Spatial Interpolation on a Sphere
Tiled with Quadrilateral Cells

Kevin Raeder?, Jeffrey L. Anderson?

1 NCAR/CISL/IMAGe

Cubed-Sphere Example:

» 6 ‘faces’ cover the sphere

ne ‘elements’ per face edge (6 here)

Each element is composed of a 4x4
grid of quadrature nodes (“corners”),
where the model fields are defined.

Equations of motion are solved on all the grid points
(‘nodes’) in an element at the same time.

Edge nodes are shared with adjacent elements for
this solution, but are not redundant in the initial file.

‘np’ nodes in each direction are not evenly spaced.
3 of the 4 closest nodes to an ob may be outside the
cell containing the ob.

Global set of nodes is arranged as a 1D array.
Adjacent in array # adjacent on sphere

HommeMapping.nc contains neighboring node information

But it needs to be turned ‘inside out’.
It will give the names of 4 nodes around a ‘center’, aka 4 nodes defining a quad.

ncorners[0] ncenters[0] element_corners[0]=1

ncorners[1] ncenters[0] element_corners[48600]=5

ncorners[2] ncenters[0] element_corners[97200]=6 Ce C, G
ncorners[3] ncenters[0] element_corners[145800]=2 9 10 11 12

¢, !¢, C
56— 6— 7 8

Co & G, G G
2 3 4

ncorners[0] ncenters[1] element_corners[1]=2
ncorners[1] ncenters[1] element_corners[48601]=6
ncorners[2] ncenters[1] element_corners[97201]=7

ncorners[3] ncenters[1] element_corners[145801]=3 !

But we want the names of the neighbors of a given node

Node ‘6’ has 4 neighbors: 7,2,5,10

Store cells/centers associated with each node in a file before any assimilation.

Lats and lons of nodes are given in the CAM initial file.
Same node labeling as in HommeMapping.nc.

This works for any grid made of quadrilaterals.

Refined mesh grid: all elements are 4-sided, but 3-6

elements (and cells) may share a corner node.

/ '
/\./ [:.--"
T
—] " e
.—--"‘———’__,
" ”_____.--—/
.-—-,”/
] | |
| L T
|
| 1]

The Goal; interpolate field values at 4 nodes to an observation location
(horizontal part)

Bazillions of times

We can find the node closest to the ob more

® node/corner efficiently than a “naive exhaustive” search.

cell boundary on the sphere:

reat circle segment
1 & 8 But finding the 4 nodes that enclose an ob is

more complicated; some of the 4 nodes
closest to an ob may not be corners of the
cell containing the ob.

The Goal; interpolate field values at 4 nodes to an observation location.

Interpolation can be easier on the unit square

— * * t 3
® node/corner lon=a,+a,*¢*m +a,*m+ a;* ¢
cell boundary on the sphere:
great circle segments

(lon,lat,) (¢,m)

lat =b,+ b, * ¢ *m +b,*m + by* ¢

(130'89) .".~.“..ﬂ

(1,1)

(40,885) ~e (125,88) P (20

solve for a, in terms of the 4 lon_ (known for this quad), and solve the resulting 2
equations for ¢ and m for any given (ob) lon and lat. 6

The Goal; interpolate field values at 4 nodes to an observation location.

But a linear mapping of (lon,lat) to the unit square isn’t robust.

® node/corner lon=ay+a,*¢*m +a,*m+ a,* 4
cell boundary on the sphere:
great circle segment lat=b,+b,*¢ *m +b,*m+ b,* /¢
1-50,89) (lon_lat,) (¢,m)
............... (011)
(130,89) . g (1,1)
ob“
AN
m
(40885 ~e (125,88) 4 S (10

#0.0) /

Intermediate maps prevent this

*
Map 1; flatten the cell using a local radial coordinate system
cell on the sphere

cell on the plane

On the sphere, find bearings (B) (aka
“headings”) and distances (d), from the
(lon,,lat,) local origin to corners 1, 2, and 3.
(d,,B,) 1 (-50,89) Transfer the (d, B,) to the plane tangent
to the sphere at the local origin.
Then all points “inside” of sides 0-1 and

(130,89) 0-3 of the sphere cell will be inside the
planar cell.

-——
-_——
-——
-_——
-
———— 2
-——
L)
-
-
1 —

This mechanism can handle nodes
at the poles.

