Using More Trusted Observations to Reduce
Systematic Error in Less Trusted Observations using
Ensemble Data Assimilation
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* Instruments have systematic errors (bias).
« Correcting this bias can improve analyses and forecasts.

« (Can estimate the bias as part of ensemble DA.

« Treating instruments with small bias as trusted (no bias):
Can help estimate bias of other instruments,
Can improve analyses and forecasts.

« Assimilating difference of trusted and biased obs is useful.
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Ensemble Kalman Filter Approach

State augmentation: Instrument bias is a state variable.
Each ensemble has its own estimate of bias.
Bias variable is ‘global’:

Has no location, hence no localization of obs impact.
Adaptive inflation to maintain spread.

No model of bias time variation (for now).




Low-Order Model Exploration

Can learn a lot with linear error growth models:
Kalman Filter is optimal solution,
Even with bias estimation.

Won’t show those results here.




Lorenz-96 Model

Traditional 40-variable configuration for truth, F=8.

Two assimilating models explored:
1. Perfect, same as truth,

2. Enhanced forcing, F=10.

Note: Explored other types of model error. Results robust.




Ensemble Kalman Filter Approach

Filter details:

All forward operators are identity.

Observation error variance is 1 for all observations.

Assimilate every 0.05 non-dimensional time units.

80-member ensemble.

Localization for state variables, GC halfwidth 20% of domain.

Space/time varying adaptive inflation for state and bias.
Anderson 2007, standard deviation 0.6, fixed.

1500 assimilation step spin-up.

1000 assimilation steps for results.
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Observing System: Two Instrument Types

Lorenz-96
40 Variables




Observing System: Two Instrument Types

Bias 2

Lorenz-96
40 Variables




Observing System: Two Instrument Types

Unbiased
(Trusted)

Lorenz-96
40 Variables

Trusted instruments (green) will not have a bias estimated.




Trusted

Lorenz-96
40 Variables

Baseline: Two trusted instruments.
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Bias 0

Lorenz-96
40 Variables

Two instruments with zero bias, but...
Bias is still estimated for each.




== Bias +2

Lorenz-96
40 Variables

Two instruments with +2 bias.




Trusted

Lorenz-96
40 Variables

Instrument with +2 bias.
Trusted Instrument.




Perfect Model: 40 Obs from Each Instrument
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Perfect Model: 40 Obs from Each Instrument
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F=10 Imperfect Model: 40 Obs from Each Instrument
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F=10 Imperfect Model: 40 Obs from Each Instrument
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Correlation

Five Cases: 5: Difference Observations

DA challenge:
Trusted obs priors weakly correlated with bias ensemble.

Prior Correlation of Observation to Bias
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Five Cases: 5: Difference Observations

Observationalist’s approach:
Why do all this messy DA?
Have collocated trusted and biased obs.
Just look at the differences at each location.




Five Cases: 5: Difference Observations

DA Solution:

Assimilate difference of collocated trusted and biased obs.
The priors have a correlation of 1 with bias ensembile!
These have uncorrelated observation errors by definition.

Assimilate the original observations for state ensemble.




Five Cases: 5: Difference Observations

DA Solution:

Assimilate difference of collocated trusted and biased obs.
The priors have a correlation of 1 with bias ensembile!
These have uncorrelated observation errors by definition.

Assimilate the original observations for state ensemble.
This is essentially a rotation of the forward operator matrix.

Wouldn’t change the answer for a Kalman Filter.
But reduces sampling error in ensemble filter.
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F=10 Imperfect Model: 40 Obs from Each Instrument
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Five Cases: 5: Difference Observations

DA Solution:
Not so fast.
Used collocated trusted and biased obs of same type.
If we had these, could easily do things off-line.

Can this work for obs with different locations, or types?
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20 Offset Obs from Each Instrument

Trusted

Instrument with +2 bias.
Trusted Instrument.




20 Offset Obs from Each Instrument: Difference Obs.

Trusted

Instrument with +2 bias.
Trusted Instrument.




F=10 Imperfect Model: 20 Offset Obs from Each Instrument

1 = i Model_ State _ _
Difference obs still j;gg:;gmgg
I 9D o8t 1 |- )= Prior Bi
efiective. : S
L7 0.6
(d))
Uses model =4l B ==8_
correlations for g’ B oo
relation between the ' _
bS 0 _Instrume.nt B'las Error_
obs.
. ond S
Errors in 2" £-0.2
moment are nowa W
concern.
_0'4'0'0 o0 QN T N Al
Q9 0 nn QLo Lo
v S8 o e O
22 mm MmMm 3Sm  EM
ol I: e




4 Trusted Obs, 20 Offset biased Obs

Trusted

Instrument with +2 bias.
Trusted Instrument.




4 Trusted Obs, 20 Offset biased Obs: Difference Obs

Trusted

Instrument with +2 bias.
Trusted Instrument.




F=10 Imperfect Model: 4/20 Observations
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1 Trusted Obs, 20 Offset biased Obs

Trusted

Instrument with +2 bias.
Trusted Instrument.




1 Trusted Obs, 20 Offset biased Obs

Trusted

Instrument with +2 bias.
Trusted Instrument.




F=10 Imperfect Model: 4/20 Observations
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Conclusions

1. Ensemble filters can estimate instrument bias.
Model error and instrument bias hard to distinguish.
Using trusted observations can help.

Could extend to use ‘more/less’ trusted instruments.
Difference observations can reduce sampling error.

This is just a rotation of the forward operator matrix.
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This technique might have more general applications.
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All results here with DARTLAB tools
freely available in DART.
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www.image.ucar.edu/DAReS/DART
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