\|d) ~ P(A) : P(dM) : Bayesian Inflation Update

=== Prior

Prior p(A); an Inverse Gamma pdf -
Likelihood p(d|1); a Gaussian function — posterir

o
@

od=ly°- i}f | is the innovation

o
=

Distribution

o Derosiers Innovation statistics:
E(d)=0; [E(d?) =02+ /\0/2,
Posterior p(A|d)
4. Can inflate prior or posterior covariance!

o
N

12 3 45 10 15
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3.3.1 Dealing with Variance Underestimation

O Variance underestimation often happens in ensemble-based
systems due to sampling errors and model biases

O Spatially and Temporally Varying Adaptive Covariance Inflation
[Anderson 2009; Tellus], [El Gharamti 2018; El Gharamti et al. 2019; MWR]:

1. Assume inflation factor, A to be a random variable
2. Use the data to estimate A at every point in the domain

o
=

3 BayeS, rule: }7(/\|d) ~ P(A) ’ ]7(5”/\) , Bayesian Inflation Update
Prior p(A); an Inverse Gamma pdf —
Likelihood p(d|1); a Gaussian function — rocorr

od=ly°- i}f | is the innovation ;go's

o Derosiers Innovation statistics:

E(d)=0; [E(d?) =02+ /\0/2,
Posterior p(A|d)

4. Can inflate prior or posterior covariance!

o
N

12 3 45 10 15

A

O Other forms [Raanes et al. 2019; QJRMS], [Tandeo et al. 2020; MWR]
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3.3.2 Inflation on the River Network

Latitude

33.6

35.25 36.075 36.9

34.425

Time-Avg. Streamflow Prior Inflation

Longitude

Latitude

33.6

35.25 36.075 36.9

34.425

Time-Avg. Bucket Prior Inflation

1.21

-80 -79 -78 -77
Longitude

O Inflation follows tree-like shapes thanks to ATS localization

O Larger inflation in densely observed regions
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3.3.3 Combining Prior and Posterior Inflation

Stream flow (cms)

60

Tar River near Langley (NWIS 0208250410)

80 100 120 140 160 180

20 40

3
2
% Used Obs
% Rejected Obs: 15.09% | 8t
—— Prior Members
Posterior Members L %
\ Open Loop, RMSE: 30.6 - X
\ —— Prior Mean, RMSE: 14.7 | &Sl
'\~ — Post Mean, RMSE: 11.5 £
\ So
z2r
2
E8f
<1
=
B 3r
ol
<
ol
&

O

Sep 14

Posterior inflation does not yield satisfactory results

Sep 22

“ - = Post Mean, RMSE: 8.2

% Used Obs
% Rejected Obs: 9.64%
— Prior Members
Posterior Members
Open Loop, RMSE: 30.6
— Prior Mean, RMSE: 11.5 |

Sep 30 Sep 14

Sep 22

Adding posterior inflation on top of prior inflation helps improve accuracy

Falling limb of hydrograph (PP-inf) better fits the data. Recession happens

almost 2 days earlier (rejects less data)

May argue that posterior inflation could be resolving other regression

issues such as sampling noise and nonGaussianity
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3.4 Gaussian Anamorphosis

Streamflow is a positive quantity. Make sure the DA framework produces
physically meaningful updates using GA [Simon and Bertino 2009; OS]

0. Prior Streamflow PDF . PHY: Posterior Streamflow PDF
Prior Before Truncation
Mean= 2.59, Var= 3.14 Mean= 0.31, Var= 0.1
ol Streamflow a‘
5 _ = Physical Bound Skewness= 1.11, Kurtosis= 0.83 5 6o 5
£ * f Gauge obs £ @ Truncate 17% of ensemble
Ba0p _— B4 =
5 Observation B e Posterior
5 Mean=0.20, Var= 0.12 2 E Mean=0.34, Var= 0.08

N
S

2 = 0.34, Var= 0.
Severe loss in
y_'_y_’i ensemble spread
0 i : . 0 2w Cnsem .
-1 0 1 8 9 10 -1 0 1 2 3 4

Physlca\ Space S(vaamflaw (cms)
ANA: Posterior streamflow (cms)

40 50 - 100
Skewness= -0.03 Transformed Posterior Project back to PHY
Kurtosis= 0.03 Prior 40 - —- 80 N
w0 c Posterior
o 300 £ g Mean= 1.32, Var=1.61
= - 5
‘§20 2
w E 20- - B 40 L
2 5 a
g8 "l [ gilils
I o | 0 [H- = o . .
& -4 2 0 2 4 - -4 2 0 2 4 0 2 4 6 8
o Gaussian Space Update in Transformed Space
= ANA: Posterior streamflow (cms)
< 30 — 50 8o
4 Skewness= -0.19 = ET'?"S'W\E“ Posterior Prolect back to PHY_
< ¢ Kurtosis= -0.64 Prior 40- 0
£20 = § Posterior
kS 0 E o Mean=0.92, Var= 043
[ 240
=4 20 - S =
© 10 a
S I ol T e
0 = 0 L 0 L—W—‘ —
-2 Rl [ 1 2 3 3 2 0 1 2 3 4 5

near Gaussian Updale in Translormed Space Physical Space



3.4 Gaussian Anamorphosis

Streamflow is a positive quantity. Make sure the DA framework produces
physically meaningful updates using GA [Simon and Bertino 2009; OS]

Standard DA update
120 T T

+ Used Obs
+ Rejected Obs: 4.60%
Prior Members
Posterior Members
Open Loop, RMSE: 11.15
~——Prior Mean, RMSE: 7.04
—— Posterior Mean, RMSE: 4.85