*1"'m looking for a reference
for this method.

\
1
\
\
1
\
\
\
\
1
\
\
\
\
1
\
\
\
\
\
\
\
\
1

~~~~~~~ - 3 (125,88)
Bs(flat) = "meen p
(ds,B5)



d = great circle distance, as calculated by DART’s get_dist.

B = the bearing; the direction from one point on a sphere to another,
along a great circle. Northis 0. (Details in slides at the end)

B = atan2( sin(AA)*cos(d,), cos(d,)*sin(d,) — sin(d,)*cos(P,)*cos(AN) )
A =longitude @ =latitude 1=starting point 2 = destination

formula from http://www.movable-type.co.uk/scripts/latlong.html



Intermediate maps prevent this
Map 2; Change variables from radial coordinates to cartesian coordinates
0,=B5-B, x,=d *cos(O,)
(dy,B1)

y,=d_ *sin(O,)
This defines 0-3 as the x-axis in (x,y) space.

(X11y1)
- __
_-_‘? \\ _____________ (X,,Y,)
1 N N L,
o \ 2
1 \ 1
\ \ \ \
\ 1 \ \
\ \ 1 1
\ ¥ \ 1
3 \ \ 1
3 \ \ i
B \ \ i
A \ 4 i
A “ 1 \‘
\ \ 1 \
kN \ 1 1
-~ 1 [ . 1
0 Tvee. ~. \ (0,0) ®.3xis 4 \
~“~~ 1 ’ NNNN eﬁne 1
~~~~ \‘ ‘~~~ by §
NN) “eay po/nt \
NNNN
-
¢}
(d3,B5)

10

Intermediate maps prevent this

Map 3; Convert the cartesian cell into a unit square.

X=ap+a*¢*m +a,*m+ a* (¢

y=h,+b*¢ *m + b,*m + J/3*€
(x,y) /=0 by choice of (x,y) coordinate system (¢.m)
(X1,Y1)
Q\:-l-__l ____________ (Xz;yz) (011)
\“ -"'\ (1,1)
1
\\‘ \‘
\ \
\ \
\ \
: - .
S 1
1 1
° \
(010) ~~~~‘~~~ \\‘ (110)
e (6,0) 00y ¢

CESM/AMWG
2013

11

Intermediate maps prevent this

Now observations in the original cell map into the unit square.

X=ap+a,*¢*m +a,*m+ az* (¢

y
1

by + b *¢ *m + b,*m + B3*{

= 0 by choice of (x,y) coordinate system

(¢,m)
(0,1)
‘| /’, (1I1)
\“J z’/
m | ob
A S
T (1,0)

4
Use the 4 corner mappings to generate 3 equations in 3 unknowns (e.g. a,).
Solve for a,, in terms of the 3 x,. Repeat for the 2 b in terms of they,.

Solve the resulting 2 equations in ¢ and m for any given (mapped) observation
location (x,,y,). See digression about the quadratic equation for m, below.

CESM/AMWG 12
2013

Summary of the Generation of HommeMapping _cs_grid.nc
from HommeMapping.nc

Once for each grid , map each cell from (lon,lat) to the unit square (¢, m),
using each corner as an origin (see distance distortion slides, below).
This multi-mapping is stored as only 6 numbers at each corner:

a12,3 b1 and B.

Also store the lists of corners of each cell, and which cells use each corner.

CESM/AMWG 13
2013

HommeMapping_cs_grid.nc

netcdf HommeMapping_cs_grid_ne30 { variables:
dimensions: int num_nghbrs(ncol) ;
ncenters = 48600 : num_nghbrs:lon_g_name = . numper of neighbors of each node" ;
num_nghbrs:units = "nondimensional” ;
ncorners =4; num_nghbrs:valid_range=1,6;
max_neighbors =6 ; int centers(ncol, max_neighbors) ;
ncol = 48602 ; centers:long_name = "cells which use node as a corner" ;

centers:units = "nondimensional" ;
centers:valid_range =1, 48600 ;
int corners(ncorners, ncenters) ;
corners:long_name = "corners/nodes of each cell" ;
global attributes: corners:units = "nondimensional" ;
:elements_per_cube_edge =30; corners:valid_range =1, 48602 ;
double a(ncenters, ncorners, ncoef_a) ;
a:long_name = "Coefficients of mapping from planar x coord to unit square" ;
a:units = "nondimensional" ;
double b(ncenters, ncorners, ncoef b) ;
b:long_name = "Coefficients of mapping from planar y coord to unit square" ;
b:units = "nondimensional" ;
double x_ax_bearings(ncenters, ncorners) ;
X_ax_bearings:long_name = "bearing (clockwise from North) from origin
node(corner 4) of each mapping to corner 3" ;
X_ax_bearings:units = "radians" ;
X_ax_bearings:valid_range =-3.14159265358979, 3.14159265358979 ;

ncoef a=3;

ncoef b=2;

:nodes_per_element_edge =4 ;

14

Why use each corner as an origin?

* Bearings and distances from origin
guad on the sphere to corners 1, 2, and 3 are preserved

——————— quad on the plane by definition.
e But other distances are distorted
and obs near sides 1-2 and 2-3 may

not be inside the plane quad.

CESM/AMWG 15
2013

error(degrees)

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08

-0.09

But

This implies a linear interpolation of longitude and latitude between the corners,
which is inconsistent with the cell boundaries, which are great circle segments.
Obs just inside a quad boundary can appear outside the unit square boundary,

and vice versa.
Here are the errors of the positions of the (~1-degree) cell edge midpoints, as

calculated by linear interpolation, relative to a spherical coordinate mid-point
formula.

longitude error at midpoints of quad edges of planar/average vs spherical/great circle

10 T T T T T T T T

log(abs(error(degrees)))
>

Il Il Il Il Il Il Il Il 10_ Il Il Il Il Il Il Il Il

10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
latitude(degrees) latitude(degrees)

It’s most likely near the poles, but it can happen anywhere.
16

Robust solution to planar mapping distance distortion

guad on the sphere

guad on the plane

This is OK if there are no obs
near sides 1-2 and 2-3. Do this
by defining a separate planar
coordinate system for each
corner. Then obs will always be
in the quadrant farthest from
sides 1-2 and 2-3 and closest to
the origin.

* This sounds complicated and

time-consuming, but it doesn’t
take long, since it’s a 2D
problem, and it can all be done
once for each grid, before any
assimilations.

17

Summary of 3-Maps Interpolation Method

@ Before any assimilation, map each cell from (lon,lat) to the unit square (¢,m),
using each corner as the origin. Each mapping is stored as only 6 numbers:

31,23 012, and Bs.

Also store the lists of corners of each quad, and which quads use each corner.

@ During an assimilation use location_mod:get_close_obs to identify the nodes
which are closest to the ob.

@ Search the 3-6 cells that use the closest (or 2" closest) node as a corner to see
which contains the ob:

O, = angle from (stored) x-axis of the closest node to observation
(x.,v,) =d.* [cosO,, sinO,]

Solve 0=m?(a,b,—a,b;) +m(asb,—a,y, +byx)—azy, form
and ¢ =(x,—a,m)/(a; +a;m)

(from plugging (x,,y,) into the mapping equations and solving for m
and ¢)

fO0<m<1land0<?¢ <1 then we’ve found the containing cell
AND numbers that can be used in interpolation weights.

18

Evaluation of which root of the m quadratic equation to use.

aa*m2+bb*m+cc=0 aa = a,;b,—a,b,
cC=—ayy

The cell coordinate systems were defined so that x3 >0, which means a3 > 0.
All y > 0 (for points in the cell). So cc can be written as -|cc]|.

bb 4aa‘cc‘
Then the solution to the quadratic equation can be written m=——|-1%,/1+ —
2aa bb

For aa > 0 the sqrt term > 1. Looking at the case of the largest bb, for:
bb > 0 only the +root can yield m > 0.
bb < 0 only the —root can yield m > 0.
Smaller bb make the sqrt term larger, and it dominates the -1 term even more.
For aa < 0 the sqrt term < 1. Looking at the case of the largest bb, for:
bb > 0 either root can yield m > 0. But which, if either, yields m< 1
depends on exact sizes of aa,bb,cc.
bb < 0 neither root can yield m > 0.
Smaller bb make the sqrt term smaller, and the -1 term dominates it even more.

bb<0 (that is, the same sign as cc) for cells that are distorted towards triangular, either by having a very short
side, or by having a corner pushed toward the center, so that 2 sides are nearly co-linear.

This is explored in a matlab script and its output in PIC_check_bb (was bb_ccneg) and

roots_of _m_equation.pptx.