80T Average Kurtosis
Prior: 0.41
Posterior: 0.40

Stream flow (cms)
3

O Observation rejection is
improved with GA

sep 16 sop 17 sep1o sop 19 se0 (O Better fit to the observations on
Sep. 17

200 DA update using ian Anamorphosis
+ Used Obs
+ Rejected Obs: -0.00%

~— Prior Members

O Higher order moments are almost
completely eliminated using GA

Average Kurtosis
Prior: 0.02
Posterior: 0.08

@
3

Posterior Members

Open Loop, RMSE: 11.15
——Prior Mean, RMSE: 5.38
—— Posterior Mean, RMSE: 1.97

Stream flow (cms)
S
8

50
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3.5 Bias Mitigation

Posterior: Sep 17,2018 7:00 PM

After landfall, the model’s streamflow 8
prediction (Open Loop) is significantly g ;;\13 . LL\K -
smaller than the posterior along Pee-Dee ) SN ai o0

Latitude
35.25

River in South Carolina

0
g 154
3

74.8
© 0
©
@ -80 =79 -78 -77

Longitude

Posterior-Open Loop: Sep 17,2018 7:00 PM
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L —
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5 A i
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s A 6280
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Ny K f 224
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3.5 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina

Latitude
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34.425

336

3525  36.075 36.9

34.425

336

Posterior: Sep 17,2018 7:00 PM

2

NN LY &
- R \Rﬂ S a2
) S
- X \ 1040

-80 =79 -78 -77
Longitude

Posterior-Open Loop: Sep 17,2018 7:00 PM
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~ 3 e -
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\ J}x T s A
N
s
6280
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o
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-224
1720
-80 -79 -78 77
Longitude
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3.5 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC

4000 Y v T
3500 |- W 15
3000 {10
@ 15 £
52500 -
8 2000 || == WRF-Hydro Prediction 120 g
= —— Precipitation =
£ 25 ©
© 1500 - 4 g
7 30 ©
1000 - a
35
500 - 40
0 k L — N, L
Sep 07 Sep 14 Sep 22
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3.5 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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3.5 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina

Hydrograph: Rocky River near Norwood, SC
4000 T
T ¥ T
3500 [~ 15
3000 - 10 _
_ F <
£ t 15 <
L
§ 2500 H—WRF-Hyaro Prediction i E
= ® Gauge Data 2 2 20 =
2 2000 H Prior Ensemble o. s
IS —— Prior Ensemble Mean ° 25 &
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2 SN 0 8
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[/
H
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0 ‘ x
Sep 07

Sep 14
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3.5 Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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3.5 Bias Mitigation

After landfall, the model’s streamflow

prediction (Open Loop) is significantly

smaller than the posterior along Pee-Dee

River in South Carolina

Hydrograph: Rocky‘ River near Norwood, SC

4000
<415
3500 -
3000 -
g | | === WRF-Hydro Prediction
8,2500 ® Gauge Data
= Prior Ensemble .5
2 2000 5§ —— Prior Ensemble Mean =
I Posterior Ensemble kS
8 1500 H— Posterior Ensemble Mean -
= === Prior Inf. Mean
w
1000 -
500 -
0
Sep 07 Sep 14 Sep 22

19 /22



3.5 Bias Mitigation

After landfall, the model’s streamflow A sizable increase in prior
prediction (Open Loop) is significantly inflation to counter the bias
smaller than the posterior along Pee-Dee in the modeled streamflow!

River in South Carolina
Hydrograph: Rocky River near Norwood, SC

4000
<415
3500 -
3000 -
g | | === WRF-Hydro Prediction
8,2500 ® Gauge Data
= Prior Ensemble .5
2 2000 5§ —— Prior Ensemble Mean =
I Posterior Ensemble kS
g 1500 H— Posterior Ensemble Mean -
= === Prior Inf. Mean
w
1000 -
500 -
0
Sep 07 Sep 14 Sep 22
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3.5 Bias Mitigation

The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

o Pee Dee River near Bennettswlle, SC (NWIS 021 305561)
. T T T

- Open Loop Streamflow T

Probability
o
&

0.1 T T T
0.08 - -DA: Prior Streamflow |
=
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3.5 Bias Mitigation

The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

o Pee Dee River near Bennettswlle, SC (NWIS 021 305561)
. T T T

- Open Loop Streamflow T

The probability of the observation to fall outside the
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4.1 Summary

O HydroDART: an advanced streamflow DA tool

1.

g~ RN

Provides hourly skillful streamflow estimates

Enhanced ensemble uncertainty assessment

Introduces Along-The-Stream localization

Supports a variety of DA algorithms: e.g., Adaptive Inflation
Supports parameter (model + hyper) estimation
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1.

g~ RN

Provides hourly skillful streamflow estimates

Enhanced ensemble uncertainty assessment

Introduces Along-The-Stream localization

Supports a variety of DA algorithms: e.g., Adaptive Inflation
Supports parameter (model + hyper) estimation

O This study made use of HydroDART for Hurricane Florence
flooding events (2018) in the Carolinas

1.

Explored effectiveness of ATS localization (as compared to regular
localization methods)

Tested inflation scheme in highly nonlinear scenarios. Closer look
at prior and posterior inflation strategies
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O Full CONUS streamflow
reanalysis for the past 30 years: |z
— Explore hybrid EnKF-OI
approaches:

Adaptive: [El Gharamti 2021; MWR]
Analogs: [Grooms 2021; QJRMS]

O A collaborative project with USGS; 2 main goals:

1. Assimilate gauge temperature data (investigate effects on streamflow)
2. Placement of gauges (OSSE studies)

O Coupling the LSM with WRF-Hydro:

1. Assimilate soil moisture & streamflow; weak vs strong coupling
2. Assimilate snow data (thickness, SWE, ...)
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