19

0 =m?(a,;b, —a,b,) + m(azb, —a,y, +byx) —a;

This can be restricted further, in the case of grids actually used for CAM-SE.

In particular, if bb > 0 always, then the +root will yield a good mapping.

We can use the fact that the cells are not highly distorted in the sense that all 4 sides
are roughly the same size, and they are not squished into skinny diamond shapes or

nearly triangular.

From the mapping of the 4 corners of the (x,y) cell to the (I,m) square we have
a; =x3 >0andb, =y, >0 by definition of the (x,y) cell. x; and y, are not small.
So the first bb term is > 0 and not small.
a; = X, — X, — X3 = (X, — X;) — (x3-0) = the difference of the baseline side and the opposite
side. This is small.
b;=Yy,—-VY;. Y,>0and roughly equal, so b, is small.
In the “worst case” for making bb > 0, we would have the signs alligning to make the 2"
and 3" terms < 0, and x, and y, not small, but they’re multiplied by small numbers, so
the first (large positive) term of bb dominates.

The code tests for bb < 0, uses the —root if needed, and prints a warning that it appears
that the gird has highly distorted cells. It does not keep both roots in the case where
both yield usable mappings.

CESM/AMWG 20
2013

@ Use ¢ and m as weights to interpolate the field values at the corners, f
to the ob location.

(0,1) (1,1)
fo= f,* €* m, f, f|
+f, % (1-€)* m, :
f, * (1-€)*(1- :
+, % (1-6,)*(1-m,) 1-m, :
+f, % € *(1-m)) :
E f
............ Q
m, :
f, ¢ 1-¢, f,
(0,0) (1,0)
CESM/AMWG 21

2013

Refined Grid; ‘wrong quad’ problem

Near the boundary between coarser and finer grids the nodes/quads can look like

2nd

closest

closest

The closest node is not one
that defines the cell that the
obisin.

But the 2" closest must be (at
least for the cubed sphere
grid).

Check if this is the case by
mapping the ob location into
each of the cells that use the
closest node as a corner. If
they all fail, do the same for
the 2" closest node.

22

Bearings Details

‘Bearing’: direction from one point on a sphere to another along a great circle.

4 Not a cheap calculation, so store the
bearing of the x-axis for each before
any assimilation.

For the 1° refined grid,
num_nodes = ~147,000,
num_corners = ~4,

so ~600,000 bearings.

1° standard grid: 1/3 as much

B = atan2(sin(AA)*cos(d,), cos(d,)*sin(d,) — sin(d,)*cos(P,)*cos(AN))

A =longitude @ =latitude 1=starting point 2 = destination
23

What’s the bearing at and near the poles?

Setting A, = OE (for ¢,=90N) can be understood as arbitrarily setting the reference
direction “to the north pole” to the be the vector from any point on the OE meridian
towards the north pole. Then bearings from the north pole to other points are
measured from that reference. Such a choice would be necessary, at most, once for a
cell, so there won’t be a confusion of reference directions.

Initial point at the N pole (and ‘OF’)

89N,180E

0
®

TRef. direction

89N,270E 90N, OF 89N,90E
270 * o ® 90
o
180
89N, 0F

Initial point displaced towards OE

89N,180E

0
°

89N,90E
089°02'43"

89N,270E

270057[17". 89.59.00N,0E .

180
249N 0E

Initial point displaced toward 90E

89N,270E
0

Note rotation of bearing values caused by
rotation of reference direction. So bearings
are not continuous for perturbations of the
initial point away from the north pole in all
directions. Only in directions mostly parallel
to the north pole reference direction.

89N,180E

089°02'43"
®

89.59.00N,90E SINIOE
/VE ® ® 180
@h//-
@f@f
€,
Ce
Y.
o
27005711711
89N,0E

25

Discussion

Efficiencies:
 Use the new (x,y,z) get_close_obs, which returns a list of closest obs.

 Small angle approximations to avoid sines and cosines (away from the
poles)?
* Trig function look up tables? (as in threed _sphere/location_mod.f90)?

* Order the quads around each node, in order to calculate the right one,
instead of searching all (average of 2 failures (x 4 corners)/quad).

* Cache interpolation weights for obs at the same location.

* Timing of recalculating HommeMapping_cs_grid.nc? vs using a pre-
existing file, which complicates the scripts.
e .7